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Limits in Gene ra l i zed A l g e b r a i c Categor ies -
C o n t r a v a r i a n t Case 

V. KOUBEK 

Department of Mathematics, Charles University, Prague*) 

P. PTAK 

Department of Mathematics, Technical University, Prague**) 

Received 29 January 1976 

Dualization of various types of limits by contravariant set functors is investigated. The 
results obtained are used to the study of the limits in generalized algebraic categories. 

B cTaTBe CHanajia paccMOTpHBaercH, B KanoM cjiynae KOHTpaBapHHHTHbiH MHo>KecrneHHbiii 
(|>yHKTop ^yajiH3HpioeT npe^ejiH. nojiyneHbie pecyjnvraTbi npHMeHeHbi npH H3yneHHio o6o6meH-
Hbix ajire6panHecKHX KaTeropHH. 

Clanek ma dve casti. Nejprve se vysetfuje, kdy kontravariantni mnozinovy funktor pfevadi 
limity diagramu na kolimity. Ziskane vysledky jsou pak aplikovany pfi studiu limit v zobecnenych 
algebraickych kategoriich. 

The paper has two parts. In the first one we prove that, roughly speaking, 
given any „non-trivial" diagram scheme ^ , no non-constant contravariant set 
functor dualizes limits over @. The next part is devoted to generalized algebraic 
categories: Given two contravariant set functors F, G, we form a category 
A (F, G). Objects of A (F, G), algebras, are pairs (X, co) where X is a set 
and co : F(X) --> G(X) is a mapping, and morphisms are / : (X, co) -> (Xf, co') 
where / : X --> X' is a mapping satisfying G(f) co' = co F(f). We show, roughly 
speaking, that A (F, G) has never products and that it has equalizers iff G 
dualizes unions (i.e. carries unions of subobjects into co-unions of factor-objects). 
More in detail, given functors F, G, we characterize those schemes & such 
that A (F, G) has limits over ^ . 

This paper continues the investigation started by V. Trnkova and P. Goralcik 
(see [8]) - they proved that A(F> G) has not products as soon as F and G are 
faithful. Related results were obtained by J. Adamek (see mainly [3]) whose 
methods we adopt sometimes. 

We were introduced to this topic on a seminar lead by V. Trnkova. We are 
extremely grateful to her also for the attention paid to our work. 

*) 118 00 Praha 1, Malostranske nam. 25. 
**) 166 27 Praha 6, Suchbatorova 2. 
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Preliminaries. We shall denote by Set the category of sets and mappings. Given 
a set X, the s)lmbols px : X -> 1, # x : & -> X and l x : X -> X denote the 
constant mapping onto the standard one-point set 1, the void mapping into the 
set X, 0 is the void set, the identity mapping, respectively. If Y c= X denote by 
ix : y -> X the corresponding inclusion mapping. 

As usual, any cardinal is a set. 
We shall deal with contravariant set functors only. For a mapping p : M -> N 

define the constant functor CN,P,M as follow^: 

CN,P,M($) = N, CN,PM(X) = M for X ^ 0 , 

CN,V,M(\®) = 1-v, CN,P,M(®X) = p for X ^ $ , 

CN,pM(f)=lM for / : X - > y , X ^ < ? > . 

We shall write simpler CM instead of CM,IMM ar-d CM,& instead of CM,$M,& • 

I. Dualization of limits 

Convention: Given a cardinal a and a functor P, put 
P*(X) = \J F(f) F(X) — \J F(g) F(Y) where the first union is taken over all 
mappings / : X -> a and the second union is taken over all g : X -> y where 
card y < a . Denote by J/JF the class of all cardinals a, a > 1 such that 
Pa

F(a) # * . 
Note that stfp = 0 iff P = CN,PM for some mapping p : M -> N (see 

[4]) • 

Proposition 1.1: If a e i f and cardX > OL then cardP£(X) = 
= max (card 2X , card P f (a)) . If a ^ ^/jp then P*(X) = 0 for every set X . 
If / : X -> y is an epimorphism then, for every cardinal a, P( / ) P£( Y) c 
c Pf (X). Further, Pf (X) = [} F(g) P f (a) where the union is taken over all 
epimorphisms g : X -> a . 

