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The Infinite Minimal Rich Monoid 

R. G R E G O R 

Depar tment of Mathematics, Charles University, Prague*) 

Received 29 January 1976 

T h e question is studied, which monoids of unary operations are rich enough for the cor­

responding categories of algebras to contain any algebraic category. T h e paper presents an example 

of the infinite monoid minimal in the class of all monoids with this richness-property, ordered by 

factorization. 

B cTaTbe HCCJie^yiOTCH MOHOHAM yHapHbix onepamiH o6jia,iiaiom;HX cjieAyiornnM CBOMCTBOM 

«6oraTocTH»: cooTBeTCTByiomaH KaTeropHH yHapHbix ajireSp coAep>KHT jno6yio ajire6paHHecKyio 

KaTeropHio. noKa3biBaeTcn npHMep 6ecKOHeHHoro MOHOHTra MHHHMajibHoro B KJiacce Bcex MO-

HOHAOB o6jiaAaiouiHx OTHM CBOHCTBOM, ynopHAOHemibiM (J)aKTopH3auHeH. 

Clanek se zabyva otazkou bohatosti monoidu unarnich operaci z hlediska vnofovani odpovi-

dajicich kategorii algeber. Monoid je nazyvan bohatym, jestlize pfislusna kategorie algeber obsahuje 

kazdou algebraickou kategorii. Je uveden pfiklad nekonecneho monoidu minimalniho ve tfide 

vsech bohatych monoidu uspofadane faktorizaci. 

0. In t roduct ion and conventions 

In the present paper the question is studied, which monoids of unary operations 
are rich enough for the corresponding categories of algebras to contain any algebraic 
category. 

First, let us recall some notions. A category C is said to be algebraic if there 
exists a full embedding of C into some category of algebras and all their homo-
morphisms. A category is said to be binding ([2]) if every algebraic category can 
be embedded into it. A small category c, e.g. monoid, is said to be rich ([1], [3]) 
if the functor category Set0 is binding, otherwise c is called poor. 

It has been shown in [4] that each cardinal number greater than four is the 
cardinality of some rich monoid. Nevertheless, a question arises whether infinite 
rich monoids bring anything essentially new, i.e. whether the property of richness 
of monoids is not already always somehow based on some substantially finite feature 
of their structure. The inher i t ing" of richness of monoids from their factor-
monoids suggests us the natural exact formulation of this question, viz., whether 

*) 186 00 Praha 8, Sokolovska 83 

23 



every infinite rich monoid has a finite rich factormonoid. There is given a negative 
answer to this question in this paper by showing an example of an infinite rich 
monoid (moreover: with only two generators), whose every proper factormonoid 
is poor, i.e. of the infinite monoid minimal in the class of all rich monoids ordered 
by factorization. 

-mL-.-Am _ _ 

£<3)_ MQl \\F131  

Fig. L 

If Qi, , . . , Qk are some equalities of words in the alphabet {cp, ip}, then 
-MQP • • • > Qk denotes the monoid with two generators 99, \p fulfilling the identities 
Qu ••• y Qk- The identity (pztp — xpq) is denoted by P. We do not distinguish 
between monoids and one-object categories as well as between the functor category 
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SetMQXi...,Qk and the category of algebras with two unary operations <p, xp 
fulfilling the identities Qi, , Qk . 

In these terms, the aim of this paper is to show that the monoid M = 
= Afp,V3=vt2=f7)2V2 is an infinite minimal rich monoid. 

If C is a category, then C°, Cm, C(a, b) denote the classes of all of its 
objects, morphisms, morphisms from a to b (a, b e C°), respectively. Z denotes 
the set of all integers, jY the set of all positive integers. The restriction of the 
mapping <p on the set X is denoted by <p\X, the set difference of sets X, Y 
by X \ Y . The disjoint union of sets is denoted by V . 

I. Richness 

1.1 Proposition: The monoid M = Mp^y,*^*^ is rich. 

Proof: Define the small category J by 
J° = {u, v} V jV, J(i + 1, i) = {yi+hi} for all i e N, J(l, u) = {a}, J(l, v) = {£}, 
J is thin and its only morphisms are identities and compositions of morphisms 
oc, /3, yt+iti for ieN if they make sense. 

