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Under suitable conditions the stalks of the covering space of a presheaf & = {Xy|oyy| X}
over a topological space X are isomorphic. A topology of uniform convergence can be then
defined in any set I'y; of all continuous sections in the covering space of & over an open set
U < X by which the natural maps py, sending any a € Xy, onto its corresponding section d € I'y,
are continuous. The conditions put on the presheaf are of inductive character. From this reason
inductive closurations of presheaves are studied and also the dual notion, projective closurations.
are dealt with and shown to behave dually.

Ilpu ONHOM MHOYKTHBHOM YCJIOBHHM ¢HOpPHI HaKpHIBAIOIIEro HMPOCTPAHCTBA NpEANyYKa H30-
MopdHbl. HOYKTHBHBIE H IPOEKTHBHBIE MoaubmKanuu mpemmyykoB. — [Ipm ymoOHBIX ycio-
BusAx GuOpbl HakphiBatomero npocTpanctsa npeamyuka & = {Xyleyy| X} max Ttomomorm-
YEeCKHM NpPOCTPaHCTBOM H30MOpdHEL Torma MoxeT ObITh BBENEHAa TOMOJIOTHS DPaBHOMEPHOR
CXOIHMOCTH B Ka)XIIOM MHOXeCTBe I'y; BceX HEeIPEPEIBHEIX PE30B B HAKPHITHH OT & HaJ IPOH3BOJIb-
HBIM OTKDBITBIM MHOXECTBOM, IPH KOTOPO# €CTECTBEHHEIE OTOGPaXeH s Py, KOTOPLIE 0TOOpaXaloT
BCAKOE @ € Xy Ha €ro Kopecmonmmpyiomui pe3 d € I'y, HenpepeiBHbI. Tpebyemele ycnoBus muis
npeammy4yka HMEIOT MHAYKTHBHBIA xapakrtep. IT03TOMY MHAYKTHBHBIE TONOJIOIH3ALMH MPEANYYKOB
BMECTE C QyalbHbIM ITOHATHEM IPOEKTHBHBIX TOMOJOrH3alMit 34eCh H3y4YeHBI M IOKA3aHO YTO OHH
BenyT cebe OyanbHO.

'Za vhodnych podminek jsou fibry nakryti ptedsvazku & = {Xy|eyy| X} nad topologickym
prostorem X izomorfni. V kazdé mnozZin€ I'y, vSech spojitych fezii v nakryti pfedsvazku & nad
otevienou mnozinou U se pak da zavést topologie stejnomérné konvergence, pfi které jsou pfi-
rozend zobrazeni py zobrazujici kazdé a € Xy na odpovidajici fez d € I'y; spojitd. Na svazku
pozadované podminky jsou induktivni povahy. Z této pfiCiny se studuji induktivni uz4dvérovani
pfedsvazkl a je téZ rozebran dudlni pojem projektivniho uzdvérovani a ukdzano, Ze se chova
dudlné.

Introduction

When studying in [2] different topologies in the set Ay of those continuous
sections in the covering space of a presheaf & = {X UIQUV| X} that naturally cor-
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respond to the elements of X, such as that of pointwise or uniform convergence, we
can see that it is difficult to find a nice way of defining the topology of uniform
convergence on “‘big” sets that consist of more than finitely many points, which is
just the case of topology of uniform convergence. There would be a way if we knew
how to bring over neighborhoods from one stalk to another; then we would know
which neighborhoods in different stalks are of the same size. Unfortunately we have
not always such a bringover handy to be used. It is shown in this paper that if a con-
dition of inductivity is fulfilled then the stalks are isomorphic, which is just what
we need. It is shown then that the topology of uniform convergence can be defined
in Ay in a natural way and that the natural map py : Xy — Ay is continuous in this
topology, where py(a) = d for a € Xy, and d(x) is the germ of a over x.

