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The Infinite Minimal Rich Monoid
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Department of Mathematics, Charles University, Prague*)
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The question is studied, which monoids of unary operations are rich enough for the cor-
responding categories of algebras to contain any algebraic category. The paper presents an example
of the infinite monoid minimal in the class of all monoids with this richness-property, ordered by
factorization.

B craThe mMcCenyIOTCA MOHOMIBI YHAPHBIX ONEpaluil 06MafaomuX CIeAYIONUM CBOKCTBOM
«BOTaTOCTH» : COOTBETCTBYIOIIAs KATErOPHs YHAPHBIX anre0p COAEPIKUT JIIOOYIO anredpanuecKyo
Kareropuio. ITokaspiBaeTcst mpumep OSCKOHEWYHOTO MOHOMA MHHHUMAJIBHOIO B KJIAcCe BCEX MO-
HOUJOB O0JIAJIAIOIINX 9THM CBOMCTBOM, YIIOPSIAOYEHHBIM (haKTOpU3aLHeit.

Clanek se zabyva otiazkou bohatosti monoidt undrnich operaci z hlediska vnofovani odpovi-
dajicich kategorii algeber. Monoid je nazyvin bohatym, jestliZe pfislu$nd kategorie algeber obsahuje
kazdou algebraickou kategorii. Je uveden pfiklad nekonedného monoidu minimélniho ve tfidé
v§ech bohatych monoidt uspofddané faktorizaci.

0. Introduction and conventions

In the present paper the question is studied, which monoids of unary operations
are rich enough for the corresponding categories of algebras to contain any algebraic
category.

First, let us recall some notions. A category C is said to be algebraic if there
exists a full embedding of C into some category of algebras and all their homo-
morphisms. A category is said to be binding ([2]) if every algebraic category can
be embedded into it. A small category ¢, e.g. monoid, is said to be rick ([1], [3])
if the functor category Set¢ is binding, otherwise ¢ is called poor.

It has been shown in [4] that each cardinal number greater than four is the
cardinality of some rich monoid. Nevertheless, a question arises whether infinite
rich monoids bring anything essentially new, i.e. whether the property of richness
of monoids is not already always somehow based on some substantially finite feature
of their structure. The ,,inheriting” of richness of monoids from their factor-
monoids suggests us the natural exact formulation of this question, viz., whether

*) 186 00 Praha 8, Sokolovské 83
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every infinite rich monoid has a finite rich factormonoid. There is given a negative
answer to this question in this paper by showing an example of an infinite rich
monoid (moreover: with only two generators), whose every proper factormonoid
is poor, i.e. of the infinite monoid minimal in the class of all rich monoids ordered
by factorization. :

Fig. 1.

If O1,..., Qr are some equalities of words in the alphabet {g, v}, then
Mg, ..., @& denotes the monoid with two generators ¢, v fulfilling the identities
Q1, ..., Qk. The identity @2y = e is denoted by P. We do not distinguish
between monoids and one-object categories as well as between the functor category
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SetMg,,....0r and the category of algebras with two unary operations ¢, y
fulfilling the identities Qi,...., Qk .

In these terms, the aim of this paper is to show that the monoid M =
= Mp,ys_ y2= ¢y is an infinite minimal rich monoid.

If C is a category, then C9 C™, C(a, b) denote the classes of all of its
objects, morphisms, morphisms from a to b (a, b € C°), respectively. Z denotes
the set of all integers, N the set of all positive integers. The restriction of the
mapping ¢ on the set X is denoted by ¢|X, the set difference of sets X, Y
by X\ Y. The disjoint union of sets is denoted by V/.

I. Richness

1.1 Proposition: The monoid M = Mp ys_yi_gip* is rich.

Proof: Define the small category ¥ by
Fo={u} Vv N, ¥@ + 1,i) = {pin14} forall ieN, (1, u) = {a«}, (1, v) = {#},
¥ is thin and its only morphisms are identities and compositions of morphisms
o, B, yi1a,i for 1 € N if they make sense.

