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Perron Root of a Convex Combination of a Positive 
Kernel and its Adjoint 

I. M A R E K 

Department of Numerical Mathematics, Faculty of Mathematics and Physics, 
Charles University, Prague* 

Received 27 August 1976 

A monotonicity theorem concerning the behaviour of the Perron root of a convex combina­
tion of an indecomposable kernel and its adjoint is established. The extremal case when the 
dependence is constant is fully characterized. 

IleppOHOBo co6cTBeHHoe 3HaneHHe BbrnyKJioii KOMGHHauHH nojioacHTejibHoro flflpa H e r o 
conpasceHHoro. — .0pKa3i>rBaeTCH TeopeMa o MOHOTOHHOH 3aBHCHMOCTH cneKTpajrbHoro pajniyca 
OT BbinyKJiOH KOMÓHHaHHH Hepa3Jio»cHMoro HeoTpHnaTejibHoro flflpa H ero conpjBiceHHoro. IIOJI-
HOCTBK) xapaKTepH3yeTCH cnyHaii Koř/já paccMaTpHBaeMan 3aBHCHMoCTb HBJiHeTCH nocTOHHHOH. 

Perronovo vlastní číslo konvexní kombinace kladného a k němu adjungovaného jádra. — 
Ukazuje se, že Perronovo vlastní číslo konvexní kombinace kladného a k němu adjungovaného 
jádra je monotónní funkcí parametru kombinace. Plně je charakterizován případ, kdy uvedená 
závislost je konstantní. 

1. In troduct ion 

The aim of this note is to present a generalization to the following interesting 
theorem of the matrix theory. 

Theorem. Let A = (ajk) be an n x n matrix whose elements aJk are nonegative 
reals and Á be the transposed matrix. Then the Perron root r(t) = r((l — t) A + 
+ tA'), 0 ^ t ^ 1, is a nondecreasing function in the interval [0,1/2] and is 
nonincreasing in [1/2, l ] . If furthermore, A is indecomposable, then r(t) = r(Q) 
for some t e (0, 1) if and only if both A and A' have the same eigenvector cor­
responding to the Perron root r(0) = r(t). 

The above theorem has been discovered by B. W. Levinger [5] and presented 
at the Annual Meeting of the American Mathematical Society at San Antonio in 
January 1970. An alternative proof has been given by M. Fiedler [1]. Both the 
authors mentioned use in their proofs rather deep properties of some special classes 
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of nonnegative matrices, e. g. M. Fiedler uses Birkhoff's theorem on decomposition 
of a doubly stochastic matrix as a convex combination of permutation matrices. It 
may seem that the above theorem expresses a property which is characteristic for 
finite dimensional matrices. As we shall see it is not so. We present a natural gener­
alization and a proof which makes possible to consider operators in infinite dimen­
sional spaces of the type # and if2. 

2. Definitions, notation, auxiliary assertions 

Let / i b e a nonegative a-additive regular complete measure on a a-algebra 9JI 
of subsets of Q, where Q is a closed bounded region in a Euclidean space En. Let 
Y = l}(Q, //) be the real Hilbert space of square ^-integrable //-equivalent classes 
of real-valued functions on Q with the inner product. 

( [ « ] , [ . ] ) = (u(s)v(s)d^ 
Jíì 

) 

and the norm ||[w]||2 = J_Q|"(S)|2 d//(s), where u and v are any representatives for [w] 
and [v] in l}(Q, JJL) respectively. In what follows we shall not distinguish the notation 
for classes and their representatives. 

Let 9C be the complexification of ®j. Let [^] and \3C\ denote the Banach spaces 
of bounded linear operators mapping Y and X into ®J and 3C respectively with the 
norm ||T|| = sup{||Tx|| : ||x|| = 1}. If Te [%] then o(T) denotes its spectrum and 
r(T) = sup {\X\ : X e o(T)} its spectral radius. For Te [<3l] we let o(T) = o(T) 
and r(T) = r(T), where Tis the complex extension of T 

If k0 is an isolated singularity of the resolvente operator R(k, T) = (U — T ) - 1 

then R(A, T) can be expressed as a Laurent series [12, p . 305] 

00 CO 

R(l, T) = £ Ak(X - l0)
k + £ Bk(X - Xoy

k, (2.1) 
k=0 k=l 

where Ak = Ak(T) and Bk+l = Bk+l(T) are in [#*] for k = 0, 1, ... . Furthermore 

B, = — f R(A, T ) d 2 , Bk+l=(T-l0I)Bk, k = 1,2,... (2.2) 
2*« J co 

where I is the identity operator and dA is the Lebesgue measure on C0 = 
= {X : |A - A0| = £0}, £0 being such that K0 = {A : |A - k0\ = Q0} satisfies K0 n 
no(T) = {X0}. 