Proof see [4]. 

Definition: A couple of epimorphisms fg:X-^Y is called a diverse couple 
if there exists a set Z, Z a X such that either 
g(Z) = y and cardf(Z) < card Y or / (Z) = Y and cardg(Z) < card Y. 

Proposition 2.1: If a e stfp and a couple of epimorphisms / , g : X —> a is 

diverse then P( / ) Pf(a) f) Pfe) Pf(a) = # . 

Proof: see [4]. 

Definition: Let / : X -> y , g : X -> Z be mappings. We say that g is coarser 
than / if there exists a mapping h : Y -> Z such that hf = g. 

Proposition 3.1: If / : X -> y is a mapping then P( / ) Pf(X) = U F(g) P£(a) 
where the union is taken over all epimorphisms g : X -> a which are coarser 
than / . 
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Proof: Evidently, if g : X -> a is coarser than / : X -> Y then 
F(f)F(Y) i3 P(g) P(a). Conversely, there exists an epimorphism k : X -> Z and 
a monomorphism h : Z -> y with f = hk. Of course, P(/) F( Y) c P(&) P(Z). 
If x e P%(Z) then there is an epimorphism £ : Z -> a such that x e P(&) P£ (a) . 
Thus, for, g = kk, F(k) (x) e F(g) P£(a) and so F(f) PfrX) = U I7^) P£(OL) . 

Proposition 4.1: Let / , # : X-> Y be mappings and let F be a functor. Then 

F(px) F(\) c P(/) P(y) fl -Ffe) - T O and for every x eF(pY) P(l), P(/) (x) = 

= ^Gr) (*) • 
Proof is evident. 

Proposition 5.1: Let / : X -> Y be a mapping. Then P(/) F(Y) = [j F(g) P(a) 
where the union is taken over all epimorphisms g : X -> a, a e JZ/F which are 
coarser than / . 

Proof: It follows immediately from Propositions 3.1 and 4.1. 

Proposition 6.1: Let F be a functor, a e S$F . Assume that for mappings 
/ : X -> y , h : K -> Z we have: a couple of epimorphisms #, k : X -> a is 
diverse whenever # is coarser than / and k is coarser than h . Then 
F(f) F(Y) fl F(A) F(Y) n Pa

F(X) = 0 . 

Proof: It follows from Proposition 3.L 

Proposition 7.1: Let a e S/F for a given functor P. Let a mapping / : X -> Z 
and a subset y c X have the following property: for every epimorphism 
g : X -> a such that g(X — Y) is a one-point set the set F(g) P(a) is a subset 
of P(/) P(Z) . Then there exists a set U,U a Y, card U < a such that if 
x e F - ( / then /(*) ?--/(*') for all x' e X. 

Proof: Suppose the contrary. Then there is a set V, V c Y, card V = a such 
that for every x e V there exists a point y eX, y ^ x with /(j!) = f(x) . If 
cardfiV) < a then we can choose a mapping g : X-> OL such that #/V is a 
bisection from V onto a . Thus, according to Proposition 1.1, F(g) Pf (a) f] 
f| -F(/) -F(Z) == 0 and this is impossible. 

Hence cardf(V) = a , Thus there is a subset W of V with card W -= a 
and / / W is one-to-one. Let g : X -> a be a mapping such that g (X — W) is 
a one-point set and #/W is a bijection from W onto the set a . Let k : X —> OL 
be an epimorphism coarser than / . Since k\X — W is onto so g, k is a diverse 
couple. Applying Proposition 6.1 we derive a contradiction. The proof is finished. 

A scheme ^ , i.e. a small category, is called indecomposable if it is not a sum 
of two non-void categories. It is called decomposable in the contrary case. A maximal 
indecomposable subscheme of @ is a component of 2 . We say that @ has 
a weakinitial object if there is an object ae@° such that, for every b e @°, there 
exists a morphism I : a ->b . 

