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This paper deals with unipotent quasigroups, i.e. quasigroups satisfying the identity xx = yy.
This class of quasigroups has a nice property with respect to isotopy, namely every quasigroup is
isotopic to some unipotent quasigroup. In the first section, several basic results concerning unipotent
quasigroups are presented, e.g. the quasigroups having the isotopy-isomorphism property in this
class are completely described. The following two sections are devoted to unipotent IP-quasigroups
and unipotent medial quasigroups. The results of the last section determine the structure of some
quasivariaties of quasigroups.

B craTse u3yuyeHbI YHUIIOTEHTHbIE KBasUTPYIIIbI, T€ KBa3UI'PYIIIbI BBIIOJIHIOALLME PABEHCTBO
xx = yy. B nepBoit uacTu INOJIyueHbI OCHOBHBIE PE3YJIBTAThHI, JOKA3bIBAETCSI HAIIPUMEP, UTO
BCsSIKasi KBasUrpymna M30TOIHA HEKOTOPOil YHMIIOTEHTHOH KBa3WTDYIIE U OIMCBHIBAIOTCS BCE
KBasUIpyNsl 06JIaaiolye N30TOMHO-U30MOPGHBIM CBOMCTBOM OTHOCHUTENIBHO KJIACCa YHHIIO-
TEHTHBIX KBasurpymi. Bropast W TpeThsl 4acTH IOCBSIIEHBbI YHUIIOTEHTHbIM IP-KBasurpymmam
¥ YHUIIOTEHTHBIM MeQWAJbHBIM KBasurpymmam. B mocnenHeit 4acTH WCCIENOBaHbI HEKOTOPbIE
KBasNIIPUMHUTHUBHBIE KJIACCHI KBa3UTPYIII.

Clanek se zabyva studiem unipotentnich kvazigrup, tj. kvazigrup spliivjicich identitu xx = yy.
V uvodni &4sti jsou dokézédny nékteré zdkladni vysledky o unipotentnich kvazigrupich. Kromé
jiného je dok4z4no, Ze kazd4 kvazigrupa je izotopni nékteré unipotentni kvazigrup&. Dalsi dvé& &asti
jsou vénovany unipotentnim IP-kvazigrupam a unipotentnim medidlnim kvazigrupidm. V zdvére¢né
&asti jsou popsany nékteré kvazivariety kvazigrup.

As it is well-known, every quasigroup is isotopic to some loop. However, there are some
classes of quasigroups other than loops which also have this remarkable property. One of them is
the class of unipotent quasigroups, i.e. quasigroups satisfying the identity xx = yy, and namely
this class is studied in the present paper. In the first section, several basic results concerning
unipotent quasigroups are presented, e.g. the quasigroups having the isotopy-isomorphism property
in this class are completely described. The following two sections are devoted to unipotent IP-
-quasigroups and unipotent medial quasigroups, respectively. The results of the last section
determine the structure of the quasivarieties of quasigroups defined by the quasiidentities of the
form

X1X2 = X3X4 => Xn(1)X7(2) = XRI)X7(4) >

where 7 is some transformation of the set {1,2,3,4}.

*) 186 00 Praha 8, Sokolovské 83.
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I. Basic Properties

The terminology and notation is standard (see e.g. [1]). In particular, if Q
is a quasigroup then the parastrophs of Q are denoted by Q-1, -1Q, O, “1(Q-1)
and (-1Q)L, Lx(y) = Ry(x) = xy and wxe(x) = f(x)x = x for all x,ye€Q, C(Q)
is the centre of Q and Sg is the set of all permutations of the set Q. If Q is
a group then its unit will always be denoted by 0.

A quasigroup Q is called unipotent if ¥x = yy for all x, y € Q. Obviously»
every unipotent quasigroup has exactly one idempotent element. Immediately from
the definition of parastrophs we have the following simple result:

1.1 Proposition. Consider the following conditions for a quasigroup Q:

o is a left loop a right loop unipotent
Q-1 is a left loop unipotent a right loop
-10 is unipotent a right loop a left loop
0 is a right loop a left loop unipotent
-1(Q) is unipotent a left loop a right loop
(1Q)1 is a right loop unipotent a left loop..

