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We prove the non-existence of ovaloids satisfying
A{(K-1dg(K)} + 2¢(K) = 0, g: (0, ) = < 0, o).

HecymecTBoBaHMe HEKOTOPBLIX 0BanouAoB. JIOKa3aHO HECYUIECTBOBAaHME OBAJIONMOB, A
KOTOPBIX
A{(K1dg(K)} + 2¢(K) =0, g:(0, ) — <0, ).

Neexistence jistych ovaloidd. Je dokdzdna neexistence ovaloidu, pro které
A{(Kdg(K)} + 2¢(K) = 0, g :(0, ©) - <0, ).

A more detailed analysis of the proof of the linearity of certain functions on
the sphere, see [2], enables us to prove the following

Theorem. Let g:R+*— R+ J{0}, R*= (0, 0), g=£=0, be a function.
Then there is no ovaloid M < E3s such that

) A{f K1 c-lg%<—)dK} + 2g(K) = 0.

Here, K is the Gauss curvature of M and A the Laplacian.

Proof: Let us consider just the Riemannian structure of a given ovaloid M.
In a suitable domain £ of M, let us choose 1-forms wl, w? such that w! A w2 + 0
and

) ds? = (0)2 + (w2)2 ;
M may be covered by such domains. Then there is a 1-form ®;?2 such that
3) do! = —w?2 A 0}, dw?=ow' A o,
and we get
@ dw? = — Ko A 0?,

K being the Gauss curvature of M. Be given a real valued function f on
M. Then, in 2, we get by the standard prolongation procedure the covariant

*) Malostranské ndm. 2, 118 00 Praha 1
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derivatives fi, fij, 4,..., D, R, ..., V of f with respect to w!, w? by means of
the formulae

®) df = fiw! + fow? ;
O df? —fow ) A o' 4 (dfe + fiw}) A @* =03
@ dfi —fPwi = fuot + fre?,

df? + fiwd = frew! + faaw? ;
©) (dfu —2f2e}) A o' + {dfiz + (fu —fee) i} A ©? = Kfao! A w2,
{dfiz + (fuu — f2) ®3} A ! + (dfee + 2f120%) A 02 = — Kfio! A w2 ;
9 dfui — 2fie0} = Ao! 4+ (B — } Kfz) 02,
dfiz + (fu —fee)oi = (B + } Kfg)o! + (C + § Kfi)o?,
dfes + 2fi20} = (C — % Kfr) ot + Dw? ;
(10) {d4 — (3B + }Kf)) wj} A o' + {dB + (4 —2C —} Kfi) w3} A w? =
= 3} (5Kfiz + Kif)) o' A\ 02
{dB (4 —2C —LKf) ol A o +{dC+ (2B —D + L Kf) ol} A 0? =
= } BKf2z — 3Kfu + Kefe — Kift) 0! A w?,
{dC+ (2B — D + } Kfy) w}} A o' + {dD + 3C + 1 Kf)) w3} A @2 =
= — } (5Kfi2 + Keft) w1 N\ w?;
(11) dA —(3B + } Kfs) 02 = Rl + (S — 8 Kfis — } Kufo) 02,
dB + (A4 —2C — } Kfi) 0} = (S + § Kfiz + } Kifo) o +
+ (T + § Kfu + § Khfi) 0%,
dC + (2B — D + L Kfs) o} = (T + 3 Kfee + 1 Kofo) 0! +
+ (U + % Kfiz + } Kof1) w2,
dD + (3C + L Kfi) 0} = (U — 5§ Kfis — } Kaft) ot + Vo2 .
(12) ¢ ={ —fi2d + (fu —fe2) (B + } Kfe) + f12(C —} Kf)} ! +
+ { —fie(B — § Kfz) + (fu — f22) (C + } oKf) + frzD} 2.

This form is invariant, see [1], and we have

(13) dp = — [P + {(fn —fa2)? + H}}K] 0! A ©?

with

(14) ® =2(B*+ C* —AC —BD) —;(fi +f5) K* —(h4 + D) K.
Now, let us study a general equation

(15) Af+2=0

on M. In our notation, (15) turns out to be

(16) i+ fee +2¢g = 0.

Because of (9), the differential consequences of (16) are

(17 A+C—3KA+20=0, B+D—}Kh+20:=0,
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and we get
(18) @ = 2B+ 202 —L1(fi + fH K>+
+ (2C + fiK) (C — 1 Kfi + 2g1) + (2B + f2K) (B — L Kfe + 2g2) =
= (2B + g2)* + (2C + 81)* — (g2 —f2K)* — (g1 —f1K)%.

Suppose

(19) dg = Kdf ;

of course, we get

(20) dR A df =0

as an immediate consequence. The suppositions f = f(K) and (19) imply
(©3)) =0,

and we get

(22) fu—fe2e=0, fia=0

from the integral formula f mdp = 0. From (16) and (22), fu = fee = —g, ie.,
(23) df = fiwl + faw?, dfi —few? = —gol, df: + fiv — = gwl.
Now,

(24 d x df = d(—faw! + fiw?) = —2gm! A\ @?;

the supposition g = 0 and the integral formula _[ md x df = 0 imply
(25) g=0.

Because of K > 0, we get

(26) f = const.

from (19). Thus there is only one éouple of functions g(K), f(K) = _f K1¢'(K)dK
satisfying (15), this couple being given by (25) + (26). QED.
As an example of our Theorem, we get the following.

Corollary. There are no ovaloids M < E3 satisfying
27 aAK*! + (« —1)K*=0, 1 +a€cR.
Proof. Take g(K) = K*. QED.
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