In [3] we have dealt with the question of when there is a closure ¢ in the covering
space of & such that all the natural maps p, be homeomorphisms in the topology
of pointwise convergence in Ay, and such that 4, be just the set of all continuous
sections over U. It is shown there [3, 4.3.6, 4.3.7, 4.3.9] that if the presheaf fulfils
again a condition of inductivity then there is even a topology with the mentioned
properties. From this reason inductivity of closure collections is studied in the second
section. It is shown that there are some inductive modifications from below to any
closuration of a presheaf, and some conditions for the inductivity of the given
closuration follow. A spacial case, when the “choice” of the ‘“‘stars” of a set consists
of all open sets containing it, was solved by Z. Frolik in [1]. However, in [3] and in
the first section of this paper we need some more general choices, which is the reason
of why we study the problem in a more general setting in the second section.

It turns out in [3] that some conditions of projectivity are needful for studying
the topology of uniform convergence on compact sets and also that of uniform con-
vergence. Also the possibility likewise to treat projectivity as we have done it with
inductivity leads us to showing that a dual machinery gives us the corresponding
dual results for projective modifications of closurations. This is done in the last
section. Projective modifications for “choices” of covers consisting of all these were
also fully solved by Z. Frolik in [1]. Also in [4] some special cases of the fourth
section were dealt with.

1. Preparatory Notions

The set of all open subsets of a topological space X is denoted by #(X).

1.1. Let & = {Sulgwl X} be a presheaf of sets over X. A closuration of & is
a family pu = {ry | U e #(X)} (shortly u = {ty}) such that for every U e #(X) wy
is a closure in Sy; p is called compatible if every oyy : (Sy, 1) = (Sy, 7y) is con-
tinuous.

1.2. Let t, ' be two closures in a set Y. If ¢ is finer than t', we write t < t'.
If u = {ty}, W' = {1} are two closurations of # we write u < p’ if 7y < 7, for every
U € #(X). Let 4 be a nonempty set of closures in Y. The finest (coarsest) closurein Y
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coarser (finer) than each te . is denoted by lim {t|te #}[lim{t|te #} —
(shortly lim .#/lim .#). Clearly lim .# < t < lim . for each t € /.

1.3. A category is called inductive if every presheaf from it has the inductive
limit there.

1.4. If ¥ = {S,|0.s| (A<D} is a presheaf, B = 4, we set & = {S,|o,s| (BSD}.

1.5. Let & = {SUIQuyl X} be a presheaf over a topological space X from an
inductive category. If xeX, we set O(x) ={U = X|U open, xeU}, &, =
= {SU|QUV| {O(x) £}, where for U, Ve O(x) we have U < V iff V < U; then
I |{€us| U € O(x)}> (here &y, : Sy = I, = lim &, are the natural maps) is called
stalk over x.

2. Homeomorphness of Stalks of a Presheaf

2.1. Lemma. Let & = {X,|0,5| (A<D} be a presheaf from an inductive category,
such that (1): There is a confinal set B = A such that for every b € B there is a right-
directed set S(b) = A4 with S(b) = S(b")if b < b'.

(2): For every ae A there is b = s(a) e B such that lim Ly, = (Qa,,.(X,,)l
| {ecs: | c € S(b')}> for all b’ e B, b' = b.

Then D = U{S(b)|be B} is right-directed and if we set lim ¥ =
= I {&, | xe A}, lim &p =<K I {sq I d € D}, then there is an isomorphism f
between K and I such that fs, = &, for all d € D.

Proof. For be B let lim Fs4) = (Z, | {fo|ceS(b)}>. If b<b then, as
S(b) = S(b’), there is a unique map gy : Z, = Z,- such that f,,. = g,,.f,, for all
ceS(b). If b,b',b"eB, b < b < b", ceS(b) then gypdss-fer = Gop-Sfer = fop
As gu 2 Z, > Zy. is the unique map with gy,-f., = f.- for all ce S(b), we have
Go-Gos: = gopr hence T = {Z,|gy,| (BSD} is a presheaf for B is right directed
being confinal in A.