Since J is rich according to [3], it is sufficient for us to construct a full 
embedding 

0 : SetJ -^ SetM , 
Denote (see Fig. 1) 

X = {a;ieZ}v {af,j > 0} V {bk;k>0}v {dr,l>0} V 
V {emyn'> m,neN} 

(i.e., X is considered as a set of mutually different elements). 
For F e (SetJ)° define the mapping &F : X - • Set0 by 

Фғ(a) = {a} for iєZ, 
Фғ(ai) = {aj} for У > 0 , 
Фғ(bк) = {bк} for k = 0, 1, 
Фғ(d0) =F(u), 

(1) Фғ(di) = F(ľ) for lєN, 
Фғ(b2) = F(v), 
Фғ(h) = F(\), 
Фғ(b2i) = Фғ(b2i+i) = F(i) for i > 2, 
Фғ(em,n) = F(m) for m, n є N, 

(Фғ is, in fact, a collection of sets with the index set X), and put 

Ф(F) = (x, <p, yo, where X = V Фғ(õč), 

and the operations <p, xp are defined by 

<p(a) = a -i for ieZ, 
<p(ai) = ai -i for ieN, 
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(p(a0) = 9<b0) = a\, 
(p(bi) = b0 , 

9<0E(bj+i) ) s ®F(bj) for / e AT, (p(0F(b2)) = {bi} , 
p | 0F(b3) = F(/3), 
(p | ^E(b2i) = F(yu -1) for t > 2, 
99 | &F(b2i+i) = idp(t) for / > 2, 

(P(0F(do)) = {c0}> 
(p(0F(dj+i)) s <2>p(d,0 for / > 0 , 99 | (&F(A) = -F(a), 

9? i # F ( A ) = F(yi,i-i) for i > 2 , 
(p(®F(ei,i)) ^ &F(b2i) for t'eAT, 
(p(0F(eij)) G #E<^, j-i) for f ejY , / > 2 , 
? I 0TKO = F(P) > 
9? I ®F(eij) = fdF(i) for i,jeNy i. j ^ 1 , 
^(cs) = a0 for 2: < 0 , 
tDCCO = a2»; for ieN, 
y)(ai) = ai for f > 0 , 
y)(0F(do)) = {b0} 
y>(<PF(bi)) = {ai} for f > 0 , 
yj(0F(di)) S 0E(b2O for f e jV , y; | 0^(di) = F(p), 

V I &F(di) = idF(i) for i > 2 , 
W(@F(ei,j)) = {a2j+i} for i,/ e AT. 

It is easy to verify that 0(F) e SetM . 
If F' e (Set')", x e (Set^T, r:F^F',r = {V; jej°) , 0(F) = (X, <p, W\ 

0(F') = (X'y 9/, \p')y define the mapping 
0(r) : X -> X' by 
0(r) I S = ids where S e K, S = {at; i > 0} V {bo, bi} V {ckl k e Z) e X, and 
<P(T) (0E(x)) c 0F'(x), 0(r) I 0p(Jc) = %i for x e X \ S, 
where j ej° is by (1) uniquelly determined by the condition 

0F(x) = F(j). 

The mapping 0(r) is obviously a homomorphism of algebras (X, 99, y), 
(K ' , (p'y ip'). Now, we shall prove that the functor 0, which is evidently 1—1, 
is also full. 

Let fe(Se^y\ f : 0(F) -* 0(F')> 0(F) = (X, <p, yj) = A, 
0(F') = (X'y (p'y ip>) = A'. 
(i) The point ai is the only fix point of the operation t/j? hence f(a\) = ai . 
(ii) We have f(a0) = f(p(ai) = <p'f(ai) = a0 . 
(Hi) Wre have y)(c0) = a0y f(a0) = a0, thus ip'f(c0) = a0 . Hence f(c0) = c-n 

for some integer n > 0. With regard to the commutating of / and 9^+2 
we have either f(c2n+i) = C2n+2 or f(c2n+i) e 0F'(dn+i)y and either 
f(0p(dn)) -= 0F'(do) or f(0F(dn)) = {a} . 
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(iv) If f(c2n+2) e &F'(dn+i) , then 
/(<24w+4) e <I>F'(b2n+2) (commutating of / and ip), 
/y(ei,2»+i) = /(a4^+3) e &F'(b2n+i) (commutating of / and <p) . 

