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Perron Root of a Convex Combination of a Positive
Kernel and its Adjoint
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Department of Numerical Mathematics, Faculty of Mathematics and Physics,
Charles University, Prague*

Received 27 August 1976

A monotonicity theorem concerning the behaviour of the Perron root of a convex combina-
tion of an indecomposable kernel and its adjoint is established. The extremal case when the
dependence is constant is fully characterized.

IleppoHOBO COOCTBEHHOE 3HA4Y€HHE BBIIYKJIOM KOMOMHALMM IIOJIOKHTENLHOTO AAPA H €ro
COnMpsKEHHOro. — JI0Xa3b(BAETCA TEOPEMa O MOHOTOHHOM 3aBHCHMOCTH CIEKTPAJILHOTO pamuyca
OT BbUIYK/10# XOMOHHALMH HEPA3JI0XUMOIO HEOTPULATEILHOrO AApa M €ro conpsbkeHnoro, ITon-
HOCTBIO XapaKTEPH3YETCA Cllyyaii KOrJa pacCMaTpMBaeMasi 3aBUCHMOCTB SBJISETCS MOCTOSHHOM.

Perronovo vlastni ¢islo konvexni kombinace kladného a k nému adjungovaného jadra. —
Ukazuje se, ze Perronovo vlastni &islo konvexni kombinace kladného a k nému adjungovaného
jadra je monotonni funkci parametru kombinace. Plné je charakterizovdn piipad, kdy uvedena
z4vislost je konstantni.

1. Introduction

The aim of this note is to present a generalization to the following interesting
theorem of the matrix theory.

Theorem. Let A = (a,-,‘) be an n x n matrix whose elements a;, are nonegative
reals and A’ be the transposed matrix. Then the Perron root r(t) = r((1 — ) A +
+ tA’), 0 <t £ 1, is a nondecreasing function in the interval [0,1/2] and is
nonincreasing in [1/2, 1]. If, furthermore, A is indecomposable, then r(t) = r(O)
for some te(0,1) if and only if both A and A' have the same eigenvector cor-
responding to the Perron root r(0) = r(1).

The above theorem has been discovered by B. W. Levinger [5] and presented
at the Annual Meeting of the American Mathematical Society at San Antdnio in
January 1970. An alternative proof has been given by M. Fiedler [1]. Both the
authors mentioned use in their proofs rather deep properties of some special classes
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of nonnegative matrices, e. g. M. Fiedler uses Birkhoff’s theorem on decomposition
of a doubly stochastic matrix as a convex combination of permutation matrices. It
may seem that the above theorem expresses a property which is characteristic for
finite dimensional matrices. As we shall see it is not so. We present a natural gener-
alization and a proof which makes possible to consider operators in infinite dimen-
sional spaces of the type € and £2.

2. Definitions, notation, auxiliary assertions

Let u be a nonegative o-additive regular complete measure on a c-algebra M
of subsets of Q, where Q is a closed bounded region in a Euclidean space E". Let
Y = I*(Q, p) be the real Hilbert space of square p-integrable u-equivalent classes
of real-valued functions on Q with the inner product.

([u] [o]) = f uls)of5) du(5)

and the norm | [u]|* = [q|u(s)|* du(s), where u and v are any representatives for [u]
and [v] in [*(Q, p) respectively. In what follows we shall not distinguish the notation
for classes and their representatives.’

Let  be the complexification of %. Let [%#] and [Z] denote the Banach spaces
of bounded linear operators mapping Y and X into % and Z respectively with the
norm ||T|| = sup {| Tx| : x| < 1}. If Te [Z] then o(T) denotes its spectrum and
r(T) = sup {|4] : Ae o(T)} its spectral radius. For Te[®] we let o(T) = o(T)
and r(T) = r(T), where T'is the complex extension of T.

If 2, is an isolated singularity of the resolvente operator R(A, T) = (Al — T)™*
then R(4, T) can be expressed as a Laurent series [ 12, p. 305]

RO, T) = iAk(/l C )+ Z”Bk(;, — o), 2.1)

where 4, = A(T) and B,,, = B,,,(T) are in [Z] for k = 0, 1, ... . Furthermore

B, = L [ RLT)dA, Buwy=(T—iol)Be, k=1,2,... (22)
i J e,
where I is the identity operator and dA is the Lebesgue measure on C, =
={: |/". — Ao| = 0o}, 0o being such that Ko = {4 : |2 — ).()l < oo} satisfies Ky 0
N o(T) = {4}

We say that 1, is a pole of the resolvent R(4, T)if B, = @ fork > go, o < + o,
where @ denotes the zero operator; g, is then called the order of the pole A,
if B, + O.