By virtue of (2) we may assume that for each b, b’ € B, c € S(b), b < b’ we have
feoo = 0 Zy = X, and gy, = @y [Z, Indeed, if ae A, b =s(a)eB, B =
= {b’e B| b’ 2 b} then by (2), B’ fulfils (1), (2) of our lemma, and Z, = g4(X,) <
< Xy foor = Qo for all b’ € B, ce S(b’). Further, as f,, = g, for all ce S(b')
and as gy0 = 0up- for all ¢ € S(b’), the uniqueness of g, yields gy = Qpp[Z,-

Now we shall show that lim J = <T|{k,|be B}) is isomorphic lim &.
Firstly, for each be B, {¢,: X, — I | c € S(b)} is a fan between P, and I so there
is a unique hy : Z, — I with (x): hyf,, = &, for all c € S(b) (since f, = 0.p» {10 = &,
for all c e S(b), we have h, = 5,,/2,,), secondly, for any b, b’ € B, b < b’, ce S(b)
we have hy.gu-foo = hyfopr = &, wherefore the uniqueness of h, possessing the pro-
perty (%) yields that h,.gy, = hs; thirdly, by (2), for a € A there is b 2 a, b € B with
Z, = 04(X,), whence we have a map k,o, : X, » T. Recall that for b, b’ € B,
b £ b',wehaveg,, = be'/Zb. Thusif b’ = a, b’ € B, then thereis b”" € B, b” = b, b,
and we have kyou = kygup0ab = Ko9p6-Ibb'Cab = KorGp'6"QppQap = kyQap 5O We
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may set (x*): I, = kyo,, because it does not depend on b over which we carry it.
Ifa,a’e A,a < a’, thenthereis be B, b = a, a’, and 1,.0,,» = ky0,40ua" = Kkp0up =
= I,. Altogether we have h, : Z, —» I with h,.g,,- = h, for all b b’e B, b £ b’, and
l,: X, > Twith l,.0,, = l,foralla,a’€ A, a < a’. Thus thereisa unique i : I - T
with I, = i¢, for allae A and j : T — I with h, = jk, for all b € B. We shall show
that ji is identity on I. Asidentity on I is the unique map f : I — I posessing the pro-
perty f&, = &, for all a € A, it is enough to show that ji£, = &, for all ae 4. We
have jié, = jl, = jkyQa = hp0ap and as h, = ‘fb/Zb, we get hyou = &0 = &, as
desired. Likewise ij is identity on T. Indeed, if b € B, we have ijk, = ih, = i(g’,,/Z,,) =
= 1,/Z,. By (*x), if b’ € B is large enough, we have 1|z, = ky{Cos:/Zs) = ky which,
by the same argument as above, says that ij is identity on T. Thus T'is isomorphic to I.

Now we shall show that lim J is isomorphic to lim &, = <K | {s4 [ de D).
Firstly, since for every b e B the family {s,: X, » K |d e S(b)} is a fan between
&swy and K, there is a unique t, : Z, - K with t,f., = s, for all ce S(b). If b, b’ € B,
b < b, then t,gpfep = tyfepr = S, for any c € S(b) and, as t, is the only map which
being composed with any f,,., ¢ € S(b) yields s.., we get t, = t,.gy,- On the other
hand, for d € D we have the maps I, : X, —» T, with l;., 9,4 = l;- whenever d, d’ € D,
d £ d', found above. Thus there are p: K — T, q : T —» K with ps; = I, gk, = t,
for all de D, be B. If de D then d e S(b) for a be B, and we have gps, = ql; =
= qkyou = 10m = tpfsr = S; showing that gp is identity on K. To show that pq
is identity on T, it is enough to prove that pgk, = k, for any b € B. We have pgk, =
= pt,, and for all ce S(b) we have pt,f., = ps. = l. = kyo., = kpfep since 0 = fop
when ¢ € S(b). This shows that pt, = k, as desired.

Finaly, we set f = jp:K — I. If d € D then there is b € B with d € S(b), and
by (%), fsq = jpsa = jla = jks0a» = hsfap = s The proof is thereby finished.