Since ¥ is rich according to [3], it is sufficient for us to construct a full
embedding

D : Set) — SertM |

Denote (see Fig. 1)

X={c;i1€Z}V {a;;7 >0}V {ba; k= 0} vV {di51 >0} V
V {em,n; m,neN}

(i.e., X is considered as a set of mutually different elements).
For F e€(Set’)’ define the mapping @r : X — Set® by

Dp(ci) = {ci} for ieZ,
Op(as) ={as}  for j=>0,
@F(bk) = {bk} for k= 0, l,
Pp(do) = F(u),
) ®rd) —F@) for IeN,
Dp(be) = F(v),
Bp(bs) = F(1),
Dp(b2;) = Dr(b2in1) = F(i) for 1>2,
Dr(emn) = F(m) for m,neN,

(®r is, in fact, a collection of sets with the index set X), and put

D(F)= (X, 9, 9), where X= V ®&p),
xEX
and the operations ¢, y are defined by
@lci) = cia for 1e’Z,
pla;) = ai for €N,
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#(ao) = @(bo) = a1,
#(b1) = bo ,
P Pr(bjn)) © Prby) for  jeN,  @(Pr(be) = {b1};
@ | Pr(bs) = F(B),
@ | Pp(b) = F(yiia)  for ©1>2,
@ | Pp(bzir1) = 1drg) for >2,
¢ (Pr(do)) = {co} »
P(Pr(dj+1)) = Pr(d;) for j>=0, @] Dp(di) = F(a),
@ | Pr(di) = F(yii-1) for i>2,

(])(q)p(ei,1)) o= @F(bgi) for ieN,

P(Drlei,i) = Prles, j-1) for ieN, j>2,

¢ | Prlerr) = F(B),

@ I ij(ei,j) = idp(i) for 1, ]'GN, 1] #1,

wle) =ao for <0,
y(ci) = agi for ieN,
wa) = a1 for 1>0,
Y(Dr(do)) = {bo}
w(d’p(b[)) = {a1} for ) Z 0 N
W(Pr(d)) © Pr(bz)  for  ieN, | Pr(d) = F(f),
p ‘ Pp(di) = idF(i) for 1>2,
w(@F(ei,j)) = {a21+1} for i,j eN.

It is easy to verify that D(F) € SetM .

If F'e(Set’)’, te(Set))", v: F—F, v={t;je¥}, ®F)= (X, ¢, ),
P(F) = (X', ¢', v, define the mapping
D(r): X > X' by
D(r)| S =1ids where S X, S = {a;;1 >0}V {bo, b1} V {cr; k€ Z} = X, and
D7) (Pr(x)) = Pr(x), D7) | Pr(x) = o/ for eX N\ S,
where j e §° is by (1) uniquelly determined by the condition

Pr(x) = F(j) -

The mapping @(7) is obviously a homomorphism of algebras (X, ¢, ),

(X', ¢'5 9"). Now, we shall prove that the functor @, which is evidently 1—I1,

is also full.

Let fe(SeM)", f: @(F)— O(F"), D(F) = (X, ¢, ) = 4,

OF) = (X9 y)= 4"

() The point a; is the only fix point of the operation wu, hence f(a1) = a1 .

(i) We have f(ao) = folar) = ¢'f(a1) = ao.

(#5i) We have 9(co) = do, f(@o) = ao, thus 'f(co) = ao. Hence f(co) = c-n
for some integer » > 0. With regard to the commutating of f and @2n+2
we have either f(can+2) = c2n+z or f(cant2) € Pp(dy+1), and either
A Bo(dn)) € Pr(do) or f(Pe(d)) = fer} -
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() If flcon+2) € Pr(dn+1) , then
flaan+a) € Pp/(bon+2) (commutating of f and v),
fwler,en+1) = f(aani3) € Or(b2n+1) (commutating of f and ¢).
But ()1 (®Pp(b2n+1)) = @ , so that the formula
fylereni1) = 9'f (e1,20+1)
cannot hold, which contradicts f being a homomorphism. Hence,

(2)  flean+2) = con+2,

flaan+a) = aan+a (commutating of f and p).

