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Quasigroups Whose Regular Mappings Are Automorphisms

T. KEPKA and P. NEMEC
Department of Mathematics, Charles University, Prague*)

Received 6 June 1978

The paper deals with regular mappings of quasigroups. First, several conditions are presented,
under which all groups of regular mappings coincide. Further, quasigroups isotopic to a group (so
called transitive quasigroups) are investigated and quasigroups which are left (right) linear over
a group are characterized via regular mappings. For example, it is shown that a quasigroup is linear
over an Abelian group iff it is transitive and all groups of regular mappings coincide. The main
emphasis is on transitive quasigroups such that some of their regular mappings are automorphisms.
Several classes of such quasigroups are decsribed via groups and their automorphisms. It is also
shown that if all regular mappings of Q are automorphisms then Q is medial. The class of such
quasigroups having at least one idempotent coincicdes with the class of idempotent medial quasig-
roups.

B craThe M3yueHBI peryisipHbIe NOACTAHOBKH KBa3urpymnn. IIpuBefeHbI HEKOTOPbIE YCIOBHUA,
NpM BBINOJHEHHH KOTOPBIX BCE IPYNNbI PETYJSIPHBIX MOACTAHOBOK COBmapawT. McciemyroTcs
TO)KE TPaH3UTHUBHbIE KBasUTPYINbI, T. €. KBa3UTPYMIbl U30TOMHbIE Tpymmam. [Toka3aHo Hampu-
Mep, YTO KBa3WUIpyIna JuHeiHHa Haj abeseBoit rpymmoit Toraa ¥ TOJIBKO TOTAA, €CJIH OHA TPaH3H-
THBHA ¥ BCE TPYNNbI PErysAPHBIX MOACTAHOBOK COBNAfaioT. I'JIaBHOM yacTbi0 paGoThI SIBIISAETCA
M3yYeHME TPAaH3HUTUBHBIX KBa3UTPYNN, IS KOTOPBIX HEKOTOPBIE DErYJISIPHBIE IOACTAaHOBKH
ABJAIOTCA aBToMOop¢duamamu. HeKoTopble KJIAacChl TAKUX KBa3UTPYIN OMUCAHBI MPH ITOMOLLH
rpyInn ¥ ux aBToMopdu3moB. J[0Ka3bIBaeTCsI TOXKE, UTO ECIIM BCE PErYJIAPHbIE JOCTAHOBKH SABJISIOT-
cA aBTOMOPGHU3MaMH, TO KBasUIPyNIa y)ke MeauansHa. Kiacc TakMX KBasUTPYIN COXEPIKALLUX
Mo KpaifHeil Mepe OQMH MIEMIIOTEHT COBMAJAeT C KJIACCOM BCEX MEQUATIBHBIX HAEMIIOTEHTHBIX

KBa3urpymii.

Clanek se zabyv4 studiem reguldrnich zobrazeni kvazigrup a podminek, za nich? viechny gru-
py reguldrnich zobrazeni dané kvazigrupy splyvaji. Kvazigrupy, které jsou zleva (zprava) linedrni
nad grupou, jsou popsdny pomoci reguldrnich zobrazeni. Vysettuiji se rovnéZ kvazigrupy, jejichZ re-
guldrni zobrazeni jsou automorfismy. Je dokdzdno napfiklad, Ze kaZd4 tranzitivni kvazigrupa takov4,
Ze viechna reguldrni zobrazeni jsou automorfismy, je uZ nutné¢ medidlni. Ttida téchto kvazigrup
obsahujicich aspori jeden idempotent je totoZné s t¥idou viech idempotentnich medidlnich kvazi-

grup.

*) 186 00 Praha 8, Sokolovsk4 83, Czechoslovakia
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I. Introduction

If M isaset then P(M) (resp. S(M)) denotes the semigroup (resp. group) of
all mappings (resp. bijective mappings) of M into M.