Then the conditions in each column are equivalent.

1.2 Corollary. The following are equivalent for a quasigroup Q:
(i) Q is a unipotent loop.
(ii) All parastrophs of Q are unipotent loops.
(ili) At least one of the parastrophs of Q is a unipotent loop.
(iv) At least two of {Q, O}, {O-1, (-1Q)-1}, {-1Q, -1(Q-1)} contain a loop.
(v) Each of {Q, 0}, {01, (-1Q)-1}, {-1Q, (O} contains a unipotent quasi-
group.
(vi) All parastrophs of Q are loops.
(vii) All parastrophs of Q are unipotent.

1.3 Proposition. Every quasigroup Q is isotopic to a unipotent left (right) loop.

Proof. Let a,b€Q and g(x) = L;'(x) for each xe€Q. Define xxy=
= R;{,)(a) L3 (). The mapping x |- R}, (a) clearly is a permutation, so Q(x)
is a quasigroup. Further, x*xx =a=yxy and ax*x =>bL(y) =y for all
x, y € Q. Similarly the other case.

1.4 Proposition. Every commutative unipotent quasigroup  is isotopic to a
commutative unipotent loop.

Proof. It suffices to take a € Q and put x*y = L} (x) L;Y(y) .

As it is easy to see, the three-element cyclic group is the only loop with three
elements, however this loop is not unif)otent. Hence there exist unipotent quasigroup
which are not isotopic to unipotent loops.

It is an easy exercise to construct unipotent quasigroups of arbitrary finite
order, unipotent loops of every finite order » >4 and commutative unipotent
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quasigroups of every even order (see e.g. [2]). On the other hand, every non-trivial
finite commutative unipotent quasigroup has even order, as follows from the
following well-known (and obvious) result:

1.5 Proposition. A finite commutative quasigroup has odd order iff the mapping
x |- xx is a permutation.

Now we turn our attention to the problem of determining all quasigroups
with the isotopy-isomorphism property in the variety of unipotent quasigroups.

1.6 Proposition. Let Q be a unipotent quasigroup such that every unipotent
quasigroup which is isotopic to Q is isomorphic to Q. Then Q has at most
two elements.

Proof. According to 1.3, Q is a loop with unit 0. Further, let a,b€Q be
arbitrary, g(x) = Li(x) and xxy = Rg{,(a) L;'(y) for all x,yeQ. Then
Q(x) 1is a loop with unit a (cf. the proof of 1.3) and, for 6 =0 and y = a, we
get R;'(a) a = x. Similarly, aL}}(a) =x for all x,a€Q, and so Q is a
TS-loop. Consequently, for x = bz and y = a, we have bz = ((b. bz)a) (ba) =
= za .ba, so that Q is a Moufang loop. Now, if x,y,z€ Q are arbitry then,
combining the preceding results, we have x.yz = (y.xy)(y2) = xy.z and we
conclude that Q is an Abelian group. Finally, let A€AutQ and xoy =
= h(x)h(y). Q (o) is clearly unipotent, thus being a loop with unit j. Now, for
every x€Q, j=xo0x = h(xx) = (h(0) =0, so x=x00= h(x) and we are
through.

We conclude this section with a problem. We shall say that a variety ¥~ of
_quasigroups has property (U) if every quasigroup is isotopic to some quasigroup
from ¥°. Denote by 2, 29, A% the varieties of loops, unipotent left loops
and unipotent right loops, respectively. We have shown that all these varieties
have property (U). Moreover, considering the free loop on countably many free
generators, it is not difficult to prove that 2, 29 and 9 are minimal varieties
with property (U). Hence a question arises: Does every variety of quasigroups
which has property (U) contain one of 2, 29, Ry ?

2. Unipotent IP-Quasigroups

A quasigroup Q is called an RIP-quasigroup (LIP-quasigroup) if there is
a mapping 0 (7) of Q into Q such that yx. d(x) =y (v(x).xy =y) for all
x,y € Q. IP-quasigroup is a quasigroup which is simultaneously LIP and RIP.
The following assertions are easy and well=known.