2.2. Notation. Let X be a connected topological space, M, N < X, let #(M, N)
be the set of all filters # consisting of connected open sets such that M UN < B
when Be #. If B, #,€ #(M,N), let B, < &, if #, majorizes #, (meaning that
for any B, € #, there is B, € #, with B,  B,). The Maximality Principle readily
yiels for any # € #(M,N) a maximal 9 e #(M, N) with # < 9. The maximal
filters in .%(M , N) shall be called branches between M and N. The set of all these is
denoted by #(M, N); if N is a point {x}, we shortly write (M, x). If also M = {y},
we write #(y, x). As #(M,N) = #(N, M), we have #(M,N)= #(N,M). If
Mc L, #BeBM,N), weset B(L) = {Be #| L= B}.Every #(L)can be completed
to a #, € B(L, N). Again we wirte %(x) instead of 2({x}).

2.3. Lemma. Let & = {Xy, ouy IX} be a presheaf from an inductive category,
let X be connected and locally connected.

For any open connected U, V = X with V < U, any x, y € X with xe V, and
any # € %(x, y) let us have

lim L gy = <ev(Xv) 1 {owv I We B(V)}> . (*)
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Then for every x, y € X there is an isomorphism h,, : I, — I, between the stalks
a, | {Eux ] UeO(x)}> = lim &, and I, | {Euy | Ue0(y)}> = lim &,, such that
for any open U = X with x, y € U we have h ¢y, = &y,

Proof. We use lemma 2.1 to &, with the set of all connected open nbds of x as B.
If B e B(x,y), Ve B, we set S(V) = #(V); then the condition (1) of 2.2 is fulfilled,
and also the condition (2) of 2.1 because of (). Let D = U{®&(V) | Ve %}, lim &p =
=(K | {sv l Ve D}). Since D is confinal in # we can for Ve % find a We D with
W < Vand set r, = spoyw : Xy — K. It is easy to show that r, does not depend
on the choice of W. Also it is easy to see that <K | {ry | Ve #}) = lim S4. By 2.2,
there is an isomorphism f : K — I, with fs, = &, for all Ve D. If U < X is open,
x, y€ U then U € # and there is We D with ry = syoyw wWhence fry = fspoyw =
= ¢y 0uw = Eux Likewise there is an isomorphism g : K — I, such that gry = &,
for all open U = X with x, y e U. Setting h,, = gf ~' we have for open U = X
with x, ye U : h &y, = gf ~ '€y, = gry = &y, and we are done.

2.4. Remark. Let & = {(Xy, ty) |ovy| X} be a presheaf from the category of
topological spaces such that the conditions of 2.3 are fulfilled. For open U <= X let
Ay = {d|aeXy}, where d(x)= &y a) for xeU. The homeomorphisms h,,
between the stalks (I,, t,), (I,, t,) enable us to bring over open nbds of elements from
one stalk to another within connected sets, and thus define the topology of uniform
convergence in Ay, for now we know what it means that two nbds in different stalks
are of the same size. Namely, if U is open and connected, a € Xy, x € U, and
if Wis a t-nbd of d(x), we set O(d, W) = {be Ay | b(y) € h.(W) for all yeU}.
Letting W run through the set of all 7,-nbds of d(x) and doing it for all e 4y, we
get a topology sy (which may be called the topology of uniform convergence). Uf U
is not connected then — as X is locally connected — its components are open; we
projectively define sy in Ay by the maps {ryy : 4y » 4, | Ve 4(U)}, where ¢(U)
is the set of all components of U, and ry,(4) = d/V. While in [2] there were difficul-
ties with the continuity of the natural map py :(Xy, ty) = (Ay, sy) which sends
a € Xy, onto d € Ay, in our setting we have

2.5. Proposition. Under the conditions of 2.4, the map py is continuous.

Proof. Given U = X open and connected, a € Xy, and an sy-nbd O = O(é‘, W)
of 4, then from h, ¢y, = &y, forany x, y € U we get py(W) < 0.If U is not connected
it is enough to show that ryy py is continuous for every Ve €(U); but ryypy = pyouy
and both p,, goyy are continuous.