Let Q be a quasigroup and ae Q. We put L4(b) = ab and Ra(b) = ba for
every be Q. Then L4, Ry € S(M) and the group generated by all permutations
L, (resp. Rq), a € Q, will be denoted by G1(Q) (resp. G+(Q)). The group genera-
ted by G1(Q) U Gr(Q) will be denoted by G(Q) and the automorphism group of Q
by Aut Q. In case the operation on Q is written additively, we shall use symbols
L}, Rf, Gi(Q(+)) etc. Further we put

L(Q) ={(f:8)|f,.6€P(Q), flab)=g(a)p forall a,beQ},
RQ) ={f8)|f,geP(Q), f(ab) = ag(b) forall a,beQ},
MQ) ={(f,8) |/, P(Q); fla)b = agb) forall a,beQ},
Ly(Q) = {fe P(Q) | thereis g € P(Q) such that (f,g) € L(Q)},
L/(Q) = {ge P(Q) | thereis fe P(Q) such that (f,g) € L(Q)} .

Similarly we define Ri(Q), R/(Q), M1(Q), M(Q). We shall say that Q satisfies
condition (C) if L1(Q) = L{(Q) = Ri(Q) = R«(Q) = M1(Q) = M(Q).

1.1 Lemma. Let Q be a quasigroup, a € Q and f, g € P(Q). Then

(@) if (f,8) € L(Q) then f = LywL;'; g = R;}fRa;

(ii) if (f,8) e R(Q) then f = Rya)Rz', § = L3'fLa;

(iii) if (f,8) € M(Q) then f = Ry@R;', g = L'Lyw);

(iv) L(Q), R(Q) are subgroups of S(Q) and M(Q) isasubgroup of S(Q) x S(Q)e,
where S(Q)° is the opposite group of S(Q);

w) if (f,g)eL(Q)U R(Q)U M(Q) then each of f,g uniquely determines the
other;

(vi) Ly(Q) = LA(Q), Ri(Q) = R{(Q), Mi(Q) =~ M(Q);

(vii) if either f € L1(Q), g € R1(Q) or fe L/{Q), g € Mi(Q) or f€ R/(Q), g € M(Q)
then fg = gf.

Proof. (i) — (iv) follow immediately from the definitions, (v) is a consequence of
(1)—(iii) and (vi) follows from (iv), (v). (vii) If fe Li(Q), g € Ri(Q) then there are
h, k € S(Q) suchthat (f, ) € L(Q), (g, k) € R(Q). Hencefor all x,y € Q, feg(xy) =
= f(xk(y)) = h(x)k(y) = g(h(x)y) = gf(xy). The rest is similar.

1.2 Lemma. Let Q be a quasigroup and f, g, h € P(Q). Then
@) if (f,g) €L(Q) then (f, h) e R(Q) iff (g h) € M(Q);
(i) if (f,g) e R(Q) then (f, h) e L(Q) iff (h, g) € M(Q);
(iii) if (f,8) € M(Q) then (h,f) € L(Q) iff (h,g) € R(Q).

Proof. Obvious.

1.3 Corollary. Let Q be a quasigroup. Then
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O Ly(Q) = Ri(Q) iff L{Q) = Mi(Q);
(i) Ri(Q) = Li(Q) iff R(Q) = MAQ);
(i) M(Q) = LA(Q) iff M«(Q) < R(Q).
1.4 Corollary. A quasigroup Q satisfies (C) iff Li(Q) = Ri(Q) = LA(Q)
and Mi(Q) = MH(Q) = LKQ).

1.5 Lemma. Let Q be a quasigroup. Then

(i) if Q is commutative then Li1(Q) = Ri(Q) and L,Q) = R{(Q) € M1i(Q) =
= MA(Q);

(ii) if Q isaleft loop then Ri(Q) = Ry(Q);

* (iii) if Q is a right loop then Li(Q) = LA{Q);

(iv) if Q is a loop then Mi(Q) = M(Q);

(v) if Q is an IP-quasigroup then Li(Q) = L{Q) = M,{Q) and Ri(Q) =
= M1(Q) = RH(Q);

(vi) if Q is unipotent then M1(Q) = M(Q).