But (ip')"1 (<&F'(b2n+i)) = 0 , so that the formula 

ff(ei,2n+l) = y>ff (ei,2n+l) 

cannot hold, which contradicts / being a homomorphism. Hence, 

(2) f(C2n+2) = C2n+2 , 
f(a^n+4) = a/in+A 

(v) If f(0F(dn)) = {a} , then 

f(<Z>F(b2n)) = W 
f(0F(en+l,2n+2)) = {#2^+6} 

/(«4w+5) = #1 

/((24^+4) = ao 

(commutating of / and ^) 

(commutating of / and xp), 
(commutating of / and <p2n), 
(commutating of / and ip) . 

(commutating of / and \p). , 
(commutating of / and cp2n + 4 ) , 
(commutating of / and \p), 
(commutating of / and <p) . 

According to (2) and the condition n > 0 the case (v) cannot take place, so that 
we have 

f(®F(dn)) <= ®F'(do) • 
(vi) If n ^ O , then 

f(®F(b2n)) = {bo} 

f(®F(en,2n)) = £ &F'(fan) 

(3) f(ann+i) = a\ 

But from (2) we obtain 
(4) f(a^n+i) = a2n+i (commutating of / and <p3) . 
From (3) and (4) follows n = 1, which implies 

f(cn) = cn for all neZy 
f(0F(di)) <= @F'(di) for all i > 0 , 
/(a,) = a<, /(0E(bO) ^ <P/(6<) for all x > 0 , 
f(&F(etj)) s $F'(ei,i) for all Uj e.N. 

For y e J ° define the mapping T-* : FO) -* -^'O) ^y 
T « = / | <Z>E(do), T * = / | 0E (b 2 ) 5 

Ti = f | 0 F ( ^ ) for all t e W . 
Then T = {T ; j e J0} is a natural transformation from the functor F to the 
functor F' and we have 0 ( T ) = / . The proof is concluded. 

2. Minimality 

In the first two lemmas we formulate some properties of the monoid Mp 
occasionally used in the sequel. 

2.1. Lemma: Let m, n be positive integers. Then for the elements of the monoid 
Mp we have %pm<pn pn.2m rn 

Proof: Induction after m , 
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2.2. Lemma: Each element e e Mp can be uniquelly written in the form 
k 

k k S CLf, 

e = <pByA. If e -= 9?**^* . . . gAy-h, then A = 2 ai> B = 2 (b j . 2,'s=-/+1 ) ; 
(^4, B, a$, b^ be non-negative integers). *=1 J==1 

Proof: Uniqueness is obvious, existence by induction after k . 

2.3. Lemma: Let (X, <p, yj)e(SetMp)° . 
a) Let K be a ^-component of the algebra (̂ T, 99, y). Then there exists a 99-com-

ponent L of (X> <p, tp) such that y>(K) e L (i.e., y preserves ^-connec­
tedness). 

b) Let X 0 e i \ be a 99-cycle. Then L has a non-empty cyclic part L0, 
y>(K0) e L0 e L, and 2 card (X0) is divisible by card (LQ) . 

Proof: Easy calculation employing 2.1. and 2.2. 

2.4. Lemma: Let every 99-component of the algebra (X, 99, y>) e(SetMp)° have 
a non-empty cyclic part. If <p is not 1—1, then (X, 99, yi) has an endomorphism 
with the same property. 

Proof: The mapping obtained by the obvious winding up of every 99-component 
on its cyclic part is evidently a 99-homomorphism, which is not 1—1. Its being 
a y-homomorphism follows from an easy calculation according to 2.3.b). 

2.5. Notation: Denote by k the subcategory of Set with two objects a' = {0}, 
a = {1,2,3} and all 1 —1 mappings between them. Denote by / : a' -> a, g, h : a —> a 
the mappings such that /(0) = 1, *(1) = fi(l) = 2, g(2) = R(3) - 1, g(3) = 
= E(2) = 3. Then g, h is a set of generators of k(a, a) and we have 

fi*=g2 = ida9 J^KJ = gJ. 

2.6. Proposition: The monoids a) M = Mpi<pq^\ and 
b) M = Mp^^y, are poor for all positive integers q. 

Proof: If not otherwise stated, both cases a) and b) are treated simultaneously in 
2.6. — 2A2. 