We shall characterize those functors which turn limits into colimits. We say 
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that a functor F dualizes limits over a scheme Q) if for every diagram D : Q) ~> Set 
with a limit (A, na : A -> D(a) \ae2), (F(A), F(na) : FD(a) -> F(A) \ae&) is 
a colimit of FD . In particular, we say that F dualizes unions if the following 
holds: For every set X and subsets Xi c I , f e I, the equalities P(rp) (x) = 
= F(i$<)(y) for all iel imply P(z£) (*) = F ( # ) (j!) where U = (J Xt . 

»6I 
Proposition 8.1: The functor F dualizes unions iff it dualizes unions of pairwise 
disjoint subsets. x 

Proof is easy. 

Proposition 9.1: If F does not dualize the union of {Xu Xt a X j i e 1} 
then for every set Y, F does not dualize the union of 
{Xi V Y, Xi V Y dX \/ Y\iel). 

Proof is easy. 

Definition: Let (A, na : A -> D(a) \ a e @) be the limit of a diagram 
D : 2 -> Set. For a given functor F denote by (H, aa : F D(a) -> B \ a e § ) the 
colimit of HI) . Then there exists exactly one mapping (p : B -> F(v4) such 
that 9? cra == F(na) for every a e .& We say that 
1. H spreads the colimit of D if 99 is not an epimorphism (see also [3]). In this 
case we put 

R% = F(A)-V(B). 

2. F shrinks the colimit of D if <p is an epimorphism but it is not an iso­
morphism. 

We say that F spreads (shrinks) colimits over a scheme Q) if there exists 
a diagram D : Q) ™> Set such that F spreads (shrinks) the colimit of D . 

Theorem 1.1: Let ^ be a decomposable scheme. F dualizes limits over 2) 
iff F = C<p. Moreover, if S/F 7^ 0 then for every cardinal a there exists a 
diagram D : Q) -> Set such that F spreads the limit (A, na : A —> D(a) \ae@) 
of D and card A > oc, card R® > card 2A. 

Proof: If F ^ C& then F(0) ^ 0 . Let D : 3) -> Set be the constant diagram 
to 0 . Then ( 0 , U : # -> D(a) \ae2) is the limit of I) but 
F(0), F(l0) : FD(a) -> F(&) \ a e @) is not colimit of FD . Conversely, C0 

dualizes all limits. 
Now, assume S^F # 0 . Denote by I the set of all components od Q) ane 

put /3 = max (a, min S/F> card 21). Define the diagram D : Q) -> S£T as the 
constant diagram to /3, i.e. D(a) — /?, D(l) = 10 for every a e @°, I e @m. 
Let (/3J, m : ft1 ~-> fi\iel) be the I-th power of /3. Then 
(/3J, 7ra : /3J -> D(a) | a e ^° ) is the limit of D where na = ni whenever the 
t-th component of @ contains a . We are to prove card R$ > card 2$ = card 2®1. 
Take a well-ordering of I and choose a mapping / : /3J -> /? such that f({yt / z e I}) 
— min yi. If an epimorphism g : X —> min S/F is coarser than na for some 

iei 
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a e 3° and an epimorphism h : X -> min s/p is coarser than f then g, h is 
a diverse couple and the inequality follows from Proposition \.\ and 6.V 

Theorem 2.1: Let 3 be a indecomposable scheme without the weak initial 
object. Then F dualizes limits over 3 iff F = CM • Moreover, if S/F T^ ^ 
then for every cardinal a there exists a diagram D : 3 -> Set such that F 
spreads the limit (A, na : A -> D(a) \ a e 3°) of D and card ,4 < a, 
cardRF > card2A. 

Proof: Clearly, if F = CM then F dualizes the limits in question. 
a) Suppose there are objects a, b e3° such that for no object c e 3°, there are 
two morphisms / : c -> a, /' : c -> b . Define a diagram D : 3 ~> Set as follows 
(see also [3]; the sets A, B, C and the mappings p : A -> C, r : B —> C will ve 
determined later): 
If d e3° and there is a morphism / : d -> a then, L)(d) = -4 , 
if d e ^ ° and there is a morphism / : d -> b then L)(d) = H, L)(d) = C other­
wise. Let / : d -> d' be a morphism of ^ w . If IXa7') = A then D(/) = \A , if 
D(d') = B then £>(/) = 1 B , if D(d) = C then D(l) = \c . If D(d) = A and 
L>(d') = C then L>(/) = p, if L>(d) = B and L>(d') = C then L>(/) = r. 