Proof. The assertions (i)—(iv) are obvious and (v) follows from [4], Lemma 2.13
(vi) If O is unipotent and (f, g) € M(Q) then for every x € Q, xx = f(x)f(x) =
= xgf(x), and hence f = g1

1.6 Corollary. A commutative quasigroup Q satisfies (C) iff L1(Q) = LA(Q)
and Mi1(Q) = L.(Q).

1.7 Corollary. A loop Q satisfies (C) iff Li(Q) = Ri(Q) and Mi(Q) =
< Ly(Q).
1.8 Corollary. A commutative loop Q satisfies (C) iff Mi(Q) = Li(Q).
1.9 Corollary. An IP-quasigroup Q satisfies (C), provided at least one of the
following conditions holds:
) MH(Q) = Mi(Q). (ii) Li(Q) = R«(Q).
(iii) Q is commutative. (iv) Q is unipotent.
1.10 Proposition. Every WA-quasigroup satisfies condition (C).
Proof. See [3].

1.11 Lemma. Let Q be a quasigroup and f, g, € P(Q). Then
@ if (f,g)€L(Q) and feAut Q then (gf%,f) e M(Q);
(ii) if (f,g) € L(Q) and geAut Q then (fg¢) € R(Q);
(iii) if (f,g) € R(Q) and feAut Q then (f,gf1) e M(Q);
(iv) if (f,£) €R(Q) and geAut Q then (f,¢) € L(Q);
V) if (f,g) e M(Q) and feAut Q then (f,gf) € R(Q);
(vi) if (f,g) e M(Q) and g e Aut Q then (g, fg) € L(Q).

Proof. (i) For all a, b€ Q, af(b) = ff~2(a)f(b) = f(f~1(a) b) = gf~1(a) b.
(ii) For all a, b€ Q, f(ag(h)) = gla)g(b) = g(ab) and hence f-lg(ab) = ag(b).
The rest is similar.
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1.12 Corollary. Let Q be a quasigroup. Then Li(Q) () Aut Q = M/(Q) N
() Aut O, L(Q) N Aut Q = R(Q) N AutQ and Ri(Q) () Aut Q = Mi(Q) N
N Aut Q.

We shall say that a quasigroup Q satisfies condition (L1A) if Li1(Q) = Aut Q,
and similarly (LrA), etc. Further, we shall say that Q satisfies (A) if it satisfies all six
conditions (L1A), (LrA), (R1A), (RrA), (M1A), (MrA).

1.13 Lemma. If Q satisfies (A) then Li(Q) = M(Q), L(Q) = R/{(Q) and
Ri(Q) = Mi(Q).

Proof. The assertion is an immediate consequence of 1.12.

1.14 Corollary. Let Q be a quasigroup satisfying (A). Then Q satisfies (C),
provided at least one of the following conditions holds:
(i) Liy(Q) = Ri(Q) and Mi(Q) = L(Q).

(ii) Q is commutative and Mi(Q) = LQ).
(iii) Q is unipotent and M1(Q) < L.(Q).
(iv) Q is a loop.

(v) Q is an IP-quasigroup.

A quasigroup Q is called left (right) distributive if a(bc) = (ab) (ac) ( (bc)a =
= (ba) (ca) ) for all a,b,ceQ.

1.15 Lemma. Let Q be a quasigroup. Then
(1) if Q is left distributive then Q satisfies (L1A) and (MrA);
(i) if Q is right distributive then Q satisfies (R1A) and (M1A);
(iii) if Q is distributive then Q satisfies (A).

Proof. Obviously, if Q is left (right) distributive then G1(Q) = Aut Q
(GA/(Q) = Aut Q). Now it suffices to use 1.1.
*  In the following five lemmas we suppose that Q(+) is a group with unit ele-
ment 0 and u € S(Q). Further, we denote G1 = G1(Q)+)) and Gy = G(Q(+)).

1.16 Lemma. Let f, g, 5, F, G be mappings of Q into Q such that, for all

x €Q, F(x) = f(x) — f(0) and G(x) = — f(0) + f(x). Then

(1) if f(x + y) = g(x) + A(y) for all x,y € Q then F, G are endomorphisms of
o(+);

(ii) if f(x +v) = g(y) + h(x) forall x,y € Q then F, G are antiendomorphisms
of O(+).

Proof. (i) Obviously, for every x,y € Q, f(x) = g(x) + #0) and f(y) =
= g(0) + A(y), hence f(x + y) = g(x) + h(0) — A(0) — g(0) + g(0) + h(y) =
= f(x) — (g(0) + A(0)) + f(y) = f(x) — f(0) + f(y) and the assertion immediately
follows.