A. It will be sufficient to prove that the algebraic category k from 2.5. cannot 
be fully embedded into the category C = SetM. Thus, let us suppose that there 
exists a full embedding 

0:k^C 

Denote 0(a') = A' = (Xf, v \ y>'), 0(a) = A -= (X, <p, y ) , # ( / ) = f, 
0(1) == g , 0(fi) = h . Then 

(*) h3 = idx = g2, 

so each endomorphism of A is an isomorphism. 
Denote by W the set of all xeX such that h(x) = #(*) but x, h(x), h2(x) 
are mutually distinct. 

2.7. Lemma: W ^ 0 . 
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Proof: Since / =fi Rf, we have / ^ hf. Thus there exists y eX' such that 
W(y) ^f(y)' P u t x=f(y). We prove x e W . Since hf = gf, we have g(x) = 
= h(x) . If either h2(x) = h(x) or h2(x) = x , then necessarily h\x) = h(x) . 
This is a contradiction because h\x) = * , while we have h(x) =£ x . 

B. A finite sequence p = <x0, x\, ... , xmy, m > 1, of points of X is said to 
be a path in A from x0 to %m if for any i e {0, 1, . . . , m—1} one of the following 
cases takes place: 

a) (p(xi) = Xi+i, y) ip(xi) = Xi+i, 
P) (p(xi+i) = Xi, 6 ip(xi+i) = Xi . 

An m-tuple of symbols a, /3, y, d is said to be a type of the above path if its i-th 
place denotes the case, which happens for Xi - i , Xi in p . 

We say that p is a (p-path or ip-path or right path or left path if its type contains 
only the symbols a, ft (or y, b or a, y or /?, <5, respectively). A path that is 
neither a 99-path nor a ^-path is called a mix^d path. A subpath of a path <x0, , 
xm) is an arbitrary path <xs, x$+i, ..., *y> with 0 < i < j < m . 

A path is called reduced if it does not contain a subpath of the type </?, a ) 
or <d, y ) . Clearly, for each path from x0 to xw we can construct a reduced 
path from x0 to xw . 

C. Define a relation ~ on the set X as follows: 
z ~ z' *-* there exists a path in A from 0 to z' 
~ is an equivalence; denote by L(z) the set of all z' eX such that #' ~ ^ and 
by ^ * z' the fact that z'$ L(z) . 

Let us suppose x 00 ft(x) for some x e W . Since h is an isomorphism, 
then h(x) * h2(x) * x. Then L(x), L(h(x)), L(h2(x)) are disjoint. Thus, the 
mapping : X -> X such that 

F(z) = h(z) whenever z e L(x), 
F(z) = z otherwise 

is an endomorphism of the algebra A, which is not 1—1. This contadicts to (*). 
D . Consequently, for any point x e W there exists a path, say, p = 

= <x = x0 , . . . , xm = h(x)y from x to h(x), we may suppose p to be reduced. 
Then, h(p) = <h(x0), ... , h(xm)>, h2(p), g(p) are reduced paths from h(x) to 
h2(x) from h2(x) to x, from ^(JC) = h(x) to x, respectively. Since g, h are 
isomorphisms, all the paths py h(p), h2(p), g(p) are of the same type. In the 
following discussion we show that no type is posible for them. Thus, our 
assumption that k can be fully embedded into C leads to a contradiction. 

In the sequel, for given x e W p is always a reduced path from x to h(x), 
U denotes the set {x, h(x), h2(x)}, q is a positive integer. 

2.8. Lemma: For any x e W p is neither right nor left. 

Proof: Let us suppose that p is a right path. Let n be a polynomial in the 
operations cp, ip determined by the type of p. Then h(x) = n(x), h2(x) = 
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= gh(x) = g2(x) = x, which is a contradiction. If p is a left path, the proof 
is analogous. 

2.9. Lemma: For MP)(pq^i and any x e W , no path p is a 99-path. 

Proof: A 99-path p would have to be of the type <a, . . . , a, / ? , . . . , /3> with 
^ s _> 1- which contradicts to <p's being 1—1. r-times s-times 

2.10. Lemma: For MP^qw=w and any xeW, no path p is a 99-path. 

Proof: Again, the type of such p would have to consist of r oc's followed by 
5 /3's, with r, 5 > 1. 

a) Let r = s = 1 , 
i.e. p = <x, x0, h(x)} , where x0 = <ph(x) . For ueU denote 

00 

K(U) = u (?>*r(M) • 

The sets K(u), ueU are mutually disjoint, for otherwise there would exist a right 
or left path from x to h(x) . 