We say that X0 is a pole of the resolvent R(X, T)ifBk = 0 for k > g0, q0 < + oo, 
where 6) denotes the zero operator; q0 is then called the order of the pole X0, 
ifBqo + 0. 

Let TE [%/]. We say that Tis a Radon-Nikolskii type operator, if T = U + V, 
where U, Ve [^] and U is compact and such that r(T) > r(V). 



We call operator Te [^] positive, if x ^ 0 /x-a.e. in Q implies that Tx = y _ 0 
[i-a.Q. in .Q. We say that a positive operator T is indecomposable [10], if to every 
pair x and y nonzero and nonnegative functions //-a.e. in Q there exists an index 
p = p(x, y) such that (Tpx, y) > 0. 

Remark. It should be mentioned that in [10] I. Sawashima uses the concept 
of semi-nonsupport operator in place of an indecomposable one. 

The results contained in the following propositions are mostly well known. We 
present them only for the reader's convenience. We formulate them in a form in 
which they will be used in the proof of the main theorem of this communication. 

Proposition 1. Let Te [^] be a positive operator. Then the following assertions 
hold. 

(a) r(T)eo(T) [11]. 

(b) If r(T) is a pole of R(A, T) and q is the order of r(T), then Bq is positive [8]. 

(c) If T is a Radon-Nikolskii type operator then under the conditions of (b) 
we have [8] 

B9 - lim I I - - ^ ir(T)rk+"-1 I*, (2.3) 
N^OO N k=i kq 

where the convergence means the [^-convergence. 

(d) If r(T) is a pole of R(X, T) of order q and if |A| = r(T) implies that k = 
= r(T), then [8] 

Bq = lim (q ~ *>! [r(T)yN+«-1 TN . (2.3a) 
N-00 N*-1 

Proposition 2. Let Te [^] be positive and indecomposable Radon-N ikolskii 
type operator. Then the null space 91 = {x e ®f : (T - r(T)l)k x = 0 for 
k = 1, 2, ...} is one-dimensional [10]. Hence, q = 1 in (2.3), and we moreover have 
that Bx is indecomposable as well. 

The following assertion is a particular case of Theorem 2.6 of Chapter VIII 
in the Kato's monograph [3, p. 443], 

Proposition 3. Let Z(t) = A + tB, t e J, where J is an open interval on the real 
line, containing t = 0 and where A and B are in [#"]. Let 10 and X0(t) be isolated 
simple poles of R(X, A) and R(X, Z(t)) respectively. Let Q = BX(A) and Q(t) be the 
eigenprojection associated with the eigenvalues X0 and X0(t) respectively. Let 
dim QX = dim Q(t) % = 1 for teJ and lim \Q(i) - Q\ = 0. Then an eigen-

*-o 
vector z(t) of Z(t) corresponding to X0(t) can be found such that 

z(t) = uA- tSABuA + z,(t) , 

where uA = QuA is an eigenvector of A and SA is the reduced resolvent operator 



of A for X0 [3, p. 180], i.e. 

5A = l i m ( A - ^ I ) - 1 ( I - Q), 
A-Ao 

and zx(t) is such that lim l/^||_1(r)|| = 0 or else \zx(t)\ = o(t). 

The following proposition is a consequence of a general result derived in [4, 9]. 

Proposition 4. Let Te [<3l] be a Radon-Nikolskii type positive operator. Then 
there exists an eigenfunction u of T and an eigenfunction v of the adjoint T* 
respectively corresponding to r(T): 

Tu = r(T) u, T*v = r(T) v . 