(ii) Similarly, f(x 4 y) = f(y) — f(0) + f(x).
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1.17 Lemma. The following are equivalent:
(i) »1Giu = G1
(i) 4 1Gwu < Gi.
(iii) G1 = ¥ 1Gu.
(iv) There are p € Aut O(+) and g€ Q such that u~1 = R}p.
(v) There are g€ Aut Q(+) and A€ Q such that ¥ = Rjfq.

Proof. The implications (i) = (ii) and (i) = (iii) are obvious. (ii) = (iv) There
is a mapping p: Q — Q such that, for every a€ Q, ulLfu = L} ). Hence, for
all a,b€Q, ua+ b) = pla) + u1(b) and p(a) = u~Y(a) — u~1(0). Obviously,
p isapermutation and u~! = Rf:gp. However peAut Q(4) by 1.16. (iv = (v)
Since p € Aut Q(+), we have u = p‘lRf'.,-x(o) = R_";-:,,--(o,p'l.

(v) = (i) For each a, beQ, ulL}u(d) = ¢ IRzALI R q(d) = qg¥a + q(b) +
+h—h)=qgYa) +b=L}u0®) and L} = ulLiu.

(iii) = (i) We have already proved that (ii) implies (i) and it suffices totake #~1 in-
stead of u.

1.18 Lemma. The following are equivalent:

- (1) ulGyu = Gy.

(i) »'Gru < Gr.

(iii) Gr < u 1Gyu.

(iv) There are p € Aut O(+4) and g€ Q such that u~1 = L}p.
(v) There are g€ Aut O(+) and h€ Q such that ¥ = L}q.

Proof. Similar to that of 1.17.

1.19 Lemma. The following are equivalent:
(i) ulGwu = Gy.
(ii) u1Giu < Gr.
(iii) Gy & u1G1u. :
(iv) There are g € Q and an antiautomorphism p of Q(+) such that u~1 = L}p.
(v) There are A€ Q and an antiautomorphism ¢ of Q(+) such that u = Rjgq.

Proof. Theimplications (i) = (ii), (i) = (iii), (iv) = (v) and (v = (i) are very easy.
(ii) = (iv) For every a € Q, u"1L}u = R} a). Hence, forall a,b€ Q, u(a + b) =
= u~1(b) + p(a) and u1(a) = u~1(0) 4 p(a). The rest follows by 1.16.
(iii) = (v) For all a,be€Q, R} = ulLf,u, hence uR}ulu(b) = L}, u(d),
so that w(b + a) = p(a) + w(b) and u(a) = p(a) + u(0). Now we can use 1.16.
1.20 Lemma. The following are equivalent:
i) G1=Gy.
(ii) Gl S Gr.
(iii) G' S Gl.
(iv) Q(+) is commutative.

Proof. Obvious.

65



2. Transitive Quasigroups

The following proposition is well-known (see e.g. [1], Theorem 7).

2.1 Proposition. The following conditions for a quasigroup Q are equi-
valent:

(i) At least one of the groups Li(Q), L/{(Q), R1(Q), R(Q), M1(Q), M(Q) operates

transitively on Q.

(i) Each of the groups Li(Q), L{Q), Ri(Q), R(Q), Mi(Q), M(Q) operates

transitively on Q.

(iii) Q is isotopic to a group.

Every quasigroup satisfying the equivalent conditions of the proceding proposi-
tion is called transitive. A quasigroup Q is said to be left linear (right linear) if
there are a group Q(+), feAut Q(+) and g e S(Q) such that ab = f(a) + g(b)
(ab = g(a) + f(b) ) forall a,be Q. Finally, Q is called linear if it is both left and
right linear.

2.2 Lemma. The following conditions for a quasigroup Q are equivalent:
(i) Q is linear.

(ii) There are a group Q(+), e€ Q and f, g € Aut Q(+) such that ab = f(a) +

+ g(b) + e forall a,b€eQ.

(iii) There are a group Q(+), e€ Q and f, g € Aut Q(+) such that ab = f(a) +

+ e 4 g(b) forall a,beQ.

(iv) - There are a group Q(+), e€ Q and f,geAut Q(4) such that ab =e +
+ f(a) + g(b) for all a,be Q. '

Proof. Obvious.

