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Unipotent Qiiasigroups 

T . KEPKA and P. NfiMEC 

Department of Mathematics, Charles University, Prague*) 

Received 6 January 1976 

This paper deals with unipotent quasigroups, i.e. quasigroups satisfying the identity xx — yy. 
This class of quasigroups has a nice property with respect to isotopy, namely every quasigroup is 
isotopic to some unipotent quasigroup. In the first section, several basic results concerning unipotent 
quasigroups are presented, e.g. the quasigroups having the isotopy-isomorphism property in this 
class are completely described. The following two sections are devoted to unipotent IP-quasigroups 
and unipotent medial quasigroups. The results of the last section determine the structure of some 
quasivariaties of quasigroups. 

B cTaTte H3y*ieHbi vHmioTeHTHbie KBa3Hrpynnw, Te KBa3Hrpynnbi BbmojmroHHTHe paBeHCTBo 
xx = yy. B nepBOH *iacTH noJiyneHbi ocHOBHbie pe3yjibTaTbi, AOKa3biBaeTCH HanpHMep, HTO 
BCHKan KBa3Hrpynna naoTonHa HeKOTopoii yHHnoTeHTHOH KBa3Hrpynne H onncbiBaiOTCH Bee 
KBa3HTpynnbi oSjiaflaroiHHe H30TonHO-H30Mopc})HbiM CBOHCTBOM OTHocHTenbHo KJiacca yHHno-
TeHTHbix KBa3nrpynn. BTopan H TpeTbH nacra nocBHiueHbi yHnnoTeHTHbiM IP-KBa3HTpynnaM 
H yHHTiOTeHTHbiM MeAHajibHbiM KBa3HrpynnaM. B nocjiejnreH nacra nccneaoBaHbi neKOTopbie 
KBa3nnpHMHTHBHbie KJiaccw KBasnrpynn. 

Clanek se zabyva studiem unipotentnich kvazigrup, tj. kvazigrup splnujicich identitu xx •=• yy. 
V uvodni casti jsou dokdzdny nektere zakladni vysledky o unipotentnich kvazigrupach. Krome 
jineho je dokdzdno, ze kazd^ kvazigrupa je izotopni nektere unipotentni kvazigrupe. Dal§i dve casti 
jsou venovany unipotentnim IP-kvazigrupam a unipotentnim medialnim kvazigrupam. V zaverecne 
casti jsou popsany nektere kvazivariety kvazigrup. 

As it is well-known, every quasigroup is isotopic to some loop. However, there are some 
classes of quasigroups other than loops which also have this remarkable property. One of them is 
the class of unipotent quasigroups, i.e. quasigroups satisfying the identity xx = yy, and namely 
this class is studied in the present paper. In the first section, several basic results concerning 
unipotent quasigroups are presented, e.g. the quasigroups having the isotopy-isomorphism property 
in this class are completely described. The following two sections are devoted to unipotent IP-
-quasigroups and unipotent medial quasigroups, respectively. The results of the last section 
determine the structure of the quasivarieties of quasigroups defined by the quasiidentities of the 
form 

# 1 * 2 = X3X4 => X7l(l)X7l(2) = X7Z(3)X7l(4) , 

where n is some transformation of the set {1, 2, 3, 4} . 

*) 186 00 Praha 8, Sokolovská 83. 
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I. Basic Properties 

The terminology and notation is standard (see e.g. [1]). In particular, if Q 

is a quasigroup then the parastrophs of Q are denoted by Q 1 , _ 1 Q , Q, _ 1 (Q" 1 ) 

and ( ^ Q ) - 1 , Lx(y) — Ry(x) = xy and xe(x) = f(x)x = x for all x,yeQ, C(Q) 

is the centre of Q and SQ is the set of ail permutations of the set Q. If Q is 

a group then its unit will always be denoted by 0. 

A quasigroup Q is called unipotent if xx = yy for all xy y e Q. Obviously-* 

every unipotent quasigroup has exactly one idempotent element. Immediately from 

the definition of parastrophs we have the following simple result: 

1.1 Proposition. Consider the following conditions for a quasigroup Q: 

Q ІS a left loop a right loop unipotent 

Ö-1 is a left loop unipotent a right loop 
XQ is unipotent a right loop a left loop 

Q is a right loop a left loop unipotent 

-KQ-1) is unipotent a left loop a right loop 

(-'QГ1 is a right loop unipotent a left loop.. 
Then the conditions in each column are equivalent. 