If xp(w) e K(u) for some weX, ueU, i.e. <pkip(w) = u for some integer 
k > 0, then, using the identity <p<i\p = \p (k + 1) times, we obtain 

w -=- (pk\p(w) = (pk<p(k+1)<iy)(w) =<pk(i +Q-1(p* +1xp(w) = oJAr^+^"1(x0) 
(evidently kq + q — 1 > 0), and since 

h(x0) = h<p(x) = <ph(x) = x0, 
we have 

h(u) = A^ff+ff-^o) = (pk^+(i-1h(xo) = u, 

which is a contradiction. Consequently, xp-l(K(u)) = 0 for all u e U, the sets 
K(u) are closed under proimages of both <p and \p and under images of <p and 
^ and under images of <p with the exception of the point u, for which we have 
<p(u) = Xo . The mapping F : X -> X defined by 

F(z) = h(z) whenever z e K(x), 
F(z) = z otherwise, 

is evidently a 99-homomorphism of the algebra A, which is not 1—1. To verify 
F's being also a ^-homomorphism it is sufficient to prove that for z e K(x) we 
have Ftp(z) = ipF(z), i.e., since xp(z) $ K(x), ip(z) = iph(z) . Let z e K(x), 
<pk(z) = x, k > 0 . Then 

<pkh(z) = h(pk(z) = h(x), 
tp<pk +1(z) = ^(x0) = y><pk +1h(z) , 
<p2k+2yj(z) = ^(^o) = <p2k +2 iph(z) . 

But the identity <p<i\p = \p implies that both ip(z) and iph(z) are elements of 
99-cycles, hence they coincide. Thus, the mapping F is an endomorphism of A, 
which is not 1—1 - a contradiction. 

b) Let r = 5 > 1 . 
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Put y = (pr~l(x). Sinde h(p) are of the same type, we obtain h(y) = (pr~xh(x) = 
= g(y) and (p(y) = ^h(-v). Since p is reduced, y ^z h(y). Thus / v e W and 
there is a path of the type <a, /?> from y to h(jy), which contradicts to a). 

c) Let r > s > 1 . 
Put v = OJS(X) . Since h(p) and #(p) are of the same type as />, we obtain h(y) = 
= (psh(x) = g(y) . If y = h(y), then <oc, . . . , a, / ? , . . . , /T> is the type of a path 

s-times s-times 

from x to h(x), which has already been excluded. Thus, y ^ h(y). But then 
y e W and there is a right oj-path from y to A(j!), which contradicts to 2.8. 

The remaining case 5 > r > 1 is excluded analogically as c). 

2.11. Lemma: For any xeW, no path p is a t/j-path. 

Proof: The type of a ^-path p would have to consist of r y's followed by s d's, 
with r, s > 1. It will be sufficient to exclude the case r = s = 1, the rest being 
quite analogous to 2A0.b), c), d). Thus, suppose that p is of the type <y, <5>, i.e. 
p = <x, x0, h(x)}, where x0 = f(x) = tph(x). Clearly h(x0) = x0 . For 
u e U U {*o} let K(u) denote the (^-component of the point u, K'(u) = 

00 

— U (wO~X^(u)) • The sets K(u), ueU [} {x0} are mutually disjoint for otherwise 
7 = 1 

there would exist a 99-path from x to h(x), which contradicts the previous two 
lemmas. 

1) We prove that K'(u{) f] K'(m) = 0 for ui,u2 e U, ui 7^ uz. Let us suppose 
that there exists a point z e Kr(ui)f] Kr(uz), ui, u2 e U, ui -7-= u2, i.e. ipm(z) = 
= (pk(ui) and ^C^) = (pl(uz) for some m, n > 1 and k, / > 0 . The assumption 
m = n leads to a contradiction with the disjointness of K(u±) and K(u2), so we 
may suppose m < n. Thus, by lemma 2.L we have 

(pi(u2) = \pn~m(pk(ui) = ipn~m-1y)2kip(ui) = yn-m-1992*(x0) , 

denote the point by x i . h(j!0) = xo implies h(xi) = xi, so (plh(uz) = h(pl(w>) = 
= h(xi) = xi. But the resulting formula oj*(u2) = (plh(u2) means that there exists 
a 99-path from u2 to h(u2) and consequently also from x to h(x) — a contra­
diction. 