2.3 Lemma. Let Q be a quasigroup, Q(+) be a group, u,ve S(Q) and
a, b,ceQ be such that xy =a + u(x) + b + v(y) + ¢ for all x,ye Q. Then
(i) if ueAut Q(+) then Q is left linear;
(ii) if veAut Q(4) then Q is right linear.

Proof. Obvious.

24 Lemma. Let Q be a quasigroup and f,g € S(Q). Let further Q(+)
be a group and «, v € S(Q) be such that ab = u(a) + v(b) for all a, b€ Q. Then
() (f,geL(Q) iff thereis e Q such that f =L} and g = u1L}u;

(ii) (f,g) e R(Q) iff thereis e Q such that f = R} and g = v~1R}v;
(iii) (f, g) e M(Q) iff there is e € Q such that f = v 1R}u and g = v~1L} .

Proof. (i) Let (f,g) € L(Q). Then f(ab) = f(u(a) + v(b)) = ug(a) + v(b)
for all a,be Q. Hence fu(a) = ug(a) and f(a + b) = f(a) + b for all a,be Q.
Now it suffices to put e = f(0). Conversely, forall e, a, b€ Q, L}(ab) = e + u(a) +
+ (b)) = uu(e + u(a)) + v(b) = uLfu(a)b.
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(ii) Similarly as for (i).

(iii) Let (f,g) € M(Q). Then wuf(a) + v(b) = u(a) + vg(b) for all a, b€ Q, hence
uf(a) = u(a) + e, where e = vgv=1(0), and consequently wg(b) = ufu~1(0) +
+ v(b) = e + v(b). Conversely, for all e, a,beQ, uIR}u(a) b = u(a) + e +
+ o(b) = u(a) + vv~1(e + v(b)) = av1L}v(b).

2.5 Corollary. Let O be a quasigroup, Q (+) be a group and u, v € S(Q)
be such that ab = u(a) + v(b) for all a,b€Q. Then Li(Q) = Gi(Q(+)),
L{(Q) = u™'G(Q(+)) u, Ri(Q) = GHQ(+)), R{Q) = v71GHQ(+)) v, Mi(Q) =
= u1G/{(Q(+)) 4 and MH(Q) = v71G1(Q(+)) v.

2.6 Proposition. The following conditions are equivalent for a transitive
quasigroup Q:
(@) Q is left linear.
() LiQ) = LKQ). (iii) L{Q) <= Ly(Q).
(iv) Ri(Q) = My(Q). (V) Mi(Q) = Ri(Q).

Proof. By 1.17,1.18, 2.3 and 2.5.

2.7 Proposition. The following conditions are equivalent for a transitive
quasigroup Q:
(i) Q is right linear.
(i) RA(Q) = Ri(Q). (iii) R1(Q) = R«(Q).
(iv) Lu(Q) = M(Q). V) M«(Q) = Li(Q).

Proof. By 1.17,1.18,2.3 and 2.5.

2.8 Corollary. The following conditions are equivalent for a quasigroup Q:
(i) Q is linear.
(i) Q is transitive and L1(Q) < L/{Q) \ M«(Q).
(iii) Q is transitive and LA{Q) ) M(Q) < Li(Q).
((iv) Q is transitive and Ri1(Q) = R/(Q) N Mi1(Q).
(v) Q is transitive and R{(Q) U M1(Q) = Ri(Q).

2.9 Proposition. The following conditions are equivalent for a transitive
quasigroup Q:
(i) There are a group Q(+), v € S(Q) and an antiautomorphism u of QO(+)
such that ab = u(a) + v(b) for all a, b€ Q.
(i) LAQ) = Ri(Q). (iii) Ri(Q) = L«(Q).
(iv) Ly(Q) = Mi(Q). V) My(Q) = Li(Q).

Proof. It follows immediately by 1.19, 2.5 and the analogue of 2.3 for anti-
automorphisms.

2.10 Proposition. The following conditions are equivalent for a transitive
quasigroup Q:
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(i) There are a group Q(+), u€ S(Q) and an antiautomorphism v of Q(+)
such that ab = u(a) + »(b) for all a,be Q.

(i) Li(Q) = R«(Q). (iii) R(Q) = L1(Q).

