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Dualization of various types of limits by contravariant set functors is investigated. The
results obtained are used to the study of the limits in generalized algebraic categories.

B craThe cHauasa pacCMOTPHBAETCSI, B KaKOM CJIy4yae KOHTPaBApPHSHTHBII MHOYKECTBEHHbIH
dyHKTOp myanmusuproet npegenn. IlosydyeHble pecysIbTaThl IPUMEHEHBI IIPU U3YUYEHHIO 0000IIIeH-
HBIX aNre0panvecKux KaTeropuil.

Clanek m4 dv& &asti. Nejprve se vySetfuje, kdy kontravariantni mnozinovy funktor prevadi
limity diagrami na kolimity. Ziskané vysledky jsou pak aplikovény pfi studiu limit v zobecnénych
algebraickych kategoriich.

The paper has two parts. In the first one we prove that, roughly speaking,
given any ,,non-trivial” diagram scheme &, no non-constant contravariant set
functor dualizes limits over 2. The next part is devoted to generalized algebraic
categories: Given two contravariant set functors F, G, we form a category
A (F, G). Objects of A (F, G), algebras, are pairs (X, w) where X is a set
and o : F(X)— G(X) is a mapping, and morphisms are f: (X, ) — (X', »')
where f: X -+ X' is a mapping satisfying G(f) o' = o F(f). We show, roughly
speaking, that A4 (F, G) has never products and that it has equalizers iff G
dualizes unions (i.e. carries unions of subobjects into co-unions of factor-objects).
More in detail, given functors F, G, we characterize those schemes & such

that A (F, G) has limits over & .
This paper continues the investigation started by V. Trnkova and P. Goralcik

(see [8]) — they proved that A(F, G) has not products as soon as F and G are
faithful. Related results were obtained by J. Adamek (see mainly [3]) whose
methods we adopt sometimes.

We were introduced to this topic on a seminar lead by V. Trnkovd. We are
extremely grateful to her also for the attention paid to our work.

*) 118 00 Praha 1, Malostranské nam. 25.
**) 166 27 Praha 6, Suchbatorova 2.
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Preliminaries. We shall denote by Ser the category of sets and mappings. Given
a set X, the symbols py : X > 1,95 : ®—X and 1lx: X—> X denote the
constant mapping onto the standard one-point set 1, the void mapping into the
set X, @ is the void set, the identity mapping, respectively. If Y < X denote by
i¥ : Y - X the corresponding inclusion mapping.

As usual, any cardinal is a set.

We shall deal with contravariant set functors only. For a mapping p : M - N
define the constant functor Cy,p,m as follows:

Cnvpmu(®P) =N, Cypm(X) =M for X # &,
Cnpm(le) = Iy, Cypu(dx) =p for X # @,
Cnpm(f)=1u for f: XY, X£O.

We shall write simpler Cy instead of Curiy,m and Cur,e instead of Cur, 9,0 -

{. Dualization of limits

Convention: Given a cardinal « and a functor F, put
PI(X) = F(f) F(X) — U F(g) F(Y) where the first union is taken over all
mappings f: X — « and the second union is taken over all g : X — Y where
card Y < o. Denote by /p the class of all cardinals «,« > 1 such that
PE@) # & .

Note that o/p = @ iff F = Cnypu for some mapping p: M —> N (see
(4D .
Proposition 1.1: If a«€.2/F and card X > o then card P¥(X) =
= max (card 2%, card PE(a)). If a¢ o/p then PI(X)= @ for every set X.
If f:X—~Y is an epimorphism then, for every cardinal «, F(f)PI(Y) <
c PI(X). Further, PI(X)= ) F(g) P¥(«) where the union is taken over all
epimorphisms g : X — «.
Proof see [4].

Definition: A couple of epimorphisms f,g : X — Y is called a diverse couple
if there exists a set Z, Z < X such that either
g(Z)=Y and cardf(Z) <card Y or f(Z)=Y and cardg(Z) < card Y.

Proposition 2.1: If ac.2/r and a couple of epimorphisms f,g: X —oa is
diverse then F(f) Pf(a) () F(g) Pi(e) = @

Proof: see [4].

Definition: Let f: X — Y, g : X - Z be mappings. We say that g is coarser
than f if there exists a mapping ~#: Y — Z such that Af=g.