3. Inductive and Semiinductive Modifications

If # is a family of subsets of a set Y, we set \# = N{M i Me 4}.

3.1. Definition. If X is a topological space, U € #(X), then a star of U is a set
& < B(X) such that U = \&. The set of all stars of U is denoted by o(U). Let
# = {ty} be a closuration of a presheaf # = {Syloyy| X} (see 1.1), U = X open.
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If & ea(U), we have a set of maps A(¥) = {0y | Ve &} of the closure spaces
(Sy, 1y), Ve & into Sy (the closure 7y is not considered now). The closure inductively
generated in Sy by the maps from A(&) is denoted by 7,(&).

3.2. Definition. Let U, Ve #(X), V = U, &, € o(U), &, € o(V). We say that &£,
refines &, (¥, £ &,), if for every M e &, there is Ne &, such that N = M.
If moreover N can be found such that g,y : (Syty) = (Syty)is continuous, we say &,
strongly refines &, (¥, < &>).

3.3. Proposition. Let &, < &,. Then the map gyy : (S, ru(yl)) - (Sy, 1(£2))
is continuous. .

Proof. We take the following commutative diagram for any M € &, and N € &,
such that N = M and that gy : (SuTsu) = (SaTy) is continuous.

(Suvs w(#1)) ~—— L (Sw> Tm)
lQUV eMN
(S (#3) < (Sws )

Here gyy is continuous if so is gyy@uy for each M € &,. As Quy0yu = Qnvoun and
both gyn, 0y are continuous, we are done.

3.4. Definition. A choice of stars is a map s : {U - s(U) = o(U) | U € B(X)}
with s(U) # 0 for all U’s. A closuration u = {ry} of & is called s-semiinductive
(s-inductive) if (3.5) 14(&) 2 1y (7u(&) = 1y) for every U € B(X), & € s(U).

The following two propositions are clear:

3.6. Proposition. If Ue #(X), ¥ es(U), then 14(¥) = 7y iff the following
condition is fulfilled: If (P, 1) is any closure space and f : (Sy, 7y) = (P, t) any map,
then the continuity of fo, for all Ve & yields that of f.

3.7. Proposition. Let U € #(X), & € o(U). TFAE:

a) (&) st

b) If (P, t) and f are as in 3.6, then the continuity of f yields that of fo,y for each
Ve .

¢) oyu : (Syty) = (Su, 1y) is continuous for each Ve &.

If u is s-inductive, it need not be compatible, but we have

3.8. Proposition. Each of the following properties of s yields the compatibility
of the s-inductive closuration u:

a) If V < U then there are & € s(V), & € s(U) such that & < & (see 1.2).

b) If V < U then there is & € s(V) with U e &.

Proof. Let u = {1} be s-inductive, ¥ = U. (a): Let L e s(V), F e s(U), ¥ < &.
As 1y = (%), v = 1,(¥), (a) follows from 3.3. (b): We take & €s(V) with
Ue&. As 1y = () and ouy : (Sutu) = (Sy, 14(&)) is continuous, we are done.
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3.9. Remark. Clearly if u is s-semiinductive and compatible then it is s-inductive
since by 3.7c, a, the compatibility yields 74(¥) < 7y for & € s(U), and the s-semi-
inductivity yields 1y < 14(%). So if any of the conditions of 3.8 is fulfilled then u
is s-inductive iff it is compatible and s-semiinductive.

3.10. Proposition. Let Q be a nonempty set of closurations of a presheaf &,
let 4® be its supremum, i.e. p® = {r§}, where 1§ = lim {t | v = {13}, ve Q}.

(a) If every v € Qis compatible then pu® is.

(b) If every v € Q is s-semiinductive then pu® is.

(c) If every v e Q is s-inductive then u? is.