Now, if S/F ^ <£ put p = max (a, min s/p), C = \, A = B = /? and 
p = r = pp . Then ( i X B, % : A X 5 -> L)(a) | a e S°) is the limit of D 
and it follows in the same way as in Theorem 1.1 that F spreads this limit and 
RF > card 2A><B. 

There remains only the case F = CN,VM . Then take for A, B arbitrary 
non-void sets and put C = A V B, p = i£ , r = iB

c . Thus, (0, &D(a) : <& -> D(a) 
| a e 3°) is the limit of D and F does not dualize this limit. 
b) If the case a) does not take place then for every object a E3° there is an 
object b e 3° such that there is no morphism / : a -> b but there is a morphism 
V : b -> a . We can easily construct a chain {at \ i ey} of objects of 3 having 
the following properties: 
i) y is a regular cardinal; 
ii) Given i, j ey , there exists a morhism / : a% —> a-} iff j < i; 
iii) If c e3° then for some at there is no morphism g : c -> a%. 

Define a diagram D : 3 -> Set as follows (the sets A, A%, i Ey and the 
mappings b% : Ai -> .4, O^ • -4* -> Aj i,j ey, i >j will be determined later): 
If a e 3° and the set Ma = {j' e y \ there is a morphism / : a -> ay} is non-void 
then put L)(a) = ^U where i = sup M% if Ma = 0 then put D(a) = ^ . 
If / : a -> b is a morphism of ^ then 
i) D(l) = <$«, if D(a) = .4,, L)(b) = ,4, 
ii) L)(/) = \A if -0(a) = L)(b) = A 
iii) L)(/) = dt if L>(a) = A , D(b) = ^ . 

If s/F T^ 0 put /? = max (a, ra j /E ) > -4 = /3, f̂0 -= F(-4)> -4* = P (sup 
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card Aj) and dt, dij arbitrary epimorphisms for i > / , dijdjh = dik, $ijdj = 
= dt, da = IAt . Let (15, na : B -> D(a) \ae2°) be the limit of D . Then, 
cardB > card Ai for all t e y and, according to Proposition 1.1, cardF(B) > 
> card 2B . Let (C, oja : F L>(a) -> C \ a e 2°) be a colimit of FD . Then 
card C < sup card F(At) = sup card A\+\ < card B and therefore F spreads the 

limit of L) and Iv^ > card 2B . If F = CN,P,M then it suffices to take A = AQ , 
Aj c= At iff i >j, Ai^0 for all iey and p| At = 0 ; <3< = if , <$«; = 

= iij. Then ( 0 , &D(a) : <P -> L>(a) | a e f ° ) is the limit of D and F does not 
dualize this limit. This completes the proof. 

Theorem 3.1: Let Q) be a scheme with a weak initial object but without the 
initial object. Then F dualizes limits over Q) iff F = CM . Moreover, if S#F ¥=" 0 
then for every cardinal a there exists a diagram D : 2 -> Set such that card D(a) > 
> a for all a e 2° and F shrinks the limit of D . 

Proof: It follows from an easy observation that for any cardinal a , there exists 
a diagram D : 2—> Set such that card D(a) > a for all objects of 2), D(l) 
is an epimorphism for all morphisms of 2) and (0, &D(a) : 0 -> D(a) \ a e@°) 
is the limit of D . 

Proposition 10.1: Let ^ b e a scheme. Then 2) has the initial object iff every 
functor dualizes limits over 2 . 

Proof is evident. 

2. Limits in generalized algebraic categories 

Let us begin with the limit over the void scheme i.e. with the terminal object 
in A(F,G). 

Theorem 1.2: The category A(F, G) has the terminal object iff F = CM,& 
or G = C\ or G = Ci.# or F = CM,P,N and G is a contravariant homfunctors. 

Proof: If A(F, G) has a terminal object and F\ ^ 0, G ^ C\, G\ -^ 0 then 
analogously as in [2] we can prove that F = CM,P,N and G is a contravariant 
homfunctor. The rest is evident. 