2) For ueU put FT"(u) = K'(u) \j K(u). By 2.3.a) we have <p-\K"(u)) <= 

s *c"(u), <p(K"(u)) s *:"(u), v ~ W M ) = ^'(«)> so y(^'(«)) e *"(«)> 
y)(K(u)) c K(x0). Thus, the set K"(u) is closed under the forming of images 
and proimages in both (p and ^ with the exception of K(u) e K"(u), which 
is mapped by ^ into K(x0). The mapping F : X -+ X defined by 

F(z) = h(z) whenever z e K"(x), 
F(z) = z otherwise 

is clearly a 99-homomorphism of A, which is not 1—1, for K"(u)>ueU are 
disjoint and isomorphic as quasialgebras with a complete unary operation (p and 
a partial unary operation ip. To prove H's being also a ^-homomorphism it is 
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sufficient to prove that Fip(z) = ipF(z) for each z e K(x). Let <pl(x) = <pk(z) 
for some k, I > 0. Then we have 
(i) <p2kFip(z) = ip2kip(z) = ip<pk(z) = ip<pl(x) = ip2l(x0), 

<pkF(z) = <pkh(z) = h<pk(z) = hq>l(x) = 9^h(%) , so tha t 

(«) <p2kipF(z) = ip<pkF(z) = ip<plh(x) = <p2l(x0) . 

But both the points Fy>(s) and F(#) are elements of 99-cycles, so z) and («) 
imply their coincidence. Thus, F is an endomorphism of A, which is not 1—1 
— a contradiction. * 

2.12. Lemma: For any x e W, no path p is a mixed path. 

Proof: 1) Maximal (as to their length) left (or right) subpaths of an arbitrary 
path p' are called left (or right, respectively) blocks. A left (right) block is said 
to be ordered, if it does not contain a subpath of the type <<x, y> «<5, /?>, respectiv­
ely). By 2.2. we may replace every block by the ordered block with the same ending 
points. The decomposition of a path p' on left (A) and right (o) blocks determines 
a finite sequence of symbols A, 0 called the block type of p'. The notions 
of a subtype and of a length of a block type are defined in an obvious manner. Every 
subtype of the block type of p' determines obviously a subpath p" of p'. 

2) Now, let p be a mixed path from x to h(x), w e N be a length of its 
block type, all blocks of p are ordered. If the block type of p has a subtype 
<A, o>, denote by p0 the subpath determined by this subtype. Then p0 must 
be of the type 
a) <<5, . . . , <5, a, . . . , a> or b) </3, . . . , /?, <5, . . . , <3, a , . . . , a> or 
c) </3, . . . , /?, y, ..., y> or d) </?, ... , /?, 7, ... , y, d,..., <5> . 

If a) is the case, i.e. p0 = (ipr(a), . . . , ip(a), a, <p(a), ..., <ps(a)} for some 
r, s > 1, a eX, then we replace p0 by 
pi = <y>r(a), <pipr(a), ..., <ps2ripr(a) = ipr<ps(a), ..., ip<ps(a), <ps(a)} 

of the type <a, . . . , a, <5,..., <5> (see 2.1). 
If b) is the case, i.e. p0 = <9?^r(a), ..., a, ..., <ps(a)} for some r, s, t > 1, 

a eX, then we replace p0 by 
p\ = (cptyi^a), ..., ipr(a), ..., <p<2ripr(a) = ipr<ps(a), ..., <ps(a)} 
of the type </3, . . . , 0, a , . . . , a, <3, . . . , <3> . 

For c) and d) being the case we proceed symmetrically. 
After forming a reduced path with ordered blocks from the path obtained we 

obtain a path p2 from x to h(x), whose block type is <O, A> if n = 2, or has the 
length less then n if n > 3. After a finite number of such procedures we obtain 
a path p3 from x to A(x), which is left or right — a contradiction with 2.8., 
or is of the block type <o, X). 

3) Thus, let us suppose that 
p3 = <*, y(*) , . . . , ^ w ( x ) , . . . , <pkipm(x) = <plipnh(x), ..., ipnh(x),...,h(x)} 

for some k, l,m,n>0, (k + m) (/ + n) > 1; we may suppose m>n. The 
assumption ^ ( x ) = ipnh(x) leads to a contradiction with the previous lemma. 