Proposition 3.1: If f: X — Y is a mapping then F(f) PI(X) = | F(g) Pi(x)
where the union is taken over all epimorphisms g : X — « which are coarser
than f.
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Proof: Evidently, if g : X —> o is coarser than f: X — Y then

F(f)F(Y) > F(g) F() . Conversely, there exists an epimorphism £ : X -> Z and
a monomorphism £ :Z — Y with f=~hk. Of course, F(f) F(Y) < F(k) F(Z).
If x € PE(Z) then there is an epimorphism k£ : Z -+« such that x € F(k) P¥(«) .
Thus, for, g = k&, F(k)(x) € F(g) PX(«) and so F(f) PE(X) = ( F(g) PE(x) .

Proposition 4.1: Lect f,g : X — Y be mappings and let F be a functor. Then
F(px) F(1) <« F(f)F(Y) () F(g) F(Y) and for every «xe€F(py)F(l), F(f)(x) =
= F(g) (x) .

Proof is evident.

Proposition 5.1: Let f: X — Y be a mapping. Then F(f) F(Y) = J F(g) F(w)
where the union is taken over all epimorphisms g : X — «, a €.97p which are
coarser than f.

Proof: It follows immediately from Propositions 3.1 and 4.1.

Proposition 6.1: Let F be a functor, a€.2/r. Assume that for mappings
f:X—->Y, h:X—->Z we have: a couple of epimorphisms g, k:X —>o is
diverse whenever g is coarser than f and & is coarser than % . Then
FOFY)NFW) FY) N Pi(X)= .

Proof: It follows from Proposition 3.1.

Proposition 7.1: Let o« €.2/r for a given functor F. Let a mapping f: X - Z
and a subset Y < X have the following property: for every epimorphism
g : X —a such that g(X — Y) is a one-point set the set F(g) F(x) is a subset
of F(f)F(Z). Then there exists a set U, U < Y,card U < a such that if
x€Y — U then f(x) #f(x') forall ¥ €X.

Proof: Suppose the contrary. Then thereisaset V, V < Y, card V = a such
that for every x €V there exists a point ye X, y #%x with f(y) = f(x). If
card f(V) < « then we can choose a mapping g :X —a such that g/V is a
bijection from ¥V onto «. Thus, according to Proposition 1.1, F(g) PX(«) N
N F(f) F(Z) = @ and this is impossible.

Hence card f(V) = a. Thus there is a subset W of V with card W = «
and f/W is one-to-one. Let g : X — « be a mapping such that g(X —W) is
a one-point set and g/W is a bijection from W onto the set «. Let 2: X — a
be an epimorphism coarser than f. Since 2/X — W is onto so g, & is a diverse
couple. Applying Proposition 6.1 we derive a contradiction. The proof is finished.

A scheme 2, i.e. a small category, is called indecomposable if it is not a sum
of two non-void categories. It is called decomposable in the contrary case. A maximal
indecomposable subscheme of £ is a component of 2. We say that £ has
a weakinitial object if there is an object a € 2° such that, for every b € 2°, there
exists a morphism /:a—b.

We shall characterize those functors which turn limits into colimits. We say
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that a functor F dualizes limits over a scheme & if for every diagram D : 2 — Set
with a limit (4, g : A — D(a) | a € D) , (F(A), F(na) : F D(a) - F(A) |a€ 2) is
a colimit of FD . In particular, we say that F dualizes unions if the following
holds: For every set X and subsets X; « X, i €1, the equalities F(i§f) (x) =

= F(%t)(y) for all el imply F(:¥{) (x) = F(:%)(y) where U= | X;.

i€l
Proposition 8.1: The functor F dualizes unions iff it dualizes unions of pairwise
disjoint subsets.

a

Proof is easy.

Proposition 9.1: If F does not dualize the union of {Xi, Xi < X[iel}
then for every set Y, F does not dualize the union of
XivVY,XisVYcXV Yliel}.

Proof is easy.

Definition: Let (A, 7 : 4 > D(a) | a€P) be the limit of a diagram
D : @ — Set. For a given functor F denote by (B, 04 : F D(a) - B|a € 2) the
colimit of FD . Then there exists exactly one mapping ¢ : B — F(A) such
that ¢ o4 = F(n,) for every a€ .2 We say that
1. F spreads the colimit of D if ¢ is not an epimorphism (see also [3]). In this
case we put
RE = F(4) — ¢(B) .