Let us note before getting into further Lemmas that if the scheme 2 has the 
initial object then A(F, G) has limits over 2 for any choice of F, G. 

Lemma 1.2: Let 2 be a scheme without a weak initial object, let F be a 
functor such that s/F =£ 0. If either stfG ^ 0 or card G(\) > 1 then A(F, G) 
has not limits over 2. 

Proof: By Theorem 1.1 and 1.2 there exists a diagram D : 2 -> Set such that 
F spreads the limit of D and card A > a where (A, ra : A -> D(a) \ a e 2°) is the 
limit (the cardinal a will be determined later). Let b e G(\). We define COD (a): FD(a) -> 
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-> GD(a) as the constant mapping to G(pD(a))(b.) Further, define COA : F(A) -> 
-> G(A) as the constant mapping to G(PA) and finally, define D' : @ -> ̂ (P , G) 
as follows: D'(a) = (D(a\ coD{a)\ D'(l) = D(l) for every ae@°, le@m. Then 
(04, GM), *« ' (-4, co )̂ -> L)'(a) | a 6 ^ ° ) is a bound of D'. 

Assume that ((S, co«), r̂« : (5 , co«) -> D'(a) | a e ^°) is a limit of D'. 
Then there exist k : S -> A, k' : A -> S such that rak = na, na k' = T« 

for every ae@°. Hence rakk' = ra and so kk' = \A. Therefore k and F(k') 
are epimorphisms and then card S > card A, F(S) ^ U F(na) D(a). 

aeQ)° 
a) Assume that card G(\) > 1 and S$G = ^- Put a = 0. Define two mappings 
O4, o)| : F(S) -> G(S) as follows: 
coj is the constant mapping to G(ps) (b), co$(c) = G(ps) (b) 
whenever c e [j F(na) F D'(a), cof (c) = G(h) (d) otherwise. Here d e G(S), 

aeS° 
d =£ G(p5) (b). Of course, ((S, co|), 7ra : (S, co|) -> L>'(a) | a e 0°) and 
((S, co§), Tta : (S, col) "> £*'(a) I a e ^° ) a r e bounds of D' and so there are some 
mappings hi, h2 : S -> S such that h$ : (S, co )̂ -> (S, cos) and such that 
na = nahi for i = 1, 2, a e ^ ° . Thus we have k hi = k, i = 1, 2. Choose 
0 e F(-4) — U F(na)D(a). Now, using Proposition 4.1 and the fact that S$G = >̂? 

we obtain G(p<?) (b) = o>h F(k) (z) = co£ F(hi) F(k) (z) = G(hi) cos F(k) (z) = 
= G(h2) co <? F(Jfe) (s) = cof F(h2) F(&) (0) = cof F(*) (s) = d where 
z e FA — U F(ra)(D(a)), a contradiction because G(ps) (b) ^ d . 

ae@° 
b) Now assume S$G ^ <?. Put a = max (card Pj($\ card Py(y)) where 
/3 = min s/p, y = mm S/G- Let V be an infinite set, card V > card S. Put 
K = A \/ V- Choose a point c e A and define jua : X -> D'(a) such that 
//al-4 = T«, //a(^) = Ta(c) for every v eV. 

Let V#, (i,j) el X J be a decomposition of V such that card Vy = card V 
and card I = card J = card X. Choose a well ordering <^ of 1 and, for any 
limit z'o e I, put Mi9 = {Z; Z c U ^/> card(Z f] Vij) < 1, card Z = card V, 

J'EJ 

(i,j) e I X J} . Further, define Aff = U F(g) F(/3) where the union is taken over 
all epimorphisms g : X -> ft such that g(x) = g(y) whenever x,yeX — Z . 

Similarly, define M% = U G(g) G(y) where the union is taken over all epi­
morphisms g : X -> y such that g(x) = g(y) whenever x, y e X — Z. Finally, 
put Vi = U Va . It is easily seen that we can choose a mapping cox : F(X) -> 

JeJ 
-> G(X) as follows: 

cox(c) = G(px) (b) whenever c e (J P(^a) F(D'(a)). 