1.2 Corollary. The following are equivalent for a quasigroup Q: 
(i) Q is a unipotent loop. 

(ii) All parastrophs of Q are unipotent loops. 
(iii) At least one of the parastrophs of Q is a unipotent loop. 
(iv) At least two o f j Q , Q}, {Q-i, (^Q)" 1 }, {"1Q, -\Q~1)} contain a loop. 
(v) Each of {Q, Q}, {Q-1, (~1Q)-1}, {-XQ, "KQ"1)} contains a unipotent quasi­

group. 
(vi) All parastrophs of Q are loops. 

(vii) All parastrophs of Q are unipotent. 

1.3 Proposition. Every quasigroup Q is isotopic to a unipotent left (right) loop. 

Proof. Let a,beQ and g(x) = L'1(x) for each x e Q. Define x * y = 

= iv^)(a) L};1 Cy). The mapping x |-> R~g\x)(a) clearly is a permutation, so Q(*) 

is a quasigroup. Further, # * x : = a = j ; * j / and a * x = bL~1(y) = y for all 
x> y e Q- Similarly the other case. 

1.4 Proposition. Every commutative unipotent quasigroup Q is isotopic to a 

commutative unipotent loop. 

Proof. It suffices to take a e Q and put x * y = L~J-(x) L~l(y) . 

As it is easy to see, the three-element cyclic group is the only loop with three 

elements, however this loop is not unipotent. Hence there exist unipotent quasigroup 

which are not isotopic to unipotent loops. 

It is an easy exercise to construct unipotent quasigroups of arbitrary finite 

order, unipotent loops of every finite order n > 4 and commutative unipotent 
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quasigroups of every even order (see e.g. [2]). On the other hand, every non-trivial 
finite commutative unipotent quasigroup has even order, as follows from the 
following well-known (and obvious) result : 

1.5 Proposition. A finite commutative quasigroup has odd order iff the mapping 
x |-> xx is a permutation. 

Now we turn our attention to the problem of determining all quasigroups 
with the isotopy-isomorphism property in the variety of unipotent quasigroups. 

1.6 Proposition. Let Q be a unipotent quasigroup such that every unipotent 
quasigroup which is isotopic to Q is isomorphic to Q. Then Q has at most 
two elements. 

Proof. According to 1.3, Q is a loop with unit 0. Further, let a, b e Q be 
arbitrary, g(x) = L~}(x) and x * y = R~\x)(a) L~b

x(y) for all x,yeQ. Then 
<2(*) is a loop with unit a (cf. the proof of 1.3) and, for b = 0 and y = a, we 
get R~J-(a) a = x. Similarly, aL~x(a) = x for all x, a e Q, and so Q is a 
TS-loop. Consequently, for x = bz and y = a, we have bz = ((b . bz)a) (ba) = 
= za . ba, so that Q is a Moufang loop. Now, if x, y, z e Q are arbitry then, 
combining the preceding results, we have x . yz = (y . xy) (yz) = xy . z and we 
conclude that Q is an Abelian group. Finally, let h e Aut Q and x o y = 
= h(x)h(y). Q (o) is clearly unipotent, thus being a loop with unit j . Now, for 
every x eQ, j = x o x = h(xx) = (h(0) = 0, so x = x o 0 = h(x) and we are 
through. 

We conclude this section with a problem. We shall say that a variety 1^ of 
quasigroups has property (U) if every quasigroup is isotopic to some quasigroup 
from ir. Denote by J , J ^ , $qi the varieties of loops, unipotent left loops 
and unipotent right loops, respectively. We have shown that all these varieties 
have property (U). Moreover, considering the free loop on countably many free 
generators, it is not difficult to prove that J , 1<% and 9%<% are minimal varieties 
with property (U). Hence a question arises: Does every variety of quasigroups 
which has property (U) contain one of J , J ^ , £%qi ? 

2. Unipotent IP-Quasigroups 

A quasigroup Q is called an RIP-quasigroup (LIP-quasigroup) if there is 
a mapping d (r) of Q into Q such that yx . d(x) = y (r(x) . xy = y) for all 
x,yeQ. IP-quasigroup is a quasigroup which is simultaneously LIP and RIP. 
The following assertions are easy and well-known. 