2. F shrinks the colimit of D if ¢ is an epimorphism but it is not an iso-
morphism.

We say that F spreads (shrinks) colimits over a scheme £ if there exists
a diagram D : & - Ser such that F spreads (shrinks) the colimit of D .

Theorem 1.1: Let 2 be a decomposable scheme. F dualizes limits over 2
iff F = C¢. Moreover, if o/p # @ then for every cardinal « there exists a
diagram D : 2 — Set such that F spreads the limit (4, 7g : 4 — D(a) | a € D)
of D and card A > «, card R} > card 24.

Proof: If F +# Cy¢ then F(®D) £ @ . Let D : 2 — Set be the constant diagram
to @. Then (D, lo: ® = D(a) | a€P) is the limit of D but

F(®), F(lg) : F D(a) — F(®) | ac ) is not colimit of FD. Conversely, Co
dualizes all limits.

Now, assume .o/p # @ . Denote by I the set of all components od 2 ane
put f = max (a, min /g, card 21). Define the diagram D : 2 — Set as the
constant diagram to f, ie. D(a) = f, D(l) = 15 for every ae€2°, [ec2Pm.
Let (B, n; : pT— p|iel) be the I-th power of 5. Then
(BT, 7tq : BT — D(a) | a € 2°) is the limit of D where nq = 7; whenever the
i-th component of 2 contains a. We are to prove card R? > card 28 = card 25,
Take a well-ordering of I and choose a mapping f : ! — f# suchthat f({y; | i €I})
= miny;. If an epimorphism g : X — min &/F is coarser than 7, for some

icl
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a€Z° and an epimorphism % : X — min o/p is coarser than f then g, 7 is
a diverse couple and the inequality follows from Proposition 1.1 and 6.1.

Theorem 2.1: Let 2 be a indecomposable scheme without the weak initial
object. Then F dualizes limits over & iff F = Cy. Moreover, if o/p #% @
then for every cardinal o« there exists a diagram D : 2 — Set such that F
spreads the limit (4,74 : 4 — D(a) |a€2°) of D and card A < v,

card RY. > card 24.

Proof: Clearly, if F = Cy then F dualizes the limits in question.
a) Suppose there are objects a, b € 2° such that for no object ¢ € 29, there are
two morphisms [ :c¢-—>a,l': ¢—b. Define a diagram D : & — Set as follows
(see also [3]; the sets A, B, C and the mappings p: 4 — C,r: B— C will ve
determined later):

If deZ° and there is a morphism /:d —a then, D)= 4,

if de2° and there is a morphism [/ :d-—>b then D(d) = B, D(d) = C other-
wise. Let /:d—d’ be a morphism of @m. If D(d") = 4 then D(l) = 14, if
D{d") = B then D(l) = 1, if D(d)= C then D() = 1¢. If D)= A and
D(d") = C then D()=p, if D({d)= B and D(d") = C then D(l) = r.

Now, if /p # @ put f = max (a, min L), C=1, A =B = and
p=r=ps. Then (A X B,wq: A X B—D(a)|ac2°) is the limit of D
and it follows in the same way as in Theorem 1.1 that F spreads this limit and
R2 > card 24%B,

There remains only the case F = Cn,p,m. Then take for A, B arbitrary
non-void sets andput C = A4 \V B, p =12, r =12 . Thus, (D, dpw : ® — D(a)
| a € 2°) is the limit of D and F does not dualize this limit.

b) If the case a) does not take place then for every object a € 2° there is an
object b € Z° such that there is no morphism [ : a — b but there is a morphism
I':b-—>a. We can easily construct a chain {a; |7 €y} of objects of 2 having
the following properties:

i)  y is a regular cardinal;

i) Given 7,5 €y, there exists a morhism [ :a; —a; iff 7 <7;

iii) If ce2° then for some a; there is no morphism g : ¢ —a;.