(@) If f(Pr(dn)) = {c1}, then
F(Dr(b2n)) = {az} (commutating of f and o). ,
f(Prlent1,2n+2)) = {azn+e} (commutating of f and ¢2r+4),
flaan+s) = a1 (commutating of f and ),
faan+a) = ao (commutating of f and ¢).

According to (2) and the condition » > 0 the case (v) cannot take place, so that
we have

A Pr(dr)) = Pp-(do) -
(vi) If n£0, then

F(Dr(b2n)) = {bo} (commutating of f and w),
f(®Prlen,2n)) = = Dp-(b2n) (commutating of f and ¢2»),
3) flaans) = a1 (commutating of f and v).
But from (2) we obtain
@ flaan+1) = agnn1 (commutating of f and ¢3).

From (3) and (4) follows »n = 1, which implies
flen) =cp forall neZz,
f(Pp(dy)) = Pp(d;) for all i>0,
f(ai) = Qi, f(¢p(bi)) < ¢F'(bi) forall :>0,
f(Dr(ei,s)) = Dr(ei,;) forall 4,7eN.
For je¥° define the mapping 7/ : F(j) — F'(j) by
T = f| Pp(do) , 70 = f| Pr(b2),
v =f| ®p(d;) forall ieN.
Then 7= {r ; je€¥} is a natural transformation from the functor F to the
functor F' and we have @(t) = f. The proof is concluded.

2. Minimality
In the first two lemmas we formulate some properties of the monoid Mp
occasionally used in the sequel.

2.1. Lemma: Let m, n be positive integers. Then for the elements of the monoid
Mp we have ymon = gn2™ym

Proof: Induction after m .
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2.2. Lemma: Each element e Mp can be uniquelly written in the form

k k . g ag
e=g@Byd. If e= @by .. ghiyh, then 4 = 3 a;, B= 3 (by.2/*! );
(A4, B, a; , b; be non-negative integers). =1 i=1

Proof: Uniqueness is obvious, existence by induction after k.

2.3. Lemma: Let (X, ¢, p) € (SerMp)’ .

a) Let K be a ¢-component of the algebra (X, ¢, y). Then there exists a p-com-
ponent L of (X, ¢, ) such that (K) = L (i.e., y preserves g-connec-
tedness).

b) Let Ko = K be a ¢-cycle. Then L has a non-empty cyclic part Lo,

p(Ko) € Lo < L, and 2 card (Ko) is divisible by card (Lo) .

Proof: Easy calculation employing 2.1. and 2.2.

24. Lemma: Let every g-component of the algebra (X, ¢, p) € (SetMP)’ have
a non-empty cyclic part. If ¢ is not 1—I, then (X, ¢, ) has an endomorphism
with the same property.

Proof: The mapping obtained by the obvious winding up of every g-component
on its cyclic part is evidently a g-homomorphism, which is not 1—1. Its being
a y-homomorphism follows from an easy calculation according to 2.3.b).

2.5. Notation: Denote by k the subcategory of Ser with two objects a’ = {0},

a={1,2,3}andall 1 —1 mappings between them. Denote by f:a' —a, g,h:a—>a

the mappings such that f(0)=1, g1) =h(1) =2, g2)=h(3) =1, gB3) =

= h(2) = 3. Then g, h is a set of generators of k(a, @) and we have
B=g=id,, [#h=gf.

2.6. Proposition: The monoids a) M = Mpg—1 and

b) M = Mpge,—, are poor for all positive integers q.

Proof: If not otherwise stated, both cases a) and b) are treated simultaneously in
2.6. —2.12.