We also have that u(s) ^ 0 and v(s) — 0 ^-a.e. in Q. 

Let U = U(s, t) e L2(Q x Q, \i x fi) and fe £e™(Q, ft). We define Te [<&] by 
setting T = U + V, where 

Ux = y o y(s) = | U(s, t) x(t) dn(t) , 
J-Q 

Vx = yo y(s) = f(s) x(s) , seQ . (2.4) 

Proposition 5. Let f(s) _ 0 \i-a.e. in Q and U(s, 0 _ 0 pi x \i-a.e. in Q x Q. 
Let u and v, both =0 \i-a.e. in Q be eigenfunctions of Tand T* respectively cor­
responding to r(T). Then we have 

(Tv, u) = (Tu, v) . (2.5) 

If, moreover, U is indecomposable and such that y* = U*x and y = Ux are bounded 
for every x e Z£2(Q, \i), then the relation (2.5) becomes equality if and only if 
u = cv for some c > 0. 

Proposition 5 is a consequence of the of the following general result. 

Proposition 6. Let U satisfy the conditions 

(a) U e <£2(Q x Q, /x x pi); 

(b) U(s, t) = 0 \i x \i-a.e. in Q x Q, 

and letfe J?°°(Q, \x),f — 0 \i-a.e. in Q. Let x be any ^-measurable positive function. 
Then it holds 

[ [ V(s, t) ^ v(s) M(0 drfs) dfi(t) + f f(s) v(s) u(s) d„(5) = 
JoJrt *(0 J« 

= r(T)[ v(s)u(s)dfi(s) (2.6) 

Jfl 

where u and v satisfy 
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f(s) u(s) + f U(s, t) u(t) dfi(t) = r(T) u(s) , "(s) = 0 

\i-a.e. in Q , 0 4= w e j£?2(.Q, /x) , 

f(s) v(s) + f U(f, s) v(t) dfi(t) = r(T) v(s) , v(s) = 0 
Jn 

\i-a.e. in Q, 0 4= t; e J&?2(.G, /*) . 

If, moreover, U is indecomposable and Uz is bounded for every z e S£2(Q, \i) 
and x satisfies 

0 < fix = x(s) < + oo fi-a.e. in Q , (2.7) 

where fix is a constant independent of ssQ, then the equality sign in (2.6) takes 
place if and only if x(s) = constant fi-a.e. in Q. 

Note that the relation (2.6) coincides with relation (2.1) in [6] if we choose 
V = 0 — the zero operator. 

The proof of (2.6) can be given in the same spirit of ideas used in [6]. We shall 
be concentrating ourselves to the equality sign case in (2.6) because of a gap in the 
proof of the corresponding assertion in [6]. 

As it is shown in [6], the main step in the equality case proof is to prove the 
corresponding assertion assuming that the kernel U fulfils the relation 

f U(s, t) d»(i) = f U(t, s) dfi(t) = a(s) - f(5) , (2.8) 
J n J n 

where a e Z£2(Q, \i) and is positive /i-a.e. in Q. 
Without loss of generality we may assume that \x(Q) = 1. 
First we consider the case a(s) = 1 ju-a.e. in Q, i.e. the case of a doubly stochastic 

operator. 
Let x0 satisfy (2.7) and let 

ILL^5't] W)Mt)+/(s)]Ms) *l /x"a'e- i-e- (2'9) 

(VXoTV-o
1e,e)=l, 

where T = U + Vs and 

Vxz = wo w(s) = x(s) z(s), z e <£\Q, n) , Xe <£«>(Q, ^ . (2.10) 

We can easily show that the operator-function C, C(x) = VTV~l, is analytic 
[2, p. 108] for every x e ^(Q, n) fulfilling (2.7). 

Let x = fie + y. Then 

C(x) = C(f}e) + 18C(fie; y) + 1 S'C^ y) + _. f 



where [2, p. 98] 

S1C(z; h) = SC(z; h) = lim - [C(z + £fc) - C(z)] 
c-o C 

and 

(5 f c + 1C(z;/i) = (5[O-fcC(z;/2)], k = l . 

It follows easily that for x = fie + y 

SC(fie;y) = VyU - UVy 
and 

<52С()Se; >•) = VfU - 2VyUVy + UV? 