Define a diagram D : @ — Ser as follows (the sets A4, A;,7€y and the
mappings 0; : A; > A, 015 : Ai — Aj i,j €y, 1 > will be determined later):

If ae2° and the set M¢ = {j €y | there is a morphism [ : a — a;} is non-void
then put D(a) = A; where i = sup M®, if M* = @ then put D(a) = 4 .
If /:a—b is a morphism of & then
i) D) =06y if D(a) = Ai, D(b) = A
ii) D(U)=14 if D(a) = D) =4
iiiy D) = 6; if D(a) = Ai, D(b) = A.
If o/p# @ put B = max(x, mins/r), A=p, Ao = F(A), A; = F(sup

J<i
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card A;) and 6;, 0i; arbitrary epimorphisms for i > j, 0;;0;n = O, 04505 =
= 04, 0ss = lai. Let (B, g : B —D(a)|a€2°) be the limit of D. Then,
card B > card A; for all i€y and, according to Proposition 1.1, card F(B) >
>card28. Let (C,@qa:FD(a)—>ClacZ be a colimit of FD. Then

card C < sup card F(A;) = sup card Ai+1 < card B and therefore F spreads the
icy i€y
limit of D and R2 > card2B. If F = Cu,p,u then it suffices to take 4 = Ay,

A; c A4; iff iZj,Ai#(b for all iE'y and ﬂAi:Qj; (Si:iﬁi, 5ij:
* icy

=14}. Then (D, dpw@ : P — D(a) | a € 2°) is the limit of D and F does not

dualize this limit. This completes the proof.

Theorem 3.1: Let 2 be a scheme with a weak initial object but without the
initial object. Then F dualizes limits over & iff F = Cy . Moreover, if of/p #~ @
then for every cardinal « there exists a diagram D : £ — Set such that card D(a) >
>« for all ae2° and F shrinks the limit of D .

Proof: It follows from an easy observation that for any cardinal «, there exists
a diagram D : 2 — Ser such that card D(a) > o for all objects of 2, D(I)
is an epimorphism for all morphisms of 2 and (D, dp@) : @ — D(a) | a € 2°)
is the limit of D.

Proposition 10.1: Let ¢ be a scheme. Then £ has the initial object iff every
functor dualizes limits over 2 .

Proof is evident.

2. Limits in generalized algebraic categories

Let us begin with the limit over the void scheme i.e. with the terminal object
in A(F, G).
Theorem 1.2: The category A(F, G) has the terminal object iff F = Cuy, e
or G=C1 or G=Cyeor F= Cuy,p,n and G is a contravariant homfunctors.

Proof: If A(F, G) has a terminal object and F1 # @, G # C1, Gl # P then
analogously as in [2] we can prove that F = Cy,p,y and G is a contravariant
homfunctor. The rest is evident.

Let us note before getting into further Lemmas that if the scheme 2 has the
initial object then A(F, G) has limits over 2 for any choice of F, G.

Lemma 1.2: Let 2 be a scheme without a weak initial object, let F be a
functor such that &/p 7= @. If either /¢ % @ or card G(1) > | then A(F, G)
has not limits over 2.

Proof: By Theorem 1.1 and 1.2 there exists a diagram D : 2 — Set such that
F spreads the limit of D and card 4 > « where (4, 7 : A — D(a) | a € 2°) is the
limit (the cardinal « will be determined later). Let b€ G(1). We define wp(q): FD(a) >
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— GD(a) as the constant mapping to G(pp)(b.) Further, define w4 : F(A) —
— G(A) as the constant mapping to G(p4) and finally, define D’ : 2 — A(F, G)
as follows: D’'(a) = (D(a), wp@), D'(l) = D(l) for every a€2°, € 2™. Then
(4, wa), ta : (A, wa) > D'(a) | a € 2°) is a bound of D'.

Assume that ((S, ws), tq : (S, ws) = D'(a) | a € 2°) is a limit of D'.

Then there exist 2:S—> A,k : A— S such that 14k =@ e k' = 14
for every a e 2°. Hence 14k k' = 74 and so k k' = l4. Therefore k£ and F(%')
are epimorphisms and then card S > card A, F(S) # Q@ F(ng) D(a).

acy°

a) Assume that card G(1) > 1 and /¢ = @. Put « = 0. Define two mappings

w§, 0% F(S) — G(S) as follows:

w} is the constant mapping to G(ps) (b), w3(c) = G(ps) (b)

whenever c€ |J F(mg) F D'(a), w¥(c) = G(k) (d) otherwise. Here deG(S),
acegP°

d # G(ps) (b). Of course, ((S, w}), e : (S, w}) > D'(a) | a€ 2°) and

(S, 02), a : (S, wF) - D'(a) | a € 2°) are bounds of D' and so there are some

mappings A1, he : S— S such that h; : (S, 0f) - (S, ws) and such that

g =mghy for i=1,2, ae2°. Thus we have £kh; =k,i=1,2. Choose

z€F(4) — U F(ng)D(a). Now, using Proposition 4.1 and the fact that /¢ = @,
acPe

we obtain G(ps) (b) = ws F(k) (2) = wg F(hl) E(k) (2) = G(l) ws F(k) (z) =
= G(he) ws F(R) (2) = w} F(h) F(k) (2) = w2 F(k) () = d where