A. It will be sufficient to prove that the algebraic category % from 2.5. cannot
be fully embedded into the category C = SerM. Thus, let us suppose that there
exists a full embedding

P:k—>C
Denote P(a’) =A' = (X', ¢, 9), P@=4=Xpv), )=/,
D(g) =g, Oh)=h. Then
(%) h = idy = g2
so each endomorphism of A4 is an isomorphism.
Denote by W the set of all xe€ X such that A(x) = g(x) but x, A(x), h%(x)
are mutually distinct. -

2.7. Lemma: W # o .
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Proof: Since f+ hf, we have f ## hf. Thus there exists y € X’ such that
H(y) #f(y). Put x =f(y). We prove xe€W. Since hf = gf, we have g(x) =
= h(x) . If either h%(x) = h(x) or h%(x) = x, then necessarily A3(x) = h(x) .
This is a contradiction because #43(x) = x, while we have A(x) # x.

B. A finite sequence p = {xo, X1, ... > Xmy, m > 1, of points of X is said to
bea pathin A from x, to xn if forany :1€{0, 1, ..., m—1} one of the following
cases takes place:

®) @(xi) = Xi+1 7) w(x) = x5

B) p(xe+1) = xi 5 0 plxi+) = x; .
An m-tuple of symbols a, 3, ¥, d is said to be a zype of the above path if its i-th
place denotes the case, which happens for x;-1, x; in p.

We say that p is a g-path or y-path or right path or left parh if its type contains
only the symbolsa, § (or 9,0 or a,y or f,d, respectively). A path that is
neither a @-path nor a y-path is called a mixed path. A subpath of a path <{xo, ....,
xmy is an arbitrary path {xi, xi41, ..., x;> with 0 <71 <j<m.

A path is called reduced if it does not contain a subpath of the type <f, o>
or {J,7)>. Clearly, for each path from x, to x» we can construct a reduced
path from x, to xp .

C. Define a relation ~ on the set X as follows:

2 ~ 2z’ <> there exists a pathin 4 from z to 2’
~ is an equivalence; denote by L(2) the set of all 2’ € X such that 2’ ~ z and
by 2z ~ 2’ the fact that z'¢ L(z).

Let us suppose x ~ h(x) for some x€W. Since 4 is an isomorphism,
then A(x) » h%(x) ~ x. Then L(x), L(h(x)), L(h%(x)) are disjoint. Thus, the
mapping : X — X such that

F(2) = h(2) whenever z € L(x),
F(e) == otherwise

is an endomorphism of the algebra A4, which is not 1—1. This contadicts to (k).
D. Consequently, for any point x € W there exists a path, say, p =
= {x = X0, ..., xm = h(x)> from x to A(x), we may suppose p to be reduced.
Then, h(p) = {h(xo), ... h(xm)>, Hh3(p), g(p) are reduced paths from #A(x) to
h%(x) from Ah%(x) to x, from g(x) = h(x) to x, respectively. Since g, & are
isomorphisms, all the paths p, h(p), h2(p), g(p) are of the same type. In the
following discussion we show that no type is posible for them. Thus, our
assumption that %2 can be fully embedded into C leads to a contradiction.
In the sequel, for given x € W p is always a reduced path from x to A(x),
U denotes the set {x, i(x), h%(x)}, ¢ is a positive integer.

2.8. Lemma: For any x € W p is neither right nor left.

Proof: Let us suppose that p is'a right path. Let n be a polynomial in the
operations ¢, y determined by the type of p. Then A(x)= n(x), h%(x) =
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= gh(x) = g%(x) = x, which is a contradiction. If p is a left path, the proof
is analogous.

2.9. Lemma: For Mpg.-; and any x €W, no path p is a @-path.
Proof: A ¢-path p would have to be of the type <o, ..., f,..., > with

~—— N————

r, s > 1, which contradicts to ¢'s being 1—1. r—times s—times
2.10. Lemma: For Mpg,-, and any x €W, no path p is a ¢-path.
Proof: Again, the type of such p would have to consist of r o's followed by
sB’'s, with r,s > 1.
a) Let r =5 =1,
ie. p = {x, xo, H(x)) , where xo = @h(x). For ue U denote

K@) = U (097

The sets K(u), u € U are mutually disjoint, for otherwise there would exist a right
or left path from x to A(x).