Let us consider the functional 

Q(X) = (C(x) e, e). 

Let x0 be our extremal element, and, let us assume that x 0 = fi0e + y0, where y0 

is not constant /x-a.e. in Q. The homogenity of C allows us to assume that for any 
given e0 > 0 we may choose |y 0 | < e0. According to (2.9) we derive that 

Q(X0) = 1 + - (S2C(fi0e; y0) e, e) + .... 

Since U is indecomposable, so is U + U*, and it follows that (82C(fi0e; y0) e, e) > 0, 
and thus, there exists a positive constant T 0 such that 

1 = Q(X0) > 1 + ~ (S2C(0oe; y0) e, e) - T 0 = 1 . 

This contradiction shows that y0(s) must be constant ^-a.e. in Q and therefore, 
x0(s) = constant ^-a.e. in Q. This completes the proof in the doubly stochastic case. 

Let U satisfy (2.8) and let x0 be extremal in the sense that 

(VxTV-*e,e) = (Te,e). 

We define operator G by setting 

G=l{U+V,+ V,}, 

O 

where d > sup ess a and f$(s) = S — <x(s) ^-a.e. in Q. It follows that 

Ge = e, (2.11) 

i.e. G satisfies (2.9). We also have that 

{VxGV;o

le) = {Ge,e). (2.12) 

The relations (2.11) and (2.12) and the already proved assertion concerning the 
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doubly stochastic case imply that x0 = const /*-a.e. in Q. Thus, the equality sign 
result is proved for the special case of (2.8). 

In the case of general integral operator U and T = U + Vf we construct opera­
tor Why setting 

where 
W= VVTVU 

Tu = u , -—- T*v = v , 
r(T) r(T) 

M ^ 0 /x-a.e. in Q, z + 0 and v ^ 0 /z-a.e. in Q, v + 0. Obviously we derive that 

(We)(s) = u(s)v(s) 

and, therefore, W satisfies (2.8) with oc(s) = u(s)v(s). 
As a corollary of the already proved part of Proposition 6 is the validity of (2.6) 

with the equality sign occurring if and only if x(s) = const //-a.e. in Q. The proof 
is thus complete. 

3. Main theorem 

Let T = U + V, where U and Vare defined by (2.4). We assume that f(s) ^ 0 
/z-a.e. in Q and U(s, f) ^ 0 \i x /*-a.e. in Q x Q and that U is indecomposable. With 
no loss in generality we may assume that 

T = P + Z , PZ = ZP = 0 9 (3.1) 

where (see (2.3)) 

P = lim - £ T \ (3.2) 
N-*oo N k=l 

r(Z) < 1 , (3.3) 

because, if needed, we may consider the operator 1/(1 + T) (T/(r(T)) + TI) with 
T > 0 in place of T. 

Let us set 

W(t) = (1 - t) T + tT* , - oo < t < + oo . 

We see that JV(t) is of Radon-Nikolskii type indecomposable operator for t e [0, l ] . 
We may set 

P(t) = ^^i[r(W(t))rk[W(t)f. 
N-+oo N k=l 

Theorem 1. Under the above assumptions the function cp, where 

<p(t) = r(W(t)), 

is nondecreasing in [0, i] and nonincreasing in [ i , 1]. Furthermore, <p(t0) = (p(0) 



for some t0 e (0, 1) if and only if 

P = p(0) = p(l) = p * . (3.4) 

Before proving the Theorem 1 we prove several lemmas. 

Lemma 1. The spectral radius r(W(t)) is a simple pole of R(A, W(t)) and 

dim P(t) <& = I for te [0, 1]. Furthermore, 

lim ||P(t) - P|| = 0 . (3.5) 
f - 0 

Proof. The first part of Lemma 1 follows according to Proposition 2. The 
latter part will be proved later. 