ze€FA4 — ) F(ra)(D(a)), a contradiction because G(ps) (b) #=d .
aege

b) Now assume ¢ # @. Put « = max (card P{(p), card P§(y)) where
f=minAp, y=mnlg Let V be an inﬁnite set, card V > card S. Put
X =AYV V. Choose a point ce€A4 and define uq: X — D'(a) such that
UalA = ta, pa(v) = 74(c) for every veV.

Let Vi, (4,7) €I X J be a decomposition of V' such that card Vi = card V
and card I = card ¥ = card X. Choose a well ordering <€ of I and, for any

limit del, put My, ={Z;Z < U Vip,card(Z \Vis) <1, card Z = card V,
1<y
JEF

(t,7) €e I X ¥} . Further, define MZ = |J F(g) F(f) where the union is taken over
all epimorphisms g : X — f such that g(x) = g(y) whenever x,yeX —Z.

Similarly, define M$ = |J G(g) G(y) where the union is taken over all epi-
morphisms g : X -y such that g(x) = g(y) whenever x,yeX — Z. Finally,
put V;= | Vi . It is easily seen that we can choose a mapping wx : F(X) —

je¥
— G(X) as follows:
wx(c) = G(px) (b)) whenever ce U9 F(uq) F(D'(a)) .
acP°

wx/R® is a mapping onto Mg, ,
wx/Mf,, is a mapping onto Mg, .
wx/M% is a mapping onto M, , Z € My, 1o is limit.
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It suffices to use that for every (i,j)el X ¥ and ZeM;,ip limit we have
card RY = card M, = card My, = card M, = card M% . (Theorems 1.1, 2.1
and Proposition 1.1).

Evidently, (X, wx), pa : (X, wx) — D'(a) | a€ 2°) is a bound of D’ and
so there is a morphism % : (X, wx) — (S, ws) with 74k = pa, a € 2°. Thus, if
x€A,x #c¢ then the equality A(x) = h(y) implies x =3y (B is a mono-
morphism). We will prove by induction that for every i€l there is a set T,
T c Vi,card T << card A such that for any ~x € V; — T the equality Ah(x) =
= h(y) implies x = y. As card X > card S > card A we will obtain card h(X) =
= card I = card X which is imposible. Of course, ME, < G(k) G(X) and via
Proposition 7.1 the assertion holds for 7 = 0. Assume that the assertion holds
for all ¢<<4'. If ¢’ is non-limit then these is some " € I such that " + | =7
and so there is a j € ¥ such that Mf., < F(h) F(X). Then M}, < G(h) G(X)
and the assertion for ' follows from Proposition 7.1. If 7’ is limit then for every
1K1 there is a set J; < F such that, for every xe€ Vyj,j€ i, the equality
h(x) = h(y) implies x = y. Moreover, card ;= card V (Proposition 7.1).
Hence there is a set Z, Ze M;, with the following property: If x € Z, h(x) =
= h(y) then x =y. So, M%5 < F(h) F(x) and therefore M, < G(h) G(X).
Again, Proposition 7.1 yields the assertion for i’ and the proof is complete.

Convention: Denote by [] the natural forgetful functor from A(F, G) into Ser.

Lemma 2.2: Suppose that F shrinks the limits over 2. If G dualizes unions
and if for every diagram D : 2 — A(F, G) there exists a mapping wg : F(®) —
— G(®) such that (D, we), Ip@ : (P, we) —> D(a) | a € 2°) is a bound of D
then A(F, G) has limits over & .

Proof: Let D : 2 > A(F, G) be a diagram. Let (4,74 : A — [] D(a) | a € 2°)
be the limit of (] D. Denoteby % thesetofall bounds (X, wx), Ta : (X, wx)—>
— D(a) € 2°) such that for every distinct points x,y of X there exists an
a€e2° with 7t4(x) #74(y). For every bound (X, wx),a : (X, wx)— D(a)/
| a € 2°) there exists h : X —- A such that 14 = 7sh. Denote by U the union
of all A(X) over all bounds belonging to #. Thus G(iY§) is the co-union of all
G@E"®) . This, together with the fact that F shrinks limits over 2, makes it
possible to find a unique mapping wy : F(U) — G(U) such that (U, wy),
7a|U : (U, wy) - D(a) | a€2°) is a bound od D. One can easily prove that
this is the limit of D.