COX/RF is a mapping onto M £0, 
cox/My^ is a mapping onto MVi+l . 
coxlMz is a mapping onto MyiQ, Z e MtQ> io is limit. 
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It suffices to use that for every (i,j)el X J and ZeMi0, io limit we have 
card Rp = card My0 = card M$tj = card Myt = card MF

Z . (Theorems 1.1, 2 A 
and Proposition 1.1). 

Evidently, ((X, cox)> f*a : (X, cox) ~> D'(a) \ a e Q)°) is a bound of D' and 
so there is a morphism h : (X, cox) -> (S, o>8) with Tah = fia, a e@°. Thus, if 
x e A, x =£ c then the equality h(x) = h(y) implies x = y (kf is a mono-
morphism). We will prove by induction that for every i e I there is a set T, 
T c Vi, card T < card A such that for any * x eVt — T the equality h(x) = 
= h(y) implies x = y. As card X > card S > card A we will obtain card h(X) = 
= card I = card X which is imposible. Of course, My0 c G(h) G(X) and via 
Proposition 7.1 the assertion holds for / = 0 . Assume that the assertion holds 
for all i <^ i' . If i' is non-limit then these is some i" e I such that i" + 1 = i! 

and so there is a jej such that M^rj cz F(h) F(X). Then MVi, c G(h) G(X) 
and the assertion for i' follows from Proposition 7.1. If i' is limit then for every 
i<^i' there is a set Ji a J such that, for every x eVij,j eji, the equality 
h(x) = h(y) implies x = y. Moreover, card Ji = card V (Proposition 7.1). 
Hence there is a set Z, Z e Mi, with the following property: If x eZ, h(x) = 
= h(y) t h e n x = j / . So, MF

Z c F(h) F(x) and therefore Mf/V c G(h) G(X). 
Again, Proposition 7.1 yields the assertion for i' and the proof is complete. 

Convention: Denote by • the natural forgetful functor from A(F, G) into Set. 

Lemma 2.2: Suppose that F shrinks the limits over 2. If G dualizes unions 
and if for every diagram D : Q) -> A(F, G) there exists a mapping co$ : F(<P) --> 
-> G(0) such that ((0, a)0), \%{a) : (0, co<p) -> D(a) / a e 9°) is a bound of D 

then A(F, G) has limits over 2 . 

Proof: Let D : Q) -> A(F, G) be a diagram. Let (A, na : A -> • D(a) \ ae@°) 
be the limit of • D . Denote by & the set of all bounds ((X, cox), ra : (X, cox)-> 
—> D(a) E Qt°) such that for every distinct points x, y of X there exists an 
ae@° with Ta(x) ^ ra(y) . For every bound ((X, cox\ Ta : (X, CDX) -> D(a) \ 
I a e @°) there exists h : X -> A such that Ta = nah . Denote by U the union 
of all h(X) over ail bounds belonging to t% . Thus G(iA) is the co-union of all 
G(iA

{X)) . This, together with the fact that F shrinks limits over 2 , makes it 
possible to find a unique mapping cou : F(U) —> G(U) such that ((U, cou), 
7ia\U : (U, cou) —> D(a) \ a e@°) is a bound od D . One can easily prove that 
this is the limit of D . 

Lemma 3.2: Let ^ be a decomposable scheme. If card G(0) = 1 then for 
every D : Of -> A(F, G) there exists a mapping co<p : F(0) -> G(0) such that 
((0, co <p), &D(a) : (0> co<p) ~> D(a) \ ae@°) is a bound of D . If card G(0) > 1 
and F(0) ^ 0 then A(F, G) has not limits over @ . 

Proof is easy. 

Lemma 4.2: Let Q) be an indecomposable scheme. If card G(&i) G(l) = I 
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then for every D : 3) -> A(F, G) there exists a mapping co0 : F(&) -> G(&) 
such that ((&,cD0),#D(a):(@,w<p)~->D(a)lae@°) is a bound of D . If F 
shrinks colimits over the scheme 3) and card G(#l) G(l) > 1 then A(F, G) 
has not limits over S . 