Proof. To prove (b) it is enough by 3.6 to show the following: “Let U € %(X),
& € s(U), let (P, t) be any closure space, f : (Sy, 1) = (P, t) a map. Then the con-

tinuity of fo, for all Ve & yields that of f°. Let us look at the following commutative
diagram for & e s(U), Ve &, ve Q:

v
(Sy, ) =2 (Syw2)
iy iy

(sv8) 2% (sued) L (. 1)

Here f is continuous iff for each v € Qfiy, is. Let v e Q. Both i}, fo,, are con-
tinuous for each Ve &, so for every Ve &, foyyiy = fiyeyy is. But v = {3} is
s-semiinductive, thus fiy; is continuous for each v € Q, hence f is.

(c) By 3.6, 3.7a, b, it is enough to show the following: “Let U € #(X), & € s(U),
let (P, 1) be a closure space and f : (Sy, 75) — (P, t) a map. Then f is continuous iff
for every Ve & foyy : (Syty) = (Sy, 15) = (P, 1) is.” The “if”” part has just been
proven. Now, let f be continuous. We can see from the above diagram that fg, is
continuous iff for any v € Q fo,yiy is. But it is just fij,0y . As f and i}, are continuous
for every v, fiy is, too, and the s-inductivity of v yields the continuity of fijo} .
Likewise (a) can be proven.

The part of the following theorem concerning ) if s(U) = o(U) is due to Z.
Frolik, [1, p. 58, 59].

3.11. Theorem. Let u be a closuration of &, s a choice. Then there is a closura-
tion u! and ' of & such that

a) ul < <

b) p! is s-inductive (hence compatible if (a) or (b) of 3.8 is fulfilled), pS' is
s-semiinductive.

¢) If u'(u?) is an s-inductive (s-semiinductive) closuration of & such that
p' < p(p? £ p) then pt < pl(p? < pih).
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Proof. If Q’(u) is the set of all s-inductive closurations of & finer than u, we put
pl = {r} where 17, = lim {t} | v = {1}, ve Q'(n)}. By 3.10, ! is s-inductive.
Likewise we make p3’.

3.12. Definition. y (,us’) is called s-inductive (s-semiinductive) modification of .

3.13. Proposition. Let u be a closuration of &, s a choice. For U € .QB(X) let
13 = lim {7(¥) I Fes(U)}y, ul ={g,}. (3.14)

Then p' < pf. If p is s-semiinductive (s-inductive) then pu < pP(p = ).
Suppose moreover the following condition C: “For every U there is & € s(U) such
that for every Ve & the map gyy : (Syty) = (Sy, 7y) is continuous.” Then pZ < u.
(C is fulfilled namely if p is compatible or if {U} € s(U) for each U).

Proof. Let Ue #(X), & es(U). If p' = {1§,} then t{, < /(&) < 1(¥),
hence by 3.14, 13/, < 17 for all U so p§' < uf. If p is s-semiinductive (s-inductive),
then for each & es(U) we get 1y £ 1y(¥) (1 = 1(¥)). Thus p < pP(p = ub).
If C holds then uf < pu follows from 3.7a, ¢ and 3.14.

3.15. Proposition. If g = uP then u = u3'. If moreover u is compatible, then
us = piff p= p2.

Proof. If p = uD then by 3.14, 1y = 15, £ 14(¥) for any U € #(X), & € s(U),
hence u is s-semiinductive and thus g = p5’. If u is moreover compatible, then having

already been shown to be s-semiinductive, it is also s-inductive, by 3.9, hence u = pul.
On the other hand, if p = u! then pu is s-inductive hence u = u by 3.14.

3.16. Lemma. Let s fulfil the following: Q: “For every U, Ve®(X), VaU
and any &' € s(V) there is & € s(U) with & < &'.”” Then ul is compatible if  is.
(Q holds if p is compatible and Q is fulfilled with < instead of < — see 3.2).

Proof. For open U,V X, Ve U, ¥ es(V), Fes(U), ¥ S &' let us take
the following commutative diagram, with identical iy, iy :

i
(Sus 75s) s (Sv, TU(-V))
Quy Quy

(S 18) —2 (S, ()

Here gy on the left hand side is continuous iff i, gy is for any &' € s(V), by
3.14. But i oy, = oyyiy. Here iy is continuous by 3.14, and gyy on the right hand
side by 3.3.