Let u(t) e <&, u(t) (s) ^ 0 /z-a.e. in Q be an eigenfunction of W(t) corresponding 
to r(W(t)), e.g. u(t) = P(t) u, where u is any nonzero function which is nonnegative 
//-a.e. in Q. We see that 

v W - M M M , (3.6) 
(«(»•),") 

where u is taken by setting « = u(0). According to Proposition 3 we have 

= (W(t)[u-tST(T*-T)ulu) 
W (u -tST(T- T*)u,u) W V ' 

Note that in the notation of Proposition 3, A = Tand B = T* - T 

Lemma 2. The function (p = cp(t) defined above and expressed by (3.6) or else 

(3.7) is differentiable at each t e [0, 1]. 

Proof. Let te [0, 1] be fixed. For T > 0 sufficiently small there exist S > 0 
and qt > 0 such that 

P(t + T) = — f R(X, W(t + T)) dA, (3.8) 
2nlJct 

where Ct = {k:\k — r(W(t)\ = gt} is independent of T for |T| < S and Kt n 

n c/(PV(t + T)) = {r(W(t + T))}, where Kr = {A : |A - K ^ ( 0 ) | ^ Qt}- The cor­

rectness of (3.8) with the properties shown is guaranteed by Propositions 1 and 2. 

It follows that 

1 [P(t + x ) - P(t)-] = J _ f /{(A, W(, + T ) )(r* - T) R(l, W(t)) dX 
x 2TCIJC ( 

and, consequently, 

d_ 

dT 
P(т)'t=í = Ś ì í *(Я' ЖW)(Г* " T)К(A' Ж(í))dЯ' 

J Ct 

Thus, P(t) is differentiable for t e [0,1] and so is 9 = cp(t) because of (3.6). This 

completes the proof of Lemma 2. 
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Note that from (3.8) it follows that lim P(f) = P(O) = P and this proves the 
remaining part of Lemma 1. r_>0 

Using the same technique as used in the proof of Lemma 2 we obtain 

Lemma 3. The function cp expressed by (3.6) is n-times continuously dif-
Jerentiable in [0, 1], n = 1, 2, . . . . 

Remark. Actually cp is not only a #°°([0,1]) — function but is analytic in a neigh­
bourhood of [0, 1]. 

Lemma 4. The first derivative of (p at t = 0 can be expressed as 

±<p(t)\t=0 = (PT*u,u)-(u,u). (3.9) 

at 

Proof. According to Lemma 2 using (3.7) we derive the formula 

d , . ((T* - T)ST(T* - T)u,u), v , . 
- <P(*) = L n x12

 L~L-2(u9 u) + o(t) . 
dt [(">")] 

Since (T - I) ST = I - P we deduce that T5r = ST + I - P and hence 

(TSTT*u, u) = (STT*u, u) + ((I - P) T*u, u) . 

It follows that 

((T* - T) ST(T* - T) u, u) = (PT*u, u) - (u, u) 
and the required relation (3.9) easily follows. 

By the way we proved the following assertion. 

Lemma 5. Let PT*u = u. Then there is a 5 > 0 such that (p'(t) = (d/df) cp(t) 
does not change the sign for t e [0, S). 

Lemma 6. The projectidns P and P* can be expressed as follows: 

Px = (x,v)u (3.10) 
and 

P*y = (y,u)v, (3.11) 
where 

(u,u) = (u,v) = 1 . (3.12) 

Proof. Since dim P®j = 1, we have that Px = A(x) u, where A(x) is a number. 
Obviously, the functional is linear and bounded. By the Riesz representation theorem 
[12, p. 243] there is an element w e%/ such that A(x) = (x, w), x e f , and w is ortho­
gonal to the set {x e ^: A(x) = 0} = {x e ^: Px = 0}. Therefore, w = P*w and, 
since A is nonnegative for x nonnegative /z-a.e. in Q, we deduce that w(s) ^ 0 /x-a.e. 
in Q. We also have that Pw = (w, w) u = PP*u and hence, (w — P*u, w — P*w) = 
= 0. Thus, w = P*u and, since T*w = w, we may take w in place of v. This proves 
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the validity of (3.10). The duality then implies 

(P*y, x) = (y, Px) = (y, (x, v)u) = (x, (y, u) v) , x e <& , 

and this proves (3.11). The proof of Lemma 6 is complete. 

Proof of Theorem 1. Proposition 6 implies that 

(PT*u, u) = (Tv, u) = (v, Tu) = (u,u) 

with the equality sign occurring if and only if u = v, which is equivalent to P = P* 
because of Lemma 6. This means that (p is nondecreasing at t = 0 and increasing 
in some neighbourhood of t = 0, if P* 4= P. 