If y(w)eK(u) for some welX, ueU, ie. ¢fy(w)=u for some integer
k > 0, then, using the identity ¢y = y (k -+ 1) times, we obtain
u = grp(w) = grp® D ay(w) =ghitalghtly(w) = gFe+a-1(x,)
(evidently kg + g — 1 > 0), and since

h(x0) = hep(x) = Ph(x) = Xo
h(u) = hgF1+ 01 (xo) = e 1h(x0) = u,

which is a contradiction. Consequently, y~1(K(u)) = & for all ue U, the sets
K(u) are closed under proimages of both ¢ and u and under images of ¢ and

w and under images of @ with the exception of the point u, for which we have
¢(u) = xo. The mapping F : X — X defined by

F(z) = h(z) whenever ze K(x),
F(z) = & otherwise,

we have

is evidently a @-homomorphism of the algebra A4, which is not 1—1. To verify
F's being also a y-homomorphism it is sufficient to prove that for ze K(x) we
have Fy(z) = pF(2), ie., since wu(z)¢ K(x), w(z) = wh(z). Let ze K(x),
¢¥(z) = x, k> 0. Then

P*h(z) = hek(z) = h(x)

p@*(z) = p(xo) = ye*+1h(z),

PP 2y(2) = y(xo) = @ *2yh(2) .
But the identity ¢y = u implies that both (2) and uh(z) are elements of
@-cycles, hence they coincide. Thus, the mapping F is an endomorphism of A,

which is not 1—1 — a contradiction.
b) Let r=s5>1.
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Put y = ¢ 1(x). Sinde A(p) are of the same type, we obtain A(y) = @' 1h(x) =
=g(y) and ¢@(v) = @h(y). Since p is reduced, y # h(y). Thus yeW and
there is a path of the type (o, 8> from y to A(y), which contradicts to a).

c) Let r >s>1.
Put v = ¢%(x). Since A(p) and g(p) are of the same type as p, we obtain A(y) =
= ¢’h(x) =g(y). If y=A~(y), then {&,...,a, B,..., > is the type of a path

s—times s—times

from x to A(x), which has already been excluded. Thus, y # h(y). But then
vy €W and there is a right ¢-path from y to A(y), which contradicts to 2.8.
The remaining case s > r > 1 is excluded analogically as c).

2.11. Lemma: For any x €W, no path p is a y-path.

Proof: The type of a y-path p would have to consist of ry's followed by s d's,
with r,s > 1. It will be sufficient to exclude the case » = s = 1, the rest being
quite analogous to 2.10.b), c), d). Thus, suppose that p is of the type (y, 6), i.e.
P = {x, X0, h(x))>, where xo = y(x) = ph(x). Clearly h(xo) = xo. For
ue Ul {xo} let K(u) denote the p-component of the point u, K'(u) =

= U (97 (K(u)) . Thesets K(u), uc U {xo} are mutually disjoint for otherwise
j=1

there would exist a g-path from x to A(x), which contradicts the previous two
lemmas. :

1) We prove that K'(uy) () K'(u2) = @ for ui,us € U, w1 7 uz . Let us suppose
that there exists a point z € K'(u)() K'(u2) , ur, u2 € U, ur = uz,ie. ypm(g) =
= ¢¥(u)) and yp™(z) = @Wuz) for some m,n >1 and k,!> 0. The assumption
m = n leads to a contradiction with the disjointness of K(u1) and K(uz), so we
may suppose m < n. Thus, by lemma 2.1. we have