(iv) M(Q) = Ri(Q). V) Ri(Q) = M(Q).

Proof. Similar to that of 2.9.

A quasigroup Q is called c-transitive if it is isotopic to an Abelian group.
Linear c-transitive quasigroup is called T-quasigroup. By Toyoda’s theorem, every
medial quasigroup, i.e. quasigroup satisfying the identity (ab) (cd) = (ac) (bd),
is a T-quasigroup.

2.11 Proposition. The following conditions are equivalent for a quasi-

group Q:

(i) Q is c-transitive.

(ii) Q is transitive and L;(Q) < Ri(Q).

(iii) Q is transitive and Ri(Q) < L1(Q).

(iv) Q is transitive and L,(Q) € M(Q).

(v) O is transitive and Mi(Q) = L,(Q).

(vi) Q is transitive and R,(Q) = M,(0Q).

(vii) Q is transitive and M,(Q) < R,(Q).

Proof. Apply 1.20 and 2.5.

2.12 Proposition. The following conditions are equivalent for a quasigroup Q:
(i) Q isa T-quasigroup.
(ii) Q is transitive and satisfies (C).
(iii) Q is a left linear c-transitive quasigroup and Mi(Q) < M(Q).
(iv) Q is a left linear c-transitive quasigroup and M.(Q) < M1(Q).
(v) Q is a right linear c-transitive quasigroup and Mi1(Q) < M(Q).
(vi) Q is a right linear c-transitive quasigroup and M{(Q) = M1(Q).

Proof. (i) = (ii) It follows from 1.4, 2.6,2.7 and 2.11. (ii) = (iii) This is obvious
with respect to 2.6 and 2.11. (iii) = (i) By 2.6 and 2.11, M;(Q) = Li(Q). Now it
sufficies to use 2.7.

The rest is similar.

3. Regular Mappings and Automorphisms

3.1 Proposition. The following conditions are equivalent of a quasigroup Q:

(i) Q is transitive and satisfies (L1A).

(ii) There are a group Q(+), peAut Q(+) and geQ such that ab =a +
+ g — p(a) + p(b) for all a,beQ and the mapping a |-+>a + g — p(a) is
a permutation.

(iii) Q is transitive and satisfies (MrA).
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Proof. (i) = (ii) Since Q is transitive, there are a group Q(+) and u, v € S(Q)
such that ab = u(a) + v(b) for all a, b € Q. According to (L1A) and 2.5,
a + u(b) + v(c) = u(a + b) + v(a +¢) for all a,b,ceQ. Taking b =0, we
have v(a 4+ ¢) = — u(a) + a + u(0) + v(c) and hence p = L*yp) v € Aut Q(+)
by 1.16. Finally, takking b6 = 0 and ¢ = — a, we have u(a) + v(0) = a + u(0) +
+ v(— a) = a + u(0) + v(0) — p(a). (ii) = (iii) Since Q is right linear, M,(Q) =
Ly(Q) by 2.7. Further, a+bc=a+b+g+p(—b +plc)=a+b+g+
+p(—b—a)+ pla—+c)=a(+ b)(a+c) forall a,b,ceQ and (L1A) follows .
immediately by 2.5.

(iii) = (i) By 1.12, M(Q) < L1(Q) and hence M,(Q) = L1(Q) by 2.7.

3.2 Proposition. The following conditions are equivalent for a quasigroup Q:

(i) Q is transitive and satisfies (R1A).

(i) There are a group QO(+), geAut O(+) and heQ such that ab =
= g(a) — q(b) + h + b forall a, b e Q and the mapping a |-+ — g(a) + h +a
is a permutation.

(iii) Q is transitive and satisfies (M1A).

Proof. Dual to that of 3.1.

3.3 Proposition. The following conditions are equivalent for a quasigroup Q:

(i) Q is transitive and satisfies (A).

(i) Q is transitive and satisfies (L1A) and (R1A).

(iii) Q is transitive and satisfies (MrA) and (R1A).

(iv) Q is transitive and satisfies (L1A) and (RrA).

(v) Q is transitive and satisfies (MrA) and (RrA).

(vi) Q is transitive and satisfies (LrA) and (R1A).

(vii) Q is transitive and satisfies (LrA) and (M1A).