Lemma 3.2: Let 2 be a decomposable scheme. If card G(®) = 1 then for
every D : 2 — A(F, G) there exists a mapping we : F(P) - G(P) such that
(D, we), Dy : (D, we) = D(a) [ a€ D°) is a bound of D. If card G(D) > 1
and F(®) # @ then A(F,G) has not limits over 2.

Proof is easy.

Lemma 4.2: Let £ be an indecomposable scheme. If card G(91) G(1) =1
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then for every D : @ — A(F, G) there exists a mapping we : F(®) — G(®D)
such that ((D, we), ¥pa) : (D, we) - D(a) [a€2°) is a bound of D. If F
shrinks colimits over the scheme 2 and card G(91) G(1) > 1 then A(F, G)
has not limits over 2.

Proof: If ] D(a) = @ for every a€2° then D is the constant diagram and
evidently, there exists the required mapping. If [] D(a) # @ for some ae€2
then take for we the constant mapping to x, x € G($1) G(1). Clearly (D, we),
Ipa : (D, we) = D(a) | a € 2°) is a bound of D. Now, assume that F shrinks
colimits over the scheme 2 and card G(h) G(1) > 1. Let D :2 — Set be
a diagram which F shrinks. Denote by (4,74 : 4 — D(a) | a€2°) the limit
of D and by (B, oq: F D(a) - B|a€2°) the colimit of FD. So, we have
a mapping ¢ : B— F(A) such that F(n,) = ¢ 64 for every a€2°. There
exist disctinct points u, v € B with ¢(x) = ¢(v) and distinct points
x, vy € G(%) G(1). Define a diagram D' : 2 — A(F, G), D'(a) = (D(a), wpw),
D'(l) = D(I) for every a€2° le2™. The mapping wpw : FD(a) — GD(a) is
defined as follows: wp@)(2) = G(pp@) (x1) if 0a(2) 7~ v, Wp@(2) = G(Pp@) (31) if
ga(2) = v where x1,y1 € G(l) such that G(%) (x1) = x, G(th) (y1) =y. We
will prove that there is no bound of D'. Assume ((Z, wz), Tq : (Z, wz) - D'(a) |
| a € 29) is such a bound. Then there exist a1, az € 2° and uy € D(a1), v1 € D(az)
with o0q,(41) = u, 0q,(v1) = v. Further, there is a 9 : Z— 4 such that
g =gy for all a€2° and therefore we obtain successively F(tq,) (1) =
F(y) F(na) (w1) = F(y) ¢ 0a(1) = F(y) p(u) = F(p) p(v) = F(y) ¢ 0a,(v1) =
— F(y) F(na,) (01) = F(ta,) (00).

On the other hand wzF(7q,) (1) = G(Ta,) wpw)(t1) = G(Ta,) G pp(a,y(x1) =
= G(pz) (x1), wzF(1a,) (v1) = G(ta,) ®n@,)(01) = G(7a,) G(pp(@a,) (31) =
= G(pz) (y1) — a contradiction.

Lemma 5.2: Let 2 be a scheme with a weak initial object ap. If F shrinks
the non-void limits over 2 and G does not dualize unions then 4 (F, G) has
not limits over &2 .

Proof: Let D : 2 — Set be a diagram such that F shrinks the colimit od D .
Denote by (4, 7tq : A — D(a) | a € 2°) the limit of D and by (C, o4 : FD(a) —>
—~ Clae2° the colimit of FD. Let {Bi;,Bi c B|acl} be a system of
subsets of B such that G does not dualize its union. Define a diagram D' : 2 —
— Set, D'(a) =D(a)\/ B, D) =D() V 1p. Then (A B,nq V lp: A —
— D'(a)|a€2°) is a limit of D’. Denote by (C',0,: FD'(a) > C'|a€c2)
the colimit of FD'. First we will prove that F shrinks the colimit of D’.
There exist x,y € F D(ao) such that F(mg,) (x) = F(7q,) (y) and oq,(x) 7 0ay(y).
Choose ¢o : D'(a,) > D(a,), ¢1: AV B — A such that ¢ud'%) = lpwy,
P14y = L4y 7apo = ¢1(7a, V 18). Then F(go) (x) # F(go) () and