Proof: If • D(a) = 0 for every a e@° then D is the constant diagram and 
evidently, there exists the required mapping. If • D(a) ^=- 0 for some a e Q) 
then take for co<z> the constant mapping to x,xeG(fti) G(\). Clearly ( ($ , co<p), 
&D(a) : (0, co&) -> D(a) | a e 3°) is a bound of D . Now, assume that F shrinks 
colimits over the scheme Q) and card G(#i) G(l) > 1 . Let D : ^ -> Set be 
a diagram which F shrinks. Denote by (A> na : A -> D(a) / a e ^° ) the limit 
of D and by (H, cra : F D(a) -> B \ a e Q)°) the colimit of FD . So, we have 
a mapping cp : B -> F(-4) such that F(jra) = 99 cra for every a G 3°. There 
exist disctinct points u, v e B with cp(u) = cp(v) and distinct points 
x,y e G(#i) G(l) . Define a diagram D' : @> -> ^4(F, G ) , D'(a) = (D(a), o>/>(a)), 
D'(/) = D(l) for every ae@°, le @m. The mapping coD(a) : FD(a) -> GD(a) is 
defined as follows: a>z>(a)(̂ ) = G(pD(a)) (xi) if cra(0) 7^ a, a)D(a)(z) = G(pD(a)) (yi) if 
ffa(#) = ^ where xi, yi e G(\) such that G(#i) (xi) = x, G(#i) (yi) = y. We 
will prove that there is no bound of D'. Assume ((Z, coz), ra : (Z, wz) -> D'(a) | 
I a e ^F0) is such a bound. Then there exist ai, a^ e Q)° and ui e D(ai), v\ e D(a£) 
with crGl(ui) = u, aa2(vi) = v. Further, there is a ip : Z —> A such that 
ra = na\p for all ae3° and therefore we obtain successively F(ra .) (ui) = 
F(tp) F(na) (ui) = F(ip)cp aa(ui) = F(ip) cp(u) = F(\p) cp(v) = F(ip)cp aai(vi) = 
= F(W)F(na2)(vi) = F(ra2)(vi). 

On the other hand cozF(ra^) (ui) = G(rai) coD(a)(ui) = G(ra,) G pD(al)(xi) = 
= G(pz) (xi), cozF(ra2) (vi) = G(ra2) o)D(a2)(vi) = G(ra2) G(pD(a2)) (yi) = 
— G(pz) (yi) - a contradiction. 

Lemma 5.2: Let Q) be a scheme with a weak initial object a0 . If F shrinks 
the non-void limits over Q) and G does not dualize unions then A (F, G) has 
not limits over 3 . 

Proof: Let D : 3 -> Set be a diagram such that F shrinks the colimit od D . 
Denote by (A, na : A -> D(a) \ a e 3°) the limit of D and by (C, cra : FD(a) -> 
-> C I a G .0°) the colimit of FD . Let {Hi, B% c -B | a e I} be a system of 
subsets of H such that G does not dualize its union. Define a diagram D' : Q) -> 
-> Set, D'(a) = D(a) V - 5 , £>'(/) - D(/) V 1H . Then (,4 V B> ™a V 1H : A ->> 
-> D'(a) I a G ^ ° ) is a limit of D'. Denote by ( C , cr̂  : FD'(a) ->C'\ae®°) 
the colimit of FD'. First we will prove that F shrinks the colimit of D'. 
There exist x,y eF D(a0) such that F(jtao) (x) = F(nao) (y) and crao(x) ^ aao(y). 
Choose 990 : D'(a0)-> D(a0\ cpx : A V B -> ^ such that ^i^f i !) = lD(<z0), 
9̂ i ^ v u = l^> ^0^0 = ^1(^0 V 1H) . Then F^o) (*) ^ F(q>o) (y) and 
< ( * ) ^ <4(y) but F(7rao V 1B) F(cpo) (x) = F(.rao V 1H) F(^o) (y ) . Hence F 
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shrinks the colimit of D'. By Proposition 9.1, there are u,veG(A V B) such 
that G(i%B) (u) = G(i%B) (v) and G(tfVB) (u) ^ G(i^yB) (v) where U = [) Bt. 