2.1 Lemna. Let Q be an RIP-quasigroup (LIP-quasigroup). Then

(i) 62=1 and ¢ is a permutation (2 =1 and 7 is a permutation),
() yox).x =y (x.tv(x)y=y) forall x,yeQ,
(iii) x0(x) = f(x) and 8(x)x = f(d(x)) (r(x)x = e(x) and x7(x) = e(x(x))),
(iv) e(x) = 8(e(x)) (f(x) = (f(x)))-
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2.2 Lemma. Let Q be an IP-quasigroup. Then d(xy) = 7(y)t(x) and t(xy) =
= d(y)d(x) for all x,yeQ.
2.3 Lemma. The following conditions are equivalent for a quasigroup Q:
(i) Q is a commutative IP-quasigroup.
(i) There are a TS-quasigroup Q(x) and 6 €Aut Q(x) such that 62 = 1
and xy = d(x xy) for all x,yeQ.

2.4 Proposition. The following conditions are equivalent for a quasigroup Q:
(i) Q is a TS-loop.

(i) Q is a unipotent TS-quasigroup.

(iii) Q is a unipotent IP-loop.

Proof. Obvious.

2.5 Corollary. The following are equivalent for a quasigroup Q:
(i) Q is a commutative unipotent IP-quasigroup. ,
(ii) There are a TS-loop Q(x) and its automorphism J such that 62 =1
and xy = d(x xy) for all x,yeQ.
Let Q be a quasigroup. Then 2(Q) will be the set of all ordered pairs
(4, 0) such that A, o are mappings of Q into Q and A(xy) = o(x)y for all
x,y€Q. Similarly, 2(0) = {(4 o) | A(xy) = xo(3)} and '
A(Q) = {(4 0) | Mx)y = xo(»)}. Further, Li(Q) will be the set of all mappings
A such that (4, 9) € 2(Q) for some p. Similarly we define L.(Q), Z:i(Q),
R(Q), Mi(Q), M{(Q).

2.6 Lemma. Let Q be a quasigroup. Then
(i) 2(Q) and #(Q) are subgroups of Sg X S,
(i) #(Q) is a subgroup of Sg X Sq,
i) L1(0), L{Q), Ri(Q), Ri(Q), Mi(Q), MA(Q) are subgroups of So,
(iv) Li(Q) 22 LA(Q), Ri(Q) 2 Ry(Q) and Mi(Q) 22 MAQ) .

Proof. Easy.

2.7 Lemma. Let Q be a quasigroup. Then

(i) Ap = @A forall AeLi(Q) and ¢ €Ri(Q),
(i) op = @po forall peL{Q) and ¢eMi(Q),
(ili) Ay = pid forall AeR(Q) and weM(Q).

Proof. Easy.
2.8 Lemma. The following are equivalent for a quasigroup Q:
(i) Q is isotopic to a group.
(ii) At least one of the groups Li(Q), LA{Q), Ri(Q), RA(Q), Mi(Q), M{(Q)

operates transitively on Q.
(iii) Each of the six groups operates transitively on Q.

Proof. See e.g. [4].
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2.9 Lemma. Let Q be a commutative quasigroup. Then
@® 29 = #Q),
(i) (o 0) €A4(Q) forall oeLA(Q),
(i) L1(Q) = Ri(Q) and LAQ) = RA{Q) = Mi(Q) n MK(Q).

Proof. Obvious.

2.10 Lemma. Let Q be a commutative quasigroup. Then L;(Q) and L.(Q)
are commutative groups.

Proof. Apply 2.6, 2.7 and 2.9.

2.11 Lemma. Let QO be an RIP-quasigroup. Then
i) (hoe 2Q iff (o e 2Q),

(i) Ly(Q) = L(Q)

(iii) (4, 0)€ #(Q) iff (4, 6¢710)e.4(Q),

(iv) Ri(Q) = M(Q),

V) RAQ) 2 MAQ).

Proof. (i) We have o(xy) = o(xy)d(y) .y = Mxy . 6(y))y = Ax)y for all x,ye€Q.
(ii) follows immeditely from (i).
i) Let (4 0)€ %(Q). Then A(x)y = Axdg-14() . 0-1d())y =
= (x00718(y) . d(y))y = x0p~16(y) . Similarly the converse.
(iv) follows from (iii) and (v) follows from (iv) and 2.6(iv).