2.1 Lemna. Let Q be an RIP-quasigroup (LIP-quasigroup). Then 
(i) d2 = 1 and <5 is a permutation (T2 = 1 and r is a permutation), 

(ii) y d(x) . x = y (x . r(x)y = y) for all x, y e Q, 
(iii) xd(x)=f(x) and d(x)x = f(d(x)) (r(x)x = e(x) and xr(x) = e(r(x))), 
(iv) e(x) = d(e(x)) (f(x) = r(f(x))). 
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2.2 Lemma. Let Q be an IP-quasigroup. Then d(xy) = r(y)r(x) and r(xy) = 
= d(y)d(x) for all x,yeQ. 

2.3 Lemma. The following conditions are equivalent for a quasigroup Q: 
(i) Q is a commutative IP-quasigroup. 

(ii) There are a TS-quasigroup Q(*) and d e Aut Q(*) such that <S2 = 1 
and xy = d(x * j>) for all x,yeQ. 

2.4 Proposition. The following conditions are equivalent for a quasigroup Q: 
(i) Q is a TS-loop. 

(ii) Q is a unipotent TS-quasigroup. 
(iii) Q is a unipotent IP-loop. 

Proof. Obvious. 

2.5 Corollary. The following are equivalent for a quasigroup Q: 
(i) Q is a commutative unipotent IP-quasigroup. 

(ii) There are a TS-loop Q(*) and its automorphism d such that d2 = 1 
and xy = (5(x * j;) for all x,y e Q. 

Let Q be a quasigroup. Then «^(Q) will be the set of all ordered pairs 
(A, Q) such that A, o are mappings of Q into Q and X(xy) = O(x)y for all 
x,y e Q. Similarly, ^ (Q) = {(A, D) | A(xy) = xQ(y)} and 
^ ( Q ) = {(A, Q) I A(x)y = xDCy)}. Further, Li(Q) will be the set of all mappings 
A such that (A, o) e J(Q) for some o. Similarly we define Lr(Q), &i(Q), 
Rr(Q), Afi(Q), Afr(Q). 

2.6 Lemma. Let Q be a quasigroup. Then 
(i) J (Q) and 0t(Q) are subgroups of SQ X SQ, 

(ii) -^(Q) is a subgroup of SQ X SQ , 
(iii) Li(Q), Lr(Q), Ivi(Q), Ivr(Q), Mi(Q), M r(Q) are subgroups of SQ, 
(iv) Li(Q) ^ Lr(Q), Ivi(Q) £2 Rr(Q) and Afi(Q) ^ Afr(Q) . 

Proof. Easy. 

2.7 Lemma. Let Q be a quasigroup. Then 
(i) Xcp = <pX for all A e Li(Q) and cp eRi(Q), 

(ii) 09? = (pQ for all o e Lr(Q) and 99 e Mi(Q) , 
(iii) Xip = \pX for all A e Rr(Q) and ^ e M r ( Q ) . 

Proof. Easy. 

2.8 Lemma. The following are equivalent for a quasigroup Q : 
(i) Q is isotopic to a group. 
(ii) At least one of the groups Li(Q), Lr(Q), Ri(Q), Rr(Q\ Afi(Q), Afr(Q) 

operates transitively on Q. 
(iii) Each of the six groups operates transitively on Q. 

Proof. See e.g. [4]. 
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2.9 Lemma. Let Q be a commutative quasigroup. Then 
(i) M(Q) = ®(Q), 

(ii) (Q,Q)e<Jf(Q) for all OeLr(Q), 
(iii) Li(Q) = Rt(Q) and Lr(Q) = Rr(Q) s Mi(Q) n Mr(Q). 

Proof. Obvious. 

2.10 Lemma. Let Q be a commutative quasigroup. Then Li(Q) and Lr(Q) 
are commutative groups. 

Proof. Apply 2.6, 2.7 and 2.9. 

2.11 Lemma. Let Q be an RIP-quasigroup. Then 
(i) (l,Q)e2(Q) iff. (Q,X)e £(Q), 
(ii) U(Q) = Lr(Q), 

(iii) (X,Q)eiM(Q) iff (X, dQ-^d)eJH(Q), 
(iv) i?i(Q) = Afi(Q), 
(v) i?r(Q) ^ M r(Q). 

Proof, (i) We have p(xy) = (?(xy)<5(;y). y = A(xy . <5(j»))y = X(x)y for all x ^ e Q . 
(ii) follows immeditely from (i). 

(iii) Let (X, Q) e 0t(Q). Then X(x)y = X(xdQ^8(y) . Q~1d(y))y = 
= (xdQ'1d(y). d(y))y = xdg^Syy). Similarly the converse. 

(iv) follows from (iii) and (v) follows from (iv) and 2.6(iv). 