Plu) = pomp(un) = =" 1yp2y(u) = - 1p(xo)
denote the point by x1. A(yo) = xo implies A(x1) = x1, so @'h(uz) = heplus) =
= h(x1) = x1. But the resulting formula ¢%u2) = @'h(uz) means that there exists
a @-path from w2 to A(u2) and consequently also from x to A(x) — a contra-
diction.
2) For ue U put K"(u) = K'(u) U K(u). By 2.3.a) we have ¢~1(K"(u)) =
S K'(w), ¢(K"(w) = K"(w), yM(K"(w) = K'(w), so »(K'(w) < K"(u),
p(K(u)) € K(xo). Thus, the set K''(u) is closed under the forming of images
and proimages in both ¢ and wu with the exception of K(u) < K''(u), which
is mapped by o into K(x,). The mapping F : X — X defined by
F(2) = h(z) whenever zeK'(x),
F(2) = z otherwise
is clearly a @-homomorphism of A, which is not 1—1, for K'"(u), ue U are
disjoint and isomorphic as quasialgebras with a complete unary operation ¢ and
a partial unary operation y. To prove F's being also a w-homomorphism it is
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sufficient to prove that Fy(z) = yF(z) for each ze K(x). Let ¢¥x) = ¢k(2)
for some k,/>>0. Then we have
() 9*Fy(z) = p*y(2) = pek(z) = pol(x) = y¥(x0),

@FF(2) = @*h(z) = he*(z) = hol(x) = @'A(x), so that
(@) ¢*yF(z) = yePF(z) = yo'h(x) = ¢*H(xo) -
But both the points Fy(z) and F(2) are elements of g-cycles, soi) and (i)
imply their coincidence. Thus, F is an endomorphism of A, which is not 1—1
— a contradiction. »

2.12. Lemma: For any x €W, no path p is a mixed path.

Proof: 1) Maximal (as to their length) left (or right) subpaths of an arbitrary
path p' are called left (or right, respectively) blocks. A left (right) block is said
to be ordered, if it does not contain a subpath of the type <, y> ({4, B>, respectiv-
ely). By 2.2. we may replace every block by the ordered block with the same ending
points. The decomposition of a path p’ on left (4) and right (o) blocks determines
a finite sequence of symbols 4, ¢ called the block type of p’. The notions
of a subtype and of a length of a block type are defined in an obvious manner. Every
subtype of the block type of p’ determines obviously a subpath p’’ of p'.

2) Now, let p be a mixed path from x to A(x), n€N be a length of its
block type, all blocks of p are ordered. If the block type of p has a subtype
{4, 9>, denote by po the subpath determined by this subtype. Then p, must
be of the type
a) (0,...,0,0,...,0p or b) {Py...., 0 6, ....,08,0...,0> or
) ByeesBopseesyy or A) LBy Bo¥s Vs 05y 0.

If a) is the case, ie. po = {(y"(a), ..., y(a), a, p(a), ..., ¢p*(a)> for some
r,s > 1, a€ X, then we replacé p, by
1= <{y"(a), py’(a)s ..., ¢¥y(a) = y%a); ..., yp¥(a), p%(a))
of the type <o, ..., a, 0,..., 0y (see 2.1).

If b) is the case, i.e. po = {¢ty"(a),...,a, ..., p5(a)y for some r,s,t>1,
a € X, then we replace p, by
1= <pyT(a), ..., (), ..., p¥y"(a) = y'p%a); ..., p%(a))
of the type {Bs... B0 ..., 0, ..., 0).

For c) and d) being the case we proceed symmetrically.

After forming a reduced path with ordered blocks from the path obtained we
obtain a path ps from x to A(x), whose block type is <{g, ) if n = 2, or has the
length less then n if n > 3. After a finite number of such procedures we obtain
a path ps from x to A(x), which is left or right — a contradiction with 2.8.,
or is of the block type <p, A>.