32 



Consequently, yjn(x) e W, so that we may suppose n = 0. Now, the assumption 
m = 0 would lead to a contradiction with 2.9. and 2.10., so we have 

p3 = <x, ..., y)m(x), ..., <pkyjm(x) = <plh(x), ..., h(xj> for some m,l>\, 
0 < k < q. Then />4 = <*, . . . , y)m(x) = <pQy)m(x) = <pl +<*-kh(x), ..., h(x)} 

is a path from x to h(x) of the type <y, . . . , y, ft, . . . , ft} . 
Put t = l + q — k. Then h(p4) = <h(x)> . . . , y^AO*) = oj*h2(x), . . . , h2(x)>, 
g(p4) = <h(x), . . . j y)mh(x) = < (̂.x:), . . . , x>. Thus, there exists a <p-path p5 = 
= <x, . . . , ^(x) = <p%2(x), .., h2(x)} from x to h2(x), so that h(p$) is a 9?-path 
from x to h(x), which is a contradiction with 2.9. and 2A0. 

This concludes the proof of 2.6. 

2.13. Proposition: The monoid MP)(pn+q=(pn is poor for all integers n > 0, q > 1. 

Proof: The small category k from 2.5. cannot be fully embedded into the 
category SetMp,g>n+«=<pn, for by 2.4. each such embedding must factor through 
SetMpiq>q=i, which contradicts to the proof of 2.6.a). 

2.14 Proposition: The monoid M = Mp^n+q^^^n^ is poor for all integers q > 1, 
n > 0 . 

Proof. For n = 0 the statement concurs with that of 2.6.b). Suppose that M 
were rich for some n > 0. Let k be the small category defined in 2.5., let 
0 : k -> SerM be a full embedding, &(a') = (X', <p', yj'), 0(a) = (X, <p, y)). If 
both <p and <p' are 1—1, then 0(k) e SetMp3<Pqw=w, which contradicts to 2.6. 

Hence, let us suppose that e.g. <p is not 1—1. Denote by X the set of all 
<p~components of (X, <p, y)). By 2.3.a) ip preserves 99-connectedness, so that the 
formula _ 

\j/(K) 3 y)(K), KeX 

defines the mapping \p : X -> X . 
Let KeijJ(X). Then the identity <pn+(iy) = <pny) implies that K has a 

non-empty cyclic part. Denote by fK'-K-^K^X the obvious winding up of 
K on its cyclic part. For K e X \ \j/(X) the mapping f# : K-> X is defined 
by fK = (pnq ! K. The mapping F : X -> X, F = [J fa is an endomorphism 

KGX 

of the algebra (X, <p, yf), which is not 1—1. This contradicts the supposition 
of the full embedding of k, whose every endomorphism is an isomorphism. 

2.15. Lemma: The monoid Mi = Mp^^m^^n is a factormonoid of the 
monoid M% = Mp,(pi+2n

(pn==(pi+2my)n for all integers k, l,m,n> 0. 

Proof: Using the identities defining M\ we have 
cpl+2n yn = (plyny = (pJCyniy = (pk+2^yjm = yl+2™yn m 

2.16. Proposition: The monoid MP)(pkxpm=(pi is poor for all integers k, I > 0, m > 1. 

Proof: follows from 2.13. and 2A5. 
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2.17. Proposition: The monoid MP)fp\-wm._.._-yiy, is poor for all integers &, / > 0, 

*n > 2 . 

Proof: 2A4 and 2.15. 

2.18. Proposition: The monoid M p . ^ - - ^ 8 is poor. 

Proof: Suppose that there exists a full embedding 
0 : k -* SetMpw^^y,*, 0(a) == (K, 95, ^ ) , #(a ') = (Xr, cp', y>') . 
Then either ip2 : X -> X is an endomorphfem of the algebra (X, cp, yi)> which 
is not 1—1, or t//2 : X1 —> X' has the same property, or &(k) c SetMp,<p=<p* — 
a contradiction in any case. 

2.19. Proposition: The monoid MpyV*=q)ip* is poor. 

Proof: It is a factor monoid of the monoid from 2A8. 

2.10. Theorem: The monoid M = M p ^ ^ . - ^ v is rich and each of its proper 
factomonoids is poor. 

Proof: 1. Richness see 1.1 
2. The monoid M has just the following distinct elements: 

1, <p, cp2, cp3, . . . 

y>, <pip, <p2y), (p3yy . . . 

y ) 2 , (py)2 . 

Consequently, the poorness statement follows from 2.D., 2A4., 2A6., 2.17. and 
2.19. 
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