0a(%) 7 04(¥) but  F(ma, V 18) F(go) (x) = F(mta, V 1) F(po)(y). Hence F
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shrinks the colimit of D'. By Proposition 9.1, there are u,ve€G(4 V B) such
that G5, p) (v) = G(G%Y, p) (v) and G(Y p) (u) # G(Y, ) (v) where U = gl B;.
Further, there are uq, v € G D'(a) such that G(ng) (ua) = u, G(mg) (va) = .
Hence we can define a diagram D" : & — A(F, G) such that D"(a) = (D'(a), wp @)
where wp (&) = ua if 0,(2) # 14y poa,(X) » Wp@)(2) = va otherwise, D(I) =
= D'(l). Suppose ((P, wp),Tq : (P, wp) - D"(a) | a € 2°) is the limit of D".
Then, for every iel, ((Bi, ws), (7wa V 18) 5%, : (Bi, wp,) = D"(a) | a € 2°)
with wp, the constant mapping to G(i5i, z) («) is a bound of D". As a conse-
quence, U < P, but this is not possible.

Lemma 6.2: Let 2 be a decomposable scheme. If F = Cw,p,u with M # @
and if G does not dualize unions then A(F, G) has not limits over 2.

Proof: Take a system {A;, 4i < A|i€l} of subsets of A4 such that G does
not dualize its union. Let D : 2 — Set be the constant diagram to A4 . Denote
by (B,7mtq : B— D(a)|ae€ 29 the limit of D. Clearly, B = A7 where ¥ is
the set of all components of 2. Let A : A — B be the inclusion mapping to
the diagonal. There exist wu,v€G(A4) such that G(E4Y) (u) = GGE4") (v) but

G(EY) (w) # GGEY) (v) where U = U A;. Clearly G does not dualize the union

of the system {B;, B; « B|iel} where B; = A (4:) . It holds

G(i5)G(ma,) (1) = GG Gla,) (v) = G(iEY) Glrta,) (v) = G Glrnay) (1) for every
a1, a2 € 2° and 7€ l. On the other hand, if U’ = U B; then G(1§") G(ma )(u) #
# G(Y) G(ma,) (v) . Choose a component K of .9 and define wp(q : FD(a) —

— GD(a) such that wp is the constant mapping to v if a ¢ K, wpe is the
constant mapping to o otherwise. Then, putting D'(a) = (D(a), wpw), D'(l) =
= D(l), we obtain a diagram D' :2 — A(F,G). It is easily seen then all
(B> wB,), ma 15 : (Bi, wp) - D'(a) [ a€ 2°) are bounds of D'. If ((P, wp),
a: (P, wp) > D'(a)|a€ 2°) is the limit of D' then U’ < P and this is a
contradiction.

Theorem 2.2: Suppose F # Cnyp,m> G &= Cumr0, G 7%= C1 and suppose Z is a
non-void scheme.
1) If 2 has not a weak initial object then A(F, G) has not limits over Z .
2) Let 2 be a scheme with a weak initial object but without the initial object.
If F($1) is an epimorphism then A(F, G) has limits over 2 iff G dualizes
unions and card G(¢) (1) = 1. If F($:1) is not an epimorphism then A(F, G)
has limits over £ iff G dualizes unions and G(®P) = 1.

The proof follows from the previous Lemmas.

Examples: If F 5 Cyp,m, G 7 Cu,0, G # C1 then A(F, G) has not products
nor pullbacks. If G is a contravariant hom-functor then A(F, G) has equalizers.

Theorem 3.2: Suppose F = Cypm, N # D.
1) If 2 is a non-void indecomposable scheme without the initial object then
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A(F, G) has limits over 2 exactly in one of the following cases:
a) The mapping p : M — N is a bijection
b) The mapping p : M — N is an epimorphism and card G(¥) ='1
c) G(@) =1
2) If 2 is a decomposable scheme then A(F, G) has limits over 2 iff G(P) = 1
and G dualizes unions.
The proof follows from the previous Lemmas.

Theorem 4.2: The category A(F, G) is complete (has all limits) iff one of the
following cases takes place:

1) F=Csq .
2) G=C;.
) F=Cu,e, M#® and G(P)=1.
4) G=Cio.

Proof is easy.
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