Let Te [#]. We say that Tis a Radon-Nikolskii type operator, if T=U + ¥,
where U, Ve [#] and U is compact and such that r(T) > r(V).
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We call operator Te [#] positive, if x = 0 p-a.e. in Q implies that Tx = y = 0
p-a.e. in Q. We say that a positive operator T is indecomposable [10], if to every
pair x and y nonzero and nonnegative functions p-a.e. in Q there exists an index
p = p(x, y) such that (T?x, y) > 0.

Remark. It should be mentioned that in [10] I Sawashima uses the concept
of semi-nonsupport operator in place of an indecomposable one.

The results contained in the following propositions are mostly well known. We
present them only for the reader’s convenience. We formulate them in a form in
which they will be used in the proof of the main theorem of this communication.

Proposition 1. Let Te [#] be a positive operator. Then the following assertions
hold.

(a) (T)eo(T) [11].
(b) If (T) is a pole of R(A, T) and q is the order of r(T), then B, is positive 8].

(¢) If T is a Radon-Nikolskii type operator then under the conditions of (b)
we have [8]

B, = lim — (
N—-o N kZ kq

(k= Dty eea g, (2.)

where the convergence means the [ % ]|-convergence.

(d) If «(T) is a pole of R(A, T) of order q and if || = r(T) implies that ) =
= r(T), then [8]
B, = lim (‘I_Nq?_li)' [H(T)] "+ T~ (2.3a)

N—- o

Proposition 2. Let Te [¥] be positive and indecomposable Radon-Nikolskii
type operator Then the null space ={xe®:(T-rT)I)x =0 for
k=1,2,...} is one-dimensional [10]. Hence, g =1 in (2.3), and we moreover have
that B, is indecomposable as well.

The following assertion is a particular case of Theorem 2.6 of Chapter VIII
in the Kato’s monograph [3, p. 443].

Proposition 3. Let Z(t) = A + tB, te J, where J is an open interval on the real
line, containing t = 0 and where A and B are in [Z]. Let A, and A(t) be isolated
simple poles of R(4, A) and R(Z, Z(t)) respectively. Let Q = B,(A) and Q(t) be the
eigenprojection associated with the eigenvalues A, and Ao(t) respectively. Let
dim 0 =dim Q()Z =1 for teJ and lim |Q(t) — Q| = 0. Then an eigen-

-0

vector z(1) of Z(t) corresponding to A,(t) can be found such that
2(t) = u, — 1S4Bu, + z,(2),

where u, = Qu, is an eigenvector of A and S, is the reduced resolvent operator

5



of A for 2y [3, p. 180], i.e.
Sq=lim(4A—-2)"'(I-9Q),

Ao
and z,(t) is such that lim 1/t|z,(1)|| = 0 or else ||z,(1)]| = o(?).
t-0

The following proposition is a consequence of a general result derived in [4, 9].

Proposition 4. Let Te [%] be a Radon-Nikolskii type positive operator. Then
there exists an eigenfunction u of T and an eigenfunction v of the adjoint T*
respectively corresponding to r(T):

Tu=r(T)u, T*v=r(T)v.
We also have that u(s) 2 0 and v(s) = 0 p-a.e. in Q.

Let U= U(s, t)e I(Q x @, p x p) and fe £°(Q, u). We define Te[¥] by
setting T = U + V, where

Ux=y©ﬂg=fU@040w@,

Vx = y<y(s) = f(s)x(s), seQ. (2.4)

Proposition 5. Let f(s) 2 0 p-a.e. in @ and U(s,1) 20 u X p-a.e. in Q x Q.
Let u and v, both =0 p-a.e. in Q be eigenfunctions of T and T* respectively cor-
responding to r(T). Then we have

(Tv, u) = (Tu, v). (2.5)

If, moreover, U is indecomposable and such that y* = U*x and y = Ux are bounded
for every xe £*(Q, p), then the relation (2.5) becomes equality if and only if
u = cv for some ¢ > 0.

Proposition 5 is a consequence of the of the following general result.

Proposition 6. Let U satisfy the conditions
(a) Ue £%(Q x Q, p x p);
(b) U(s, ) 2 0 pu x p-ace. in Q x Q,

and let fe °(2, n),f = 0 p-a.e. in Q. Let x be any p-measurable positive function.
Then it holds

J. J' U(s, t) v (s) u() du(s) du(?) j £(s) v(s) u(s) du(s) =
=4ﬂj¢gwg@@ 26)

where u and v satisfy
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1) u(s) + fnU(s, ) u(t) du(t) = r(T) u(s), u(s) 20
p-a.e. in Q, 0% ueL*(Q ),
() o(s) + f U(t, s) olt) du(l) = H(T) o(s), o(s) 2 0

p-a.e. in @, 0 +ve LHQ p).