3.17. Theorem. Let s fulfil Q and p be compatible. Then u3! = uf and they
both are compatible. Moreover, u! can be reached by letting the operator v — vJ

work upon u for enough times.
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Proof. Set u! = pu. Let « be any ordinal and let us have already made u? for
all B < a, with ¥ < P < p. If there is & — 1, we set u* = (u*~)F — which is by
3.16 compatible, and p¥' < (uS)P < p* < u*~! < p by 3.11a, 3.13, 3.14, hence
pST < p® < po If there is not o — 1, we set p* = lim {4’ | B < a}. Again uf' <
< p* < p and p is compatible by 3.10a. For a large enough (say, if card « >
> card {v| v is a closuration of &, p$' < v < pu}) we have p* = (). As p* is
compatible, we get from 3.15 that u?* is s-inductive. As u! < 57 < p* - pu, we get
W= = psl

4. Projective Modifications

In the foregoing section inductive modifications have been dealt with. Here we
show for completeness that the projective ones can be treated likewise.

4.1. Definition. If X is a topological space then the set of all open covers of
U € #(X) is denoted by €(U). Let u = {r,} be a closuration of a presheaf & =
= {Su|gw| X}, Ue #(X), ¥ € 4(U). The closure projectively defined in Sy by the
set of maps A(¥") = {ouy : Sy = (Sy, ) | Ve ¥’} is denoted by 7y(¥).

4.2. Definition. Let U, Ve #(X), V< U, ¥, e 4(U), ¥, € 4(V). We say ¥,
refines ¥",(¥", < ¥,) if for every M € ¥, there is N e ¥", such that M = N. If

moreover N can be found that gy, : (Syty) = (SuTy) be continuous, we say 7",
strongly refines ¥",(¥", < ¥,).

4.3. Proposition. Let U, Ve #(X), V< U, ¥, €4(U), ¥,€4(V), ¥, S ¥;.
Then oyy : (Su, T(¥"1)) = (Sy, ©(¥"2)) is continuous.

Proof. The same as that of 3.3 for inductive case, only we use the projective
definition of 7,(7",).

For the part of the following definition concerning projective closurations see
Z. Frolik, [1, p.58, 59].

4.4. Definition. A choice of covers is a map ¢ : {U - ¢(U) = 4(U) | U € #(X)}
with ¢(U) + @ for all U’s; p = {ty} is called c-semiprojective (c-projective) if
1(¥") £ ty(ty(¥) = 1y) for every U € (X), ¥ € ¢(U).

The following two propositions are clear:

4.5. Proposition. If U e #(X), v € 4(U), then 1(¥) £ 1y iff the following
condition is fulfilled: “If (P, 1) is a closure space and f: (P, t) = (Sy, 7y) a map,
then the continuity of gy f for all Ve ¥ yields that of f.

4.6. Proposition. Let U € #(X), ¥" € 4(U). TFAE:

a) ’EU(’V) _Z_ Ty.

b) If (P,-t) and f are as in 4.5, then the continuity of f yields that of gy f for
every Ve ¥ )

¢) euv : (Syty) = (Syty) is continuous for each Ve ¥
If p is c-projective it need not be compatible, but we have
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4.7. Proposition. Each of the following properties of ¢ yields the compatibility
of the c-projective closuration u:

a) If ¥ < U then there is 7" € ¢(U), "//' € c(V) with ¥ < ¥ (see 4.2).
b) If ¥ = U then there is " € (U) with Ve ¥".

Proof. Since 1y = 14(¥), 7y = 1,(¥), (a) follows from 4.3. To prove (b), we
take 7 ec(U) with Ve¥". As 1y = 1(¥) and guy : (Su, t(¥) = (Sy» 1v) is
continuous, we are done.