3) Thus, let us suppose that
p3 = {xy P(x), ..., wf”(x), s PEY(x) = QlYrh(X), ..., Yrh(x), ..., h(x))
for some k,l,m,n=>0, (k+m)(l +n)>1; we may suppose m >n. The
assumption y"(x) = y"h(x) leads to a contradiction with the previous lemma.
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Consequently, y"(x) € W, so that we may suppose 7 = 0. Now, the assumption
m = 0 would lead to a contradiction with 2.9. and 2.10., so we have

P3 =% ooy PUX)s ..., PEYM(x) = @lh(x), ..., h(x)> for some m, [ > 1,
0<k< g Then ps=<x ..., y™(x) = pay™(x) = @l t¢kh(x), ..., h(x)>

is a path from x to %(x) of the type <{y,...,y,0,..., .
Put ¢t =1+ qg—k Then A(ps) = {h(x),..., y™h(x) = @th3(x), ..., h%(x)>,
8(pa) = {h(x), ..., py™h(x) = @i(x), ..., x). Thus, there exists a ¢-path p; =
= (%, ..., PH(x) = @th%(x), .., h%(x)> from x to h%(x), so that A(ps) is a g-path
from x to A(x), which is a contradiction with 2.9. and 2.10.

This concludes the proof of 2.6.

2.13. Proposition: The monoid Mpgn+a—gn is poor for all integers n >0, g > 1.

Proof: The small category % from 2.5. cannot be fully embedded into the
category SetMPonta—orn, for by 2.4. each such embedding must factor through
SetMpga=1, which contradicts to the proof of 2.6.a).

2.14 Proposition: The monoid M = Mpgn+ey—qn, is poor for all integers g > 1,
n>0.

Proof. For n = 0 the statement concurs with that of 2.6.b). Suppose that M
were rich for some n > 0. Let %2 be the small category defined in 2.5., let
D :k— SetM be a full embedding, D(a') = (X', ¢', ¥"), Pla) = (X, ¢, p). If
both ¢ and ¢' are 1—1, then D(kR) = SetMpgw—y, which contradicts to 2.6.

Hence, let us suppose that e.g. ¢ is not 1—1. Denote by X the set of all

g-components of (X, ¢, p). By 2.3.a) y preserves g-connectedness, so that the
formula

Y(K)=2 p(K), KeX
defines the mapping ¢ : X - X .

Let Key(X). Then the identity ¢"*dy = ¢my implies that K has a
non-empty cyclic part. Denote by fx : K— K < X the obvious winding up of
K on its cyclic part. For KeX \ ¥(X) the mapping fx : K— X is defined
by fxk = ¢ | K. The mapping F:X — X, F= |J fxk is an endomorphism

KeX
of the algebra (X, ¢, y), which is not 1—1. This contradicts the supposition
of the full embedding of %, whose every endomorphism is an isomorphism.

2.15. Lemma: The monoid Mi = Mpgkym—yun is a factormonoid of the
monoid Mz = MP,pi+2rgn=gl+2myn  for all integers &, I, m, n > 0.

Proof: Using the identities defining M; we have

¢l +27 wn — (Pl"l)n<P — (Pk"/)m(}’ — (Pk +2"‘1pm — QDl +2"‘wn .

2.16. Proposition: The monoid Mp yk,m_g is poor for all integers &, [ > 0, m > 1.
Proof: follows from 2.13. and 2.15.
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2.17. Proposition: The monoid Mpgi,m g, is poor for all integers &,/ >0,
m> 2.

Proof: 2.14 and 2.15.
2.18. Proposition: The monoid Mp gy is poor.

Proof: Suppose that there exists a full embedding

D : k— SetMroy=ovy, P(a) = (X, ¢, p), D) = (X', ¢, ¥').

Then either 32 : X — X is an endomorphism of the algebra (X, ¢, p), which
isnot 1—1, or %'2: X" — X' has the same property, or P(k) < SetMpy=¢* —
a contradiction in any case.

2.19. Proposition: The monoid Mp,:—g,: is poor.
Proof: It is a factor monoid of the monoid from 2.18.

2.10. Theorem: The monoid M = Mp 44+ is rich and each of its proper
factomonoids is poor.

Proof: 1. Richness see 1.1
2. The monoid M has just the following distinct elements:

L, @, 9% ¢ ...

Vs Y 02, PPy,

v2 py2.
Consequently, the poorness statement follows from 2.13., 2.14., 2.16., 2.17. and
2.19.
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