If, moreover, U is indecomposable and Uz is bounded for every ze.Sf’z(Q, y)

and x satisfies
0 < B, = x(s) < +0 p-ae. in Q, (2.7

where B, is a constant independent of s € Q, then the equality sign in (2.6) takes
place if and only if x(s) = constant p-a.e. in Q.

Note that the relation (2.6) coincides with relation (2.1) in [6] if we choose
V = @ — the zero operator.

The proof of (2.6) can be given in the same spirit of ideas used in [6]. We shall
be concentrating ourselves to the equality sign case in (2.6) because of a gap in the
proof of the corresponding assertion in [6].

As it is shown in [6], the main step in the equality case proof is to prove the
corresponding assertion assuming that the kernel U fulfils the relation

f Vs, 1) du() = f Ve ) 9u() = ) = £(9), (2.8)

where « € £%(Q, 1) and is positive p-a.e. in Q.

Without loss of generality we may assume that y(Q) =1,

First we consider the case «(s) = 1 py-a.e. in Q, i.e. the case of a doubly stochastic
operator.

Let x, satisfy (2.7) and let

f . [ J nU(s, t) i°§s; du(?) + f(s)] du(s) = 1 peae. ie. (29)

ot

(Vi TV le,e) =1,
where T= U + V, and
Viz=w<w(s) = x(s)z(s), ze L2 u), xe L°(2, ). (2.10)

We can easily show that the operator-function C, C(x) = V, TV, !, is analytic
[2, p. 108] for every x € £°(Q, u) fulfilling (2.7).
Let x = fe + y. Then

Cx) = O(pe) + 1, 6C(Bes ») + 5. 6°CBes )+ .,



where [2, p. 98]
8'C(z; h) = 8C(z; h) = lim é [C(z + ¢h) — C(2)]
[SadY

and
*+1C(z; h) = 5[6"C(z; h)], k1.

It follows easily that for x = fe + y

5C(Be; y) = V,U — UV,
and
02C(Be; y) = V}U — 2V, UV, + UV} .

Let us consider the functional
o(x) = (C(x) e, €) .

Let x, be our extremal element, and, let us assume that x, = f,e + y,, where y,
is not constant u-a.e. in Q. The homogenity of C allows us to assume that for any
given g, > 0 we may choose | y0| < . According to (2.9) we derive that

o(x) = 1 + %(52C(ﬁoe; Vo) ese) + ..

Since U is indecomposable, so is U + U*, and it follows that (6°C(Bee; yo) e, €) > 0,
and thus, there exists a positive constant 7, such that

1
1 =o(xo) >1+ ;(52C(B0e; Yo)e,€) — o = 1.
This contradiction shows that yo(s) must be constant p-a.e. in Q and therefore,

xo(s) = constant p-a.e. in Q. This completes the proof in the doubly stochastic case.
Let U satisfy (2.8) and let x, be extremal in the sense that

(Vi TV e e) = (Te, e) .

We define operator G by setting
1
G=5{U+ Vi + Vi),

where 6 > sup ess o and f(s) = & — «fs) p-a.e. in Q. It follows that

Ge=c¢e, (2.11)
i.e. G satisfies (2.9). We also have that
(Vi GVi'e) = (Ge, e). (2.12)

The relations (2.11) and (2.12) and the already proved assertion concerning the



doubly stochastic case imply that x, = const u-a.e. in Q. Thus, the equality sign
result is proved for the special case of (2.8).
In the case of general integral operator U and T = U + V¥, we construct opera-
tor W by setting
W= V,TV,
where
—T*v =v,

1
R T

u=0p-ae inQ,z+ 0andv = 0 pu-a.e.in Q, v + 0. Obviously we derive that

(W) (5) = u(s) ofs)

and, therefore, W satisfies (2.8) with «(s) = u(s) v(s).

As a corollary of the already proved part of Proposition 6 is the validity of (2.6)
with the equality sign occurring if and only if x(s) = const p-a.e. in Q. The proof
is thus complete.

3. Main theorem

Let T= U + V, where U and V are defined by (2.4). We assume that f(s) = 0
p-a.e.in Qand U(s, 1) 2 0 u x p-a.e.in Q x Qand that U is mdecomposablc With
no loss in generality we may assume that

T=P+2Z, PZ=2P=0, (3.1)
where (see (2.3))
1 N
=1lim — Y} T, 3.2
N-o N kzl (3-2)
r(Z) <1, (3.3)

because, if needed, we may consider the operator 1/(1 + 7)(T/(r(T)) + ©I) with
7 > 0 in place of T.
Let us set

Wit)=(1—-1)T+1tT*, -0 <t<+o.