212 Lemma. Let O be an LIP-quasigroup. Then
i) (o e Q) iff (o 4)e 2Q),

(i) Ri(Q) = RuD),

(i) (4 e e€ 2Q) iff (rolr,)e#(Q),

(iv) Li(Q) = MK(Q),

V) L{Q) 2 Mi(Q).

Proof. Dual to that of 2.11.

2.13 Lemma. Let Q be an IP-quasigroup. Then
(i) Lu(Q) = L{Q) = M{(Q) 2 Ri(Q) = RA(Q) = Mi(Q) ,
(i) (4 0)e 2(Q) iff (046, to7) e Z(Q),
(iii) 2(Q) 2 #(Q) 2 .#(Q) .
Proof. Apply 2.11 and 2.12.

2.14 Lemma. Let Q( be a commutative IP-quasigroup. Then
(1) Li(Q) = L{(Q) = MA(Q) = Mi(Q) = Ri(Q) is a commutative group,
(ii) A = p, whenever (4, o) € #(Q).

Proof. (i) Apply 2.9 and 2.13.
(ii) We have A(x) = d(x) . A(x)x = d(x) . x o(x) = o(x) .
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2.15 Lemma. Let Q be a unipotent quasigroup. Then
(i) o = 4! whenever (4, 0) €.#(Q),
(i) Mi(Q) = MAQ) .
Proof. (i) We have xx = A(x)A(x) = xpA(x), hence x = 0A(x).
(i) follows from (i).

2.16 Proposition. Let Q be a unipotent IP-quasigroup. Then Li(Q) = L,{Q) =
= My(Q) = Ri(Q) = R(Q) = Mi(Q) is a commutative group. Moreover, if Q
is commutative then every element of Li(Q) has order 2.

Proof. Use 2.13, 2.14 and 2.15.

2.17 Lemma. Let Q be a commutative quasigroup, a,f€Sq and xxy =
= a(x)B(y) for all x,ye Q. Then Q(x) is commutative iff (af-1, af-1) € #(Q).

Proof. Trivial.

2.18 Proposition. Let Q be a commutative unipotent IP-quasigroup. Then
every commutative quasigroup isotopic to Q is unipotent.

Proof. Let a(x)f(y) = a(y)f(x) for all x,ye Q. Then af-1eL(Q) by 2.17
and 2.16, hence afi~1(x)x = «f-1(y)y, and so a(x)f(x) = «(y)p(y) forall x,y € Q.

3. Unipotent Medial Quasigroups

A quasigroup Q is called medial if ab.cd = ac.bd for all a,b,c,d€Q.

3.1 Proposition. The following are equivalent for a unipotent quasigroup Q :
(i) Q is medial.

(ii) There are an Abelian group Q(+), ¢ € Aut Q(+) and ee Q such that

xy = @(x —y) + e forall x,yeQ.

(iii) There is x € Q such that, for all a,b,c€Q, xa.bc = xb.ac.

(iv) There is x € Q such that, for all, a,b,c€Q, ab.cx = ac. bx.

(v) Thereis x € Q such that, for all a, b,c € Q, ax . bc = ab . xc.

(vi) Forall a,b,c€Q, aa.bc=ab.ac and bc.aa = ba . ca .

Proof. The equivalence of (i) and (ii) is obvious from Toyoda’s theorem and the
equivalence of (i), (iii), (iv) and (v) follows immediately from Theorems 1.3 and
2.3 of [5]. Finally, if (vi) holds then Q is isotopic to a group by 2.8, since
LoL;' € My(Q) for all a,be€Q, and an application of Proposition 4.3 from [5]
finishes the proof.

A quasigroup Q is an F-quasigroup if a.bc = ab.e(a)c and bc.a =
= bf(a).ca for all a,b,ceQ. It is an open question (at least for the authors)
whether every unipotent F-quasigroup is medial. The answer is positive in the
commutative case.

In [6] was proved that the lattice & of all varieties of unipotent medial quasi-
groups is countable and modular, but not distributive. However, a complete
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description of % was obtained only in the commutative case. On the other hand,
the variety of commutative unipotent medial groupoids contains uncountably many
subvarieties.