Let us consider the operator Z(s), s e (0, 1), in place of T, where Z(s) = 
= (1 — s) T + sT*. We see that all of the assumptions of Theorem 1 are fulfilled 
for this case. Thus \/J, where 

^(t) = r((l-t)Z(s) + t[Z(s)]*) 

is nondecreasing at t = 0. However, 

(1 - t) Z(s) + t[Z(s)]* = W(t + s - 2ts), 

which shows that \jj(t) = (p(t + s — 2st). Consequently, q> is nondecreasing at 
t = s if s < \ and nonincreasing at t = s if s > \. The monotonicity assertion is thus 
proved. 

It is obvious that (p(\ - t) = (p(% + t) for t e (0, i). 
Let (p(t0) = (p(0) for some t0 e (0, i). It follows that (p is constant for t e (0, t0) 

and, therefore, (p'(0) = 0. This implies that P* = P, or else u = v. This implies that 

W(t) u = (1 - t) Tu + tT*u = u 

for all te [0, 1] and, because of indecomposability of W(t), P(t) = P(0) for te 
e [0, 1]. Conversely, if u = v then (p(t) = (p(0) for all t e [0, 1] and this completes 
the proof of Theorem 1. 

4. Corollaries and concluding remarks 

As we may have observed Theorem 1 is based essentially on the indecomposa­
bility assumption. This strong requirement can be slightly relaxed. From the complete 
characterization of the constant case we loose the part concerning necessity; ob­
viously, the sufficiency of the condition P = P* remains to be valid in general, 
however dim P®f =j= 1 and the projection P(t) is not differentiable as a rule. Actually 
we have 

Theorem 2. Let fe &™(Q, fi), f(s) = 0 ^-a.e. in Q and let U e £f2(Q x Qy 

ft x ix), U(s, t) —̂ 0 pi x /x-a.e. in Q x Q. Then the function q>, where (p(t) = r(W(t))> 
is nondecreasing in [0, $] and is nonincreasing in [i, 1]. 
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Proof. We choose e > 0 arbitrary and let Te = T + Uc, where 

(Uex) (s) = e f x(s) dfi(s) , 5 G L2(Q, fl). 

It is easy to see that Te is an indecomposable operator of Radon-Nikolskii 
type. Hence Theorem 1 applies, according to which cpe, where 

cpe(t) = r((l-t)T+tTe*), te [ 0 , 1 ] , 

is nondecreasing in [0, i] and nonincreasing in [^, 1], The assertion of Theorem 2 
follows because of the relation 

cp(t) = lim cpe(t) . 
e->0 

The proof is complete. 
It is quite interesting to note that the norm of the operator Z in the expression 

(3.1) may be arbitrarily large, e.g. 

^ / o ß т= ' и 

J.-1H. --1f"1 ")• 
2 \ a 1/ 2 \ a - 1 / 

a 0, 

0 < a , ajS = 1 . 
However, if 

| |Z|| < 1 , (4.1) 

then we are able to prove the crucial inequality (PT*u, u) = (u, u) without refering 
to Proposition 6. 

It is enough to show that 

(Zv, u) = l - (v, v) (4.2) 

and examine the conditions of the equality there, because of the relation 

(Pv, u) = (v, v). 

But (Zv, u) = (Z(v — u), u — v) and according to (4A) it follows 

|(Zv, w)| = (u — v, u — v) = (v, v) — 1 . 

Here the equality takes place if and only if u = v. Consequently, (4.2) holds with 
equality sign occurring if and only if u = v, or else P* = P. 

In the previous paragraphs we studied the operators in J£?2-spaces. It is, however, 
obvious that the validity of the results obtained takes place in the ^-space as well. 
More precisely, if the kernel U is continuous on Q x Q andf e %>(Q), then appropriate 
analogs of Theorem 1 and Theorem 2 hold as well. This is a consequence of the 
fact that %>(Q) can be densely embedded into Z£2(Q) and that the uniform convergence 
in ^(Q) implies the convergence in J£?2(Q, /x). 
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