We see that W(t) is of Radon-Nikolskii type indecomposable operator for t € [0, 1].
We may set

N -
P(t) = lim — 3 [{(W()]™* [W(1)]*.
N-o N k=1
Theorem 1. Under the above assumptions the function ¢, where

o(t) = r(W(1))»

is nondecreasing in [0, %] and nonincreasing in [%, 1]. Furthermore, ¢(to) = ¢(0)
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for some t, € (0, 1) if and only if
P = P(0) = P(1) = P*. (3.9)
Before proving the Theorem 1 we prove several lemmas.

Lemma 1. The spectral radius r(W(t)) is a simple pole of R(A, W(t)) and
dim P() % = 1 for te [0, 1]. Furthermore,

im () ~ Pl = 0. (3.5)

Proof. The first part of Lemma 1 follows according to Proposition 2. The
latter part will be proved later.

Let u(t) e @, u(1) (s) = 0 p-a.e. in Q be an eigenfunction of W(r) corresponding
to r(W(2)), e.g. u(t) = P(t) u, where u is any nonzero function which is nonnegative
p-a.e. in Q. We see that

1) = (W(t) u(t), u) , (3.6)
(u(t), u)
where u is taken by setting u = u(0). According to Proposition 3 we have

~ (W) [u — tSH(T* — T)u], u)
o(t) = (e — 15T — T u) + oft). (3.7)

o

Note that in the notation of Proposition 3, A = Tand B = T* — T.

Lemma 2. The function ¢ = ¢(t) defined above and expressed by (3.6) or else
(3.7) is differentiable at each t € [0, 1].

Proof. Let t€ [0, 1] be fixed. For t > 0 sufficiently small there exist § > 0
and ¢, > 0 such that

P(t + 1) = 2i'[ R(A, W(t + 7)) dA, (38)
where C, = {4 :|4 — r(W(t)| = ¢} is i'ndependent of t for |1] <& and K, n
no(W(t + 7)) = {H(W(t + 7))}, where K, = {A:[1 - r(W(t))| < e}. The cor-

rectness of (3.8) with the properties shown is guaranteed by Propositions 1 and 2.
It follows that

%[P(t +1) = P(1)] = i f RO, W(t + 9)) (T* — T) R(3, W(1)) dA

and, consequently,

%P(r) .= 2im J RO WO (T~ ) RO ) 2.

Thus, P(t) is differentiable for t € [0, 1] and so is ¢ = ¢(t) because of (3.6). This
completes the proof of Lemma 2.

10



Note that from (3.8) it follows that 11m P(r) = P(0) = P and this proves the
remaining part of Lemma 1.
Using the same technique as used in the proof of Lemma 2 we obtain

Lemma 3. The function ¢ expressed by (3.6) is n-times continuously dif-
ferentiable in [0,1],n = 1,2,....

Remark. Actually ¢ is not only a #°([0, 1]) — function but is analyticina neigh-
bourhood of [0, 1].

Lemma 4. The first derivative of @ att = 0 can be expressed as

& oili=o = (PT*0,8) = (1,0). (39)

Proof. According to Lemma 2 using (3.7) we derive the formula

((T* = T) S{(T* — T)u, u) o)+ of)
& o) - (=D SAT = TNy 1) 4 o

Since (T — I) Sy = I — P we deduce that TSy = S; + I — P and hence
(TSyT*u,u) = (S¢T*u,u) + (I — P) T*u, u).

It follows that
(T* = T)SHT* = T)u,u) = (PT*u,u) — (u, u)

and the required relation (3.9) easily follows.
By the way we proved the following assertion.

Lemma 5. Let PT*u = u. Then there is a 6 > 0 such that ¢'(tf) = (d/dt) o(f)
does not change the sign for te [0, 5).