4.8. Remark. p is s-projective if it is compatible and s-semiprojective, since
by 4.6¢, a, the compatibility yields 7, < 7,4(#") for any 7" € ¢(U), and c-semiprojec-
tivity yields 7,(¥") < ty. So if any of the conditions of 4.7 is fulfilled then p is c-pro-
jective iff it is compatible and c-semiprojective.

4.9. Proposition. Let Q be a nonempty set of closurations of a presheaf &,
g its infimum, i.e. pg = {1y}, Where 15 o = lim v ={1}},veQ} — see 1.2.
If each v € Q is compatible (c-semiprojective, c-projective), then pgq is.

Proof. As in 3.10, only we use the properties of projectively defined closure.
The statement of the following theorem for pf with ¢(U) = %(U) is due to Z.
Frolik [1, p. 58, 59].

4. 10 Theorem. Let u be a closuration of &, ¢ a choice. Then there is a closura-
tion uf and u5f such that

a) p < puf < pl,

b) pf is c-projective (and if the condition (a) or (b) of 4.7 holds compatible),
u5F is c-semiprojective.

c) If p'(u?) is c-projective (c-semiprojective) closuration of & and u <
< p'(p £ pP) then pf < p!(pl’ < 1)

Proof. Easy from 4.9.

4.11. Definition. pf(uSF) is called c-projective (c-semiprojective) modification
of p.

4.12. Proposition. Given a choice c, we set

e =lim {t(¥) | ¥ ec(U)}, p¥={1F.|UecB(X)}. (4.13)
Then p* < u5F. If p is c-'semiprojective then p¥ < u. Suppose moreover the

following condition D: “For every U € %(X) there is ¥ € ¢(U) such that for every
Ve ¥ the map oyy : (Syty) = (Sy7y) is continuous.” Then p £ 7. (D holds namely
if p is compatible or if U € ¢(U)).

Proof. If u is c-semiprojective then ty(¥") < 1y for any ¥ € ¢(U) so ur < p.
This yields p¥ < (u§F)¥ < p3F. If D holds then p < pf by 4.6¢, a and 4.13.

4.14. Proposition. If g = p¥ then p = uSF. If u is compatible then puf = pu iff
*
p=pt
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Proof. If u = pY then by 4.13, 1y, = 1, 2 14(¥") for any U € B(X), 7" € ¢(U),
hence y is c-semiprojective and thus u = p3F. If u is compatible, then having already
been shown to be c-semiprojective, it is also c-projective by 4.8, hence u = uf.
On the other hand, if u = puf then u is c-projective hence u¥ = u by 4.13.

4.15. Lemma. Let u and c fulfil the following condition R: “If U, Ve %#(X),
V < U then for every ¥ € ¢(U) there is # € ¢(V) with # < ¥ (see 4.2, it namely
holds if u is compatible and R holds only with <). Then p} is compatible.

Proof. Take the following commutative diagram for ¥ € ¢(U), # € (V) with
W < ¥, and with identical iy, iy:

i
(SU’ T;,c) (_U— (SU’ ‘CU(V))
Quy Quy
i
(Sv, t5.0) e (Sy, w(#))

Here gy is continuous iff gyyiy is for any ¥~ € ¢(U). But gyyiy = iy@yy, Where
both maps on the right hand side are continuous by 4.3, 4.13.

4.16. Proposition. If u is compatible and c fulfils R then p3¥ = u¥, and they both
are compatible. Further, uf can be reached by letting the operator v — v¥ work upon u
for enough times.

Proof. Set u! = p. Let us have made a compatible u? for each ordinal g < «
with u < p# < P If there is « — 1, we set p* = (u*~1)¥, if there is not « — 1, we
set pu* = lim {4 | B < «}. In the both cases y* is compatible, by 4.15 in the former
case, by 4.9 in the latter, and p < p* < u5P. For « large enough (say, if card o =
= card {v|p < v < pf}) we have p* = (u*)¥ and by 4.14, p* = (u*)} whence p*
is s-projective. As u < p* < pS¥ < pf, we have p* = pf = 45F and we’re done.
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