2.12 Lemma. Let Q be an LIP-quasigroup. Then 
(i) (X,Q)e®(Q) iff (Q,X)e®(Q), 
(ii) RA.Q) = Ri(Q), 

(iii) (X, Q) e 1(Q) iff (Te--T, A) e J((Q), 
(iv) L1(Q) = Afr(Q), 
(v) Lr(Q)mMx(Q). 

Proof. Dual to that of 2.11. 

2.13 Lemma. Let Q be an IP-quasigroup. Then 
(i) Li(Q) = Lr(Q) = Mr(Q) S3 Ri(Q) = Rr(Q) = Afi(Q), 

(ii) (A, Q) e 1(Q) iff (eU<5, TOT) e «(Q), 
(iii) £(Q)^®(Q)^J((Q). 

Proof. Apply 2.11 and 2.12. 

2.14 Lemma. Let Q( be a commutative IP-quasigroup. Then 
(i) Li(Q) = Lr(Q) = Mr(Q) = Mi(Q) = ivi(Q) is a commutative group, 

(ii) A = O, whenever (A, o) e ~#(Q) . 

Proof, (i) Apply 2.9 and 2.13. 
(ii) We have X(x) = OX*). X(x)x = <5(x) . x o(x) = O(x). 
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2.15 Lemma. Let Q be a unipotent quasigroup. Then 
(i) Q = ^-1 whenever (A, o) e ~^(Q) , 

(ii) Mi(Q) = Mr(Q). 

Proof, (i) We have xx = X(x)X(x) = xqX(x\ hence x = oX(x). 
(ii) follows from (i). 

2.16 Proposition. Let Q be a unipotent IP-quasigroup. Then Li(Q) = Lr(Q) = 
= M r(Q) = Ri(Q) = Pr(Q) = Afi(Q) is a commutative group. Moreover, if Q 
is commutative then every element of Li(Q) has order 2. 

Proof. Use 2.13, 2.14 and 2.15. 

2.17 Lemma. Let Q be a commutative quasigroup, a, fi e SQ and x * v = 
= o.(x)ji(y) for all x,jy e Q. Then £)(*) is commutative iff (a/?-1, a/5-1) e,£(Q). 

Proof. Trivial. 

2.18 Proposition. Let Q be a commutative unipotent IP-quasigroup. Then 
every commutative quasigroup isotopic to Q is unipotent. 

Proof. Let a(x)fi(y) = *(y)fi(x) for all x,yeQ. Then a/3"1 eL r(Q) by 2.17 
and 2.16, hence afi~l(x)x = 0L^~1(y)y3 and so oi(x)p(x) = <x.(y)fi(y) for all jc .yGQ. 

3. Unipotent Medial Quasigroups 

A quasigroup Q is called medial if ab . cd = ac . bd for all a, b, c, d e Q . 

3.1 Proposition. The following are equivalent for a unipotent quasigroup Q : 
(i) Q is medial. 

(ii) There are an Abelian group Q(+), 9?eAut<2(+) and eeQ such that 
xy = q)(x — y) + e for all x, y e Q. 

(iii) There is x e Q such that, for all a, b, c e 2 , xa . be = xb . ac . 
(iv) There is i e Q such that, for all, a, b, c e Q , ab . ex = ac . bx . 
(v) There is x e Q such that, for all ayb,ce Q, ax . be = ab . xc . 

(vi) For all a, b, c e Q , aa . be = ab . ac and be . aa = ba . ca . 

Proof. The equivalence of (i) and (ii) is obvious from Toyoda's theorem and the 
equivalence of (i), (iii), (iv) and (v) follows immediately from Theorems 1.3 and 
2.3 of [5]. Finally, if (vi) holds then Q is isotopic to a group by 2.8, since 
LaLi1 eMi(Q) for all a, b e Q, and an application of Proposition 4.3 from [5] 
finishes the proof. 

A quasigroup Q is an F-quasigroup if a . be = ab . e(a)c and be.a = 
= bf(a). ca for all a,b,ce Q. It is an open question (at least for the authors) 
whether every unipotent F-quasigroup is medial. The answer is positive in the 
commutative case. 

In [6] was proved that the lattice S? of all varieties of unipotent medial quasi­
groups is countable and modular, but not distributive. However, a complete 
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description of y was obtained only in the commutative case. On the other hand, 
the variety of commutative unipotent medial groupoids contains uncountably many 
subvarieties. 

4. Unipotent Quasigroups Isotopic to a Group 

4.1 Proposition. The following conditions are equivalent for a quasigroup Q: 
(i) Q is unipotent and isotopic to a group. 