4. Unipotent Quasigroups Isotopic to a Group

4.1 Proposition. The following conditions are equivalent for a quasigroup Q:
(i) Q is unipotent and isotopic to a group.

(ii) There are a group Q(+) and a€ S¢ such that «(0) =0 and xy =
= ox) —a(y) forall x,y€Q.
Proof. (i) implies (ii). Denote 0 = xx, x € Q. Now it suffices to define x + y =
= Rg'(x)L3'(y) -
(ii) implies (i) trivially. _

Denote by E the set of all transformations of the set 4 = {l,2,3,4}. If
S € E then #'s will denote the class of all quasigroups satisfying the quasi-
identities

X1X2 = X3X4 => Xz1)Xn@) = Xa@)Xa(4)

for all # € §. Instead of .#"i; we shall simply write ¢ 5 .
4.2 Lemma. If o, f€E then A, X5 < A g Ap, .

Proof. Obvious.

Now introduce the following notation for the elements of S4: 1 = lg4,
2 =(12)(34), 3 =(12), 4 = (13), 5=(23), 6 = (1234), 7 = (234), 8 = (123),
9 = (143), 10 = (134), 11 = (124), 12 =(243), 13 = (132), 14 = (142),
15 = (14), 16 = (1243), 17 = (1342), 18 = (1432), 19 = (24), 20 = (1423),
21 = (34), 22 = (1324), 23 = (14) (23) and 24 = (13)(24).

4.3 Proposition. (i) #1 = # a4 is the class of all quasigroups.
(i) Ao = A o3.
(iii) A3 = H'o2 = A 91 = H'p is the class of all commutative quasigroups.
(iV) .?{V4 — -7{19 .
V) Hs= A1 =H16=A15.
(Vi) ‘}{6 = A3 .
Wil) A7 =Hwuu=H13=n,12= Ay =H10=H9g—=Ag.
Proof. Use 4.2.
4.4 Proposition. The following are equivalent for a quasigroup Q:
i) Qers.
(i) xy = e(yx).yx forall x,yeQ.
(iii) xy = yx.f(yx) forall x,ye Q.
Proof. If Qe.#s then xy = e(yx).yx, since yx = yx.e(yx). Conversely, if
(ii) holds and ab = cd then ba = e(ab).ab = e(cd).cd = dc. The rest is
similar.
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4.5 Proposition. The following conditions are equivalent for a quasigroup Q:
i) QeAxs. :
(i1) Q is isotopic to an Abelian group every nonzero element of which has order 2.
(iii) There are an Abelian group Q(+), «, f € Sq¢ and e € Q such that «(0) =
=pf0)=0, x+x=0 and xy = a(x) + B(»¥) + e forall x,yeQ.

Proof. Clearly, (ii) is equivalent to (iii) and implies (i). (i) implies (ii). Take a € Q
and define O(+) via xa + ay = xy. Then O(+) is a loop which clearly belongs
to 44, thus being unipotent and commutative. Finally, if x, y, 2 € Q are arbitrary
then (x +y)+0=y+x, sothat (x +3y)+x=y, and y=(x+y) + x =
=(y+2)+2 implies (x+y)+z=@W+2)+x=x+ Qo +2).

4.6. Proposition. The following conditions are equivalent for a quasigroup Q:
(i) QeAs. ’
(ii) @ is unipotent and isotopic to an Abelian group.
(iii) There are an Abelian group Q(+) and ax € Sg such that «(0) =0 and
xy = a(x) —a(y) for all x,ye€Q.

Proof. (i) implies (ii). For all x,y,2€Q let x@,(x) =2z = y,(y)y. Since
QeXs, xyy) = @x)y and xx =yy, so that ¢, Mi(Q). Hence Mi(Q)
operates transitively on Q and Q is isotopic to a group by 2.8. With respect to
4.1, there are a group Q(+) and « € Sq such that «(0) =0 and xy =

= a(x) —a(y). Finally, —x =y — (x + ), hence a~(0) a-1(x) =
=aYy)aYx +3y), so a1(0)aly) = al(x)a(x + y), which means —y =
=x—(x+y) and x+y=y + «x.