iei 
Further, there are ua, vaeG D'(a) such that G(na) (ua) = u, G(na) (va) = v. 
Hence we can define a diagram D" : & -> A(F, G) such that D"(a) = (D'(a), o)D'(a)) 
where o>D'(a)(z) = ua if a'a(z) ^ iiyB<*a0(x), (oD'(a)(z) = va otherwise, D"(l) = 
= D'(l). Suppose ((P, cop), r a : (P, coP) -> D"(a) \aeS°) is the limit of D". 
Then, for every i e I, ((Bt, mB), (na V 1B) i%B : (Bt, (oBi) ~> D"(a) \ a e 3f°) 
with COB. the constant mapping to G(iA\B)(u) is a bound of D". As a conse­
quence, U cz P, but this is not possible. 

Lemma 6.2: Let ^ be a decomposable scheme. If F = CN>P>M with M -7-= 0 
and if G does not dualize unions then ^4(P, G) has not limits over 3>. 

Proof: Take a system {^, Ai a A \ i e 1} of subsets of 4̂ such that G does 
not dualize its union. Let D : S -> Set be the constant diagram to A . Denote 
by (B, na : B -> L>(a) | a e ^ 0 ) the limit of D . Clearly, B = AJ where J is 
the set of all components of Q>. Let A • A -> H be the inclusion mapping to 
the diagonal. There exist w ^ e G(A) such that G(#*) (u) = G(if) (v) but 
C ( ^ ) (u) ^ G(iA) (v) where U = [j Ai. Clearly G does not dualize the union 

iei 
of the system {Bi, Bi cz B\i el} where Bi = A (At) . It holds 
G(/ |0G(^ a i) (u) = G(iI0 G(7iai) (v) = G(i$) G(na2) (v) = G(if) G(jra2) (u) for every 
ai, a2 6 ^ ° and i e I. On the other hand, if U' = [j Bi then G(iB) G(7rfl )( u) 7^ 

•6/ 
7^ G(ig') G(nax) (v). Choose a component I£ of S and define COD (a) : FD(a) -> 
-> GD(a) such that coD(a) is the constant mapping to u if a <fc K, o)D(a) is the 
constant mapping to z> otherwise. Then, putting D'(a) = (D(a), a>D(a)\ D'(l) = 
= D(l), we obtain a diagram D' : S -> ^(F , G ) . It is easily seen then all 
((Bi, OJBI), na if : (Bt, coB) -> D'(a) \ a e S°) are bounds of D'. If ((P, (oP), 

ea : (P, (op) -> D'(a) | a e J®°) is the limit of D' then U' cz P and this is a 
contradiction. 

Theorem 2.2: Suppose F ^ CN,P,M, G 4= CM? 03 G 7-= Ci and suppose ^ is a 
non-void scheme. 
1) If S has not a weak initial object then A(F, G) has not limits over S . 
2) Let § be a scheme with a weak initial object but without the initial object. 
If F(&i) is an epimorphism then A(F, G) has limits over ^ iff G dualizes 
unions and card G(&i) (I) = 1. If F($i) is not an epimorphism then A(F, G) 
has limits over 3) iff G dualizes unions and G(0) -= 1. 

The proof follows from the previous Lemmas. 

Examples: If P ^ CN,P,M> G 7-- CM,<P> G 7-= C I then ^4(F, G) has not products 
nor pullbacks. If G is a contravariant hom-functor then A(F, G) has equalizers. 

Theorem 3.2: Suppose F = CN,P,M, N 7-- 0 . 
1) If ^ is a non-void indecomposable scheme without the initial object then 
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A(F, G) has limits over Q) exactly in one of the following cases: 

a) The mapping p : M -> N is a bisection 

b) The mapping p : M ~> N is an epimorphism and card G(#i) = T 

c) G(0) = 1 

2) If @ is a decomposable scheme then A(F, G) has limits over @ iff G(0) = 1 

and G dualizes unions. 

The proof follows from the previous Lemmas. 

Theorem 4.2: The category A(F, G) is complete (has all limits) iff one of the 

following cases takes place: 

1) F = C0 . 

2) G = Ci . 

3) F = CM,#, M ^ 0 and G(&) = 1 . 

4) G = Ci,# . 

Proof is easy. 
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