(ii) There are a group Q(+) and a e SQ such that a(0) = 0 and xy = 
= OL(X) — a(j!) for all x,yeQ. 

Proof, (i) implies (ii). Denote 0 = xx, x e Q. Now it suffices to define x + y = 
= R0\x)L-QKy) . 
(ii) implies (i) trivially. 

Denote by E the set of all transformations of the set A = (1, 2, 3, 4}. If 
S c=_E then Jf's will denote the class of all quasigroups satisfying the quasi-
identities 

X\X2 = X3x4 => Xn{i)Xn(2) = Xn(Z)Xn(4) 

for all n e S. Instead of ^T{JT} we shall simply write Ctifn . 

4.2 Lemma. If a, 0 e E then J f a n ^ £ ^ n J T ^ . 

Proof. Obvious. 
Now introduce the following notation for the elements of SA: 1 = 1A, 

2 = (12) (34), 3 = (12), 4 = (13), 5 = (23), 6 = (1234), 7 = (234), 8 = (123), 
9 = (143), 10 = (134), 11 = (124), 12 = (243), 13 = (132), 14 = (142), 
15 = (14), 16 = (1243), 17 = (1342), 18 = (1432), 19 = (24), 20 = (1423), 
21 = (34), 22 = (1324), 23 = (14) (23) and 24 = (13) (24) . 

4.3 Proposition, (i) ->f i = X24 is the class of all quasigroups. 
(ii) j r 2 = j r 2 3 . 

(iii) Jf*3 = Jf 22 = <3f 21 = ^20 is the class of all commutative quasigroups. 
(iv) J f 4 = J f i 9 . 
(V) j f 5 = . r 17 = JTi6 = JTIS • 

(vi) j r 6 = . r 1 8 . 

(vii) J*T7 = ^ 1 4 = JT.13 = ^12 = #\\ = ^10 = ^ 9 = JTs • 

Proof. Use 4.2. 

4.4 Proposition. The following are equivalent for a quasigroup Q: 

(i) QeJf2. 
(ii) xy = e( j x ) . yx for all x, 3! e Q . 

(iii) xy = -yx .f(j!x) for all x,y eQ . 

Proof. If Q e JT2 then xy = e(yx) . yx, since -yx = yx . e"(j!x) . Conversely, if 
(ii) holds and ab = cd then ba = e(ab) . ab = e(cd) . cd = dc . The rest is 
similar. 
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4.5 Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) 2 6^4 . 
(ii) Q is isotopic to an Abelian group every nonzero element of which has order 2. 

(iii) There are an Abelian group Q(+), a, /3 e SQ and eeQ such that a(0) = 
= 0(0) = 0 , x + x = 0 and xy = OL(X) + P(y) + e for all x,y e Q . 

Proof. Clearly, (ii) is equivalent to (iii) and implies (i). (i) implies (ii). Take a e Q 
and define Q(+) via xa + ay = xy. Then Q(+) is a loop which clearly belongs 
to JT4 5 thus being unipotent and commutative. Finally, if x, y, z e Q are arbitrary 
then (x + y) + 0 = y + x, so that (x + y) + x = y, and y = (x + y) + x = 
= (y + z) + z implies (x + y) + z = (y + z) + x = x + (y + z) . 

4.6. Proposition. The following conditions are equivalent for a quasigroup Q: 

(i) Q e J f 5 . 
(ii) Q is unipotent and isotopic to an Abelian group. 

(iii) There are an Abelian group Q(+) and a e SQ such that a(0) = 0 and 
xy = <x(x) — 0L(y) for all x,yeQ. 

Proof, (i) implies (ii). For all x,y,zeQ let x(pz(x) = z = y*z(y)y. Since 
Q e JT 5 , xtpz(y) = (pz(x)y and xx = yy , so that (pz eMi(Q). Hence M±(Q) 
operates transitively on Q and Q is isotopic to a group by 2.8. With respect to 
4.1, there are a group <2(+) and a e SQ such that a(0) = 0 and xy = 
= OL(X) — a(y) . Finally, —x = y — (x + y) , hence a_1(0) a-1(x) = 
= a_1(<y) a - 1 ^ + y) , so a_1(0) a~x(y) = a_1(jc) a_1(x + y) , which means —y = 
= x — (x + y) and x + y = y + x . 
(ii) implies (iii) by 4.1 and (iii) implies (i) trivially. 