(viii) Q is transitive and satisfies (L1A) and (M1A).

(ix) Q is transitive and satisfies (M1A) and (MrA).

(x) Q is right linear and satisfies (RrA). =

(xi) Q is right linear and satisfies (M1A).

(xii) Q is right linear and satisfies (R1A).

(xiii) Q is left linear and satisfies (LrA).

(xiv) Q is left linear and satisfies (MrA).

(xv) Q is left linear and satisfies (L1A).

(xvi) There are an Abelian group QO(4),p€Aut O(4) and geQ such that
ab =g+ (1 —p)(a) + p() for all a,beQ.

In this case, Q is medial and satisfies (C).

Proof. (xii = (xvi) There are a group Q(+), p € Aut Q(+) and u e S(Q)
such that ab = u(a) + p(b) forall a, b€ Q. Now (R1A) yields u(a) + p(d) + ¢ =
= ula + ¢) + p(b) + p(c) for all a,b,ce Q. Taking a = b =0, we get u(c) =
= u(0) + ¢ — p(c) and hence the mapping ¢ |- ¢ — p(c) is a permutation. Further, we
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have — u(0) + u(a) + p(b) + ¢ = — u(0) + u(a + ¢) + p(b) + p(c), consequently
a—p(a) +plc) +¢=a+c—pa+c)+ p) + p(c) sothat — p(a) + p(b) +
+ ¢ — p(c) = ¢ — p(c) — p(a) + p(b), and therefore ¢ — p(c) € C(Q(+)) for each
ceQ, Thus O(+) = C(Q(+)) and Q(+) is commutative.

(xv) = (xvi) Similarly as in the preceding implication we can show that there are
a group Q(+), g€Aut Q(+) and v e S(Q) such that ab = g(a) — q(b) + b +
+ 2(0), themapping a |+~ — g(a) + a is a permutation and — ¢(a) + a belongs
to the center of Q(+) for every a € Q. Now it suffices to put p = 1 — gq.

(xvi) = (i) Since p(1 —p) = (1 — p)p, Q is medial by Toyoda’s theorem, and
hence Q satisfies (C) by 2.12. Finally, Q satisfies (L1A) by 3.1.

The remaining implications are obvious with respect to 2.6, 2.7, 3.1 and 3.2.

3.4 Proposition. The following conditions are equivalent for a quasigroup Q:
(i) Q is left distributive and transitive.
(ii) Q is transitive, Q satisfies (MrA) and Id Q # 0.
(iii) Q is transitive, Q satisfies (L1A) and Id Q # 0.
(iv) There are a group Q(+) and p € Aut Q(+) such that ab = a — p(a) + p(b)
for all a,b€ Q.

Proof. (iii) = (iv) Let eeId Q. Define a 4 b = R;}(a)L;1(b) for all a, b€
€ Q. Since Q is transitive, Q(+) is a group by Albert s theorem. Further,
a+e=e+ a=a foreach aeQ, since e is idempotent. Now it suffices to use
3.1 together with its proof, observing that g = ee = e.

The remaining implications are obvious with respect to 1.15 and 3.1.

3.5 Proposition. The following conditions are equivalent for a quasigroup Q:
(i) Q is right distributive and transitive.
(ii) Q is transitive, Q satisfies (M1A) and Id O # 0.
(iif) Q is transitive, Q satisfies (R1A) and Id O # 0.
(iv) There are a group Q(+) and ¢ € Aut Q(+) such that ab = g(a) — q(b) + b
for all a,beQ.

Proof. The same as above, using 3.2 instead of 3.1.

3.6 Proposition. The following are equivalent for a quasigroup Q:

(i) O is medail and idempotent. ‘

(i) Q is transitive, Id O # @ and Q satisfies (A).

(iii) Q is transitive, Id Q # # and Q satisfies (L1A) and (R1A).

(iv) There are an Abelian group Q(+) and peAut O(+) such that ab =
= (1 — p) (a) + p(b) forall a,beQ.

Proof. Obviously, every medial idempotent quasigroup is distributive. Thus
the only nontrivial implication is (iii) = (iv). However, (iii) implies that Q is isotopic
to an Abelian group by 3.3 and it suffices to apply 3.4 and Albert’s theorem.
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