Lemma 6. The projections P and P* can be expressed as follows:

Px = (x,v)u (3.10)
and
P*y = (y,u)v, (3.11)
where
(u,u) = (u,v) =1. (3.12)

Proof. Since dim P% = 1, we have that Px = A(x) u, where A(x) is a number.
Obviously, the functional is linear and bounded. By the Riesz representation theorem
[12, p. 243] there is an element w € & such that A(x) = (x, w), x € %, and w is ortho-
gonal to the set {x € #¥: A(x) = 0} = {x e ¥: Px = 0}. Therefore, w = P*w and,
since A is nonnegative for x nonnegative p-a.e. in @, we deduce that w(s) = 0 p-a.e.
in Q. We also have that Pw = (w, w) u = PP*u and hence, (w - P*u,w — P*u) =
= 0. Thus, w = P*u and, since T*w = w, we may take w in place of v. This proves
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the validity of (3.10). The duality then implies
(P*y, x) = (y, Px) = (y, (x, v)u) = (x,(y,u)v), xe¥,
and this proves (3.11). The proof of Lemma 6 is complete.
Proof of Theorem 1. Proposition 6 implies that
(PT*u,u) = (Tv,u) = (v, Tu) = (u,u)

with the equality sign occurring if and only if 4 = v, which is equivalent to P = P*
because of Lemma 6. This means that ¢ is nondecreasing at t = 0 and increasing
in some neighbourhood of ¢t = 0, if P* + P.

Let us consider the operator Z(s), s€ (0, 1), in place of T, where Z(s) =
= (1 — s) T + sT*. We see that all of the assumptions of Theorem 1 are fulfilled
for this case. Thus /, where

Y(e) = (1 = 1) Z(s) + 1[2(s)]*)
is nondecreasing at ¢t = 0. However,
(1 = 1) Z(s) + t[Z(s)]* = W(t + s — 2t5),

which shows that y(t) = ¢(t + s — 2st). Consequently, ¢ is nondecreasing at
t = sif s < 4 and nonincreasing at t = sif s > 4. The monotonicity assertion is thus
proved.

It is obvious that (3 — 1) = ¢(3 + t)for 1€ (0, 4).

Let ¢(t,) = ¢(0) for some t, € (0, $). It follows that ¢ is constant for t € (0, t,)
and, therefore, ¢'(0) = 0. This implies that P* = P, or else u = v. This implies that

WHu=(1—1t)Tu +tT*u = u

for all re[0, 1] and, because of indecomposability of W(t), P(tf) = P(0) for te
e [0, 1]. Conversely, if u = v then ¢(t) = ¢(0) for all € [0, 1] and this completes
the proof of Theorem 1.

4. Corollaries and concluding remarks

As we may have observed Theorem 1 is based essentially on the indecomposa-
bility assumption. This strong requirement can be slightly relaxed. From the complete
characterization of the constant case we loose the part concerning necessity; ob-
viously, the sufficiency of the condition P = P* remains to be valid in general,
however dim P#% + 1 and the projection P(t) is not differentiable as a rule. Actually
we have

Theorem 2. Let fe £*(Q,p), f(s) 2 0 p-ae. in Q and let Ue L*(Q x Q,
px p),U(s, 1) = 0p x pae. inQ x Q. Then the function ¢, where ¢(t) = r(W(t)),
is nondecreasing in [0, }] and is nonincreasing in [, 1].

12



Proof. We choose ¢ > 0 arbitrary and let T, = T + U,, where
(Uex) (s) = EJ x(s) du(s), se (R, p).
2

It is easy to see that T, is an indecomposable operator of Radon-Nikolskii
type. Hence Theorem 1 applies, according to which ¢,, where

@) = r((1 = t) T+ 1tT}¥), te[0,1],

is nondecreasing in [0, 3] and nonincreasing in [, 1]. The assertion of Theorem 2
follows because of the relation
o(t) = lim @ (1) .
e=0
The proof is complete.

It is quite interesting to note that the norm of the opsrator Z in the expression
(3.1) may be arbitrarily large, e.g.

() i) D)
a0 2\a 1 2 a —1

O<oa, af=1.
However, if

Iz <1, (4.1)

then we are able to prove the crucial inequality (PT*u, u) = (u, u) without refering
to Proposition 6.

It is enough to show that
(Zv,u) 2 1 = (v,v) (4.2)
and examine the conditions of the equality there, because of the relation
(Pv,u) = (v, v).
But (Zv, u) = (Z(v — u), u — v) and according to (4.1) it follows
|(Zv,u)| S(u—v,u—-v)=(v)—1.

Here the equality takes place if and only if u = v. Consequently, (4.2) holds with
equality sign occurring if and only if u = v, or else P* = P.

In the previous paragraphs we studied the operators in #2-spaces. It is, however,
obvious that the validity of the results obtained takes place in the ¥-space as well.
More precisely, if the kernel U is continuous on  x Qand f € (), then appropriate
analogs of Theorem 1 and Theorem 2 hold as well. This is a consequence of the
fact that ¢(Q) can be densely embedded into #?(Q) and that the uniform convergence
in €(Q) implies the convergence in £*(Q, p).
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