(ii) implies (iii) by 4.1 and (iii) implies (i) trivially.

4.7 Proposition. The following conditions are equivalent for a quasigroup Q:
i) QeXs.
(ii) There are an Abelian group Q(-+), ¢ € Aut Q(+) and « € Sq¢ such that
@%(x) = —x and xy = a(x) + @a(y) for all x,y €.
(iii) There are an Abelian group Q(+4), ¢ € Aut Q(+), « € Sq and ee Q such
that «(0) = 0, ¢%(x) = —x and xy = a(x) + p(y) + e for all x,ye€Q.

Proof. (i) implies (ii). For all x,y,2€Q and xy,(x) = 2 we have xy,(x) =
= yyy), and so y(x)y = y,(y)x. Using standard methods (similar to those
showing that every transitive quasigroup is isotopic to a group), we can easily
prove that Q is isotopic to an Abelian group. Now let a € Q be arbitrary. Then
Q(+) defined via xa 4 ay = xy is an Abelian group and aa = 0. If x +y =
= u -+ v then. since Q€N RoL'(v) + LaR;(x) = RaL;'(y) + LR} (u).
However RqL;!(0) =0, so that, in particular, LsR;'(x + y) = L R;}(x) —
— RoL}H(y) and LgRMy) = — RoLM(y). Thus a = Ry, ¢ = LR7! have the
desired properties.

The remaining implications are very easy.
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4.8 Proposition. The following conditions are equivalent for a quasigroup Q:
i) Qexdn.
(i) Q is commutative, unipotent and isotopic to a group.
(iii) There are an Abelian group Q(+) and «€Sq such that «(0) = 0,
x+x=0 and xy = a(x) + «(y) for all x,y €.

Proof. (i) implies (ii). For all x,y,z€Q, let xp x) =z = y,(y)y. Since
QeA’7 and xy =xy, we have xx =y, xy =yx and xy(y) = yp,(x) =
= @/x)y. Hence Q is isotopic to a group by 2.8.
(if) implies (iii) by 4.1 and 4.6 and (iii) implies (i) trivially.
4.9 Propositin. Let Q be a quasigroup with C(Q) = #. Then
(i) if QeAy then Q is commutative,
@) if QeAi,i=4,56, then QeA-.
Proof. An easy work.

4.10 Proposition. Let w € E. Then

(1) if |Imn| = 3 then A, is the class of all one-element quasigroups,

(ii) if |Im=n| =2 and #(1) # 7(3), #(2) = #(4) (or n(1) = #(3), 7(2) # =(4))
then ¢, is the class of all one-element quasigroups,

Gii) if |Im=zn| =2 and =(l) = a(2), n(3) = 7(4) then ', is the class of all
unipotent quasigroups,

(iv) if |Im=z| =2 and =#(l) = 7(4), 7(2) = #(3) then ¥ is the class of all
commutative quasigroups,

(v) if |Ima| =2 and #(l) = a(3), n(2) = =(4) then A, is the class of all
quasigroups,

(vi) if |[Ima#| =1 then A, is the class of all quasigroups.

Proof. Easy.

Finally, consider the following twelve classes of quasigroups: X, 1 = 1,...,7,
% — the class of all unipotent quasigroups, Z —the class of all quasigroups Q
such that there are an Abelian group O(+), ¢ €Aut Q(+) and « € Sq such
that ¢2 =1, x +x=0 and xy = a(x) + @a(y) for all x,y€Q, ¥ —the class
of allunipotent quasigroups satisfying the identity xy = yx . f(yx), € —theclassofall
commutative unipotent quasigroups and @ — the class of all one-element quasigroups.

4.11 Proposition. All classes A5, S < E, are varieties of quasigroups and their
intersection semilattice is as follows: 0 < A7 € € =< A3 < Ao < A1,
HeSAHAscHcUScH 1, <Y Ay, A XAy A,
XcHeSs A1, X Ay,

Proof. In 4.3 —4.10, we have described all classes 4", # € E. Now we can
use the results of [3] to conclude that all ", are varieties of quasigroups. For
the rest, it is an easy exercise to verify that each # s coincides with one of the
twelve classes.
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