4.7 Proposition. The following conditions are equivalent for a quasigroup Q: 
(i) Q G J T 6 . 

(ii) There are an Abelian group <2(+), <peAutQ(+) and a e SQ such that 
(p2(x) = —x and xy = OL(X) + <pct(y) for all x, y e Q. 

(iii) There are an Abelian group Q(+) , (p eAut Q(+)> OLESQ and eeQ such 
that a(0) = 0, (p2(x) = —x and xy = a(x) + 9?a(j!) + e for all x, y e Q . 

Proof, (i) implies (ii). For all x,y,zeQ and xxpz(x) = z we have xipz(x) = 
= yipz(y), and so ipz(x)y = y>z(y)x. Using standard methods (similar to those 
showing that every transitive quasigroup is isotopic to a group), we can easily 
prove that Q is isotopic to an Abelian group. Now let aeQ be arbitrary. Then 
Q(+) defined via xa + ay = xy is an Abelian group and aa = 0. If x + y = 
= u + v then, since Q e JT6, RaL^(v) + LaR?(x) = RaL?(y) + LaR-\u). 
However RaLr^O) = 0, so that, in particular, LaR~\x + y) = LaR~\x) —-
— RaL'Xy) and LaR~J-(y) = — RttL'^y). Thus a = Ra, <p = LaR~a have the 

desired properties. 
The remaining implications are very easy. 
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4.8 Proposition. The following conditions are equivalent for a quasigroup Q: 
(i) Q 6 . * V 

(ii) Q is commutative, unipotent and isotopic to a group. 
(iii) There are an Abelian group Q(+) and a e SQ such that a(0) = 0, 

x + x = 0 and xy = OL(X) + a(jy) for all x>y eQ. 

Proof, (i) implies (ii). For all x,y,zeQ, let x<pz(x) = z = \pz(y)y. Since 
£)£Jf*7 and xy = xy, we have xx = yy, xy = yx and xtpz(y) — y<pz(x) = 
= ^(x)jv. Hence Q is isotopic to a group by 2.8. 
(ii) implies (iii) by 4.1 and 4.6 and (iii) implies (i) trivially. 

4.9 Propositin. Let Q be a quasigroup with C(Q) = 0. Then 
(i) if QeCtiCz then Q is commutative, 

(ii) if Q e JfY, i = 4, 5, 6, then Q e Jf- . 

Proof. An easy work. 

4.10 Proposition. Let neE. Then 
(i) if |Im n\ = 3 then C/fn is the class of all one-element quasigroups, 

(ii) if |Im n\ = 2 and n(\) =£ n(3\ n(2) = n(4) (or TZ(\) = n(3\ n(2) ^ n(4)) 
then CtCn is the class of all one-element quasigroups, 

(iii) if |Im n\ = 2 and n(\) = TZ(2)} n(3) = n(4) then Xn is the class of all 
unipotent quasigroups, 

(iv) if | Imji | = 2 and n(\) = .rr(4), n(2) = TZ(3) then OtiCn is the class of all 
commutative quasigroups, 

(v) if |Im.7r| = 2 and n(\) = n(3\ n(2) = n(4) then Ctfn is the class of all 
quasigroups, 

(vi) if |Im n\ = 1 then Jf-- is the class of all quasigroups. 

Proof. Easy. 
Finally, consider the following twelve classes of quasigroups: Jfu i = \> • • -57, 

^ - the class of all unipotent quasigroups, 3C - the class of all quasigroups Q 
such that there are an Abelian group Q(+) , <peAut<2(+) and a e SQ such 
that <p2 = 1, x + x = 0 and xy = a(x) + <pct.(y) for all x>y eQ> %J - the class 
of all unipotent quasigroups satisfying the identity xy = yx . f(yx), ^ - the class of all 
commutative unipotent quasigroups and 0 - the class of all one-element quasigroups. 

4.11 Proposition. All classes J f s, S £ £, are varieties of quasigroups and their 
intersection semilattice is as follows: Q £ J T 7 £ <g c jf3 £ JT2 £ tf\, 
JT6 £ JT5 £ ^ £ * £ Jfi , * £ ^ £ ^ 2 , ^ 7 £ #* £ JT4 £ Jf i , 
f c j g c ^ , x £ J T 2 . 

Proof. In 4.3 —4.10, we have described all classes Ctfm neE. Now we can 
use the results of [3] to conclude that all ctifn are varieties of quasigroups. For 
the rest, it is an easy exercise to verify that each Jfs coincides with one of the 
twelve classes. 
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