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.

The notion of tensor product of Hilbert spaces and operators on them is widely used in
quantum theory, though it is often understood only intuitively. We collect and examine here the
basic definitions and properties concerning the tensor products. Typical examples are also discussed.

O TeH30PHBIX NIPOU3BEAECHUAX U HX IPUMEHEHUSIX B KBaHTOBOI Teopun — I. O6wme coobpa-
>KeHUsi. — TeH30pHble NPOMIBEJCHUS I'MIIBOEPTOBBIX MPOCTPAHCTB U ONEPATOPOB IIMPOKO NPH-
MEHSIIOTCA B KBaHTOBO'T TEOPHH HECMOTPS Ha TO, UTO OHH YACTO IOHUMAIOTCA TOJIBKO MHTYUTHBHO.
B paGoTte pa3oOpasbl OCHOBHbBIE ONPEEIICHN U JaH 0030p Ba)KHENIINX CBOMCTB TEH3OPHBIX NPO-
u3BeqeHMit. PacCMOTpeHbI TaK»Ke THIHYHbIE IPUMEPDI.

Pozndmky k tensorovym soudiniim a jejich pouziti v kvantové teorii — I. Obecné tvahy. —
Pojmu tensorového soucinu Hilbertovych prostorti a operdtorii na nich se $iroce uzivd v kvantové
teorii, ackoli jsou ¢asto chdpdny pouze intuitivné. V prdci jsou shromdZdény a probriany z4kladni
definice a vlastnosti tykajici se tensorovych soucind. Diskutuji se zde téZ nékteré typické ptiklady.

I. Introduction

The concept of tensor product of Hilbert spaces and operators on them is of
fundamental importance in quantum theory: it is sufficient to mention the descrip-
tion of particles with spin, of the many-particle systems or the Fock spaces on which
quantum field theory is built.

However, in many standard textbooks of quantum theory these things are
treated in a way which is far from being satisfactory, not only from the mathematical
point of view, but from the point of view of the physical theory itself. In this
“elementary” treatment vectors of the Hilbert space # = #; X 2 are written
in the form |/ >1/>s where | ); is a vector of 5#;. Now, according to the super-
position principle, any linear combination of vectors of this type must again belong
to J#; however, if [p)1 + [p>1 and [pd2 * [@)2, we cannot write [pdi/pde +

*) 110 00 Praha 1, Myslikova 7, Czechoslovakia
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+ [§>1/@>2 in the form [>; />e. If the #,'s are spaces of square-integrable
functions (r;), i.e. #; = L%R3), we guess that # is the space of all square-
integrable functions Y(ri, r2), ie. # = L%RS), and contains not only the
products y(ry) ¢(rz). Nevertheless, in more complicated cases the appropriate guess
is not so obvious, and thus a rigorous general definition is a prerequisite for the theory.

From the point of view of mathematics the problems concerning tensor products
are of no special difficulty. Unfortunately, this topic does not belong to standard
contents of textbooks on functional analysis or mathematical physics and, moreover,
there is no unique way of treating it; there are differences even in the basic definitions
and it is often non-trivial to see their mutual connections.

These circumstances, which undoubtely hinder physicists from a better under-
standing and a fully qualified use of tensor products, led us to the idea of writing
this paper. We tried to define here the basic concepts in a way which should be
understandable to physicists who are familiar with elements of the theory of Hilbert
spaces and linear operators, to give further a review of different properties of tensor
products which are needed in practical applications and finally to illustrate these
applications on several typical examples.

Section 2 is devoted to tensor products of Hilbert spaces. We use essentially
the Jauch’s definition [1] who treats tensor product as a mapping satisfying certain
conditions. The questions of existence and uniqueness are examined and it is shown,
that other occuring definitions can be regarded as different realizations of this
mapping. Several examples of frequently used tensor products are included in order
to illustrate the general statements. The basic notions concerning tensor products of
linear operators (in general unbounded) are included in Section 3. The last section
contains a rather detailed summary of properties of bounded tensor-product
operators, special attention being paid to those which are important for applications
in quantum theory: Hermitian, unitary, projections and trace classes.

In the second part of this paper we shall examine the question of deriving
spectral properties of a tensor product operator from those of its constituent
operators and discuss typical examples showing general application of the tensor
product formalism in quantum theory.

Since some notions and symbols used in the text might not be commonly known,
we give now a brief list of them:

R ...real line

C ...complex plane

A xXB ...Cartesian product of the sets A, B

Rt(n = 1,2,...) ..R X R x ... X R (similarly for C7)

f: M—N ...amapping from the set M to N; fis called injective if it is one-one,

surjective if it maps M onto N and bijective if it is both injective
and surjective

Ao, H(r =1,2,...) ...Hilbert spaces (the corresponding scalar products and
norms are labelled in the same way)
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M2 ...linear envelope of the set M, i.e. the minimal linear manifold con-
taining M

ML ...orthogonal complement of M

complete set...a set M < # is complete if ML contains only zero vector (M! =:
= {0}), which is equivalent to M; = #

subspace  ...closed linear manifold % in #, i.e. ¥ = ¥,

G+ G2 1

% i 9, ...orthogonal sum of subspaces ¥; < 4, i.e. direct sum of mutually
i1 ‘ J orthogonal subspaces (general direct sum is denoted by @)

AMYD ...restriction of operator A4 to a subset D of its domain

] ...end of a proof

2. Tensor product of Hilbert spaces

Definition 1: Tensor product #1 X > of Hilbert spaces 1, 2 is the
class of all pairs #, ¢, where # isa Hilbert space and ¢ a mapping from #1 X #2
to S such that:

(pl) ¢ is bilinear

(92)  (p(x1, x2), (1, ¥2)) = (x1, yh (%2, y2)2 for all [x1, x2],
[yl,yz] EH1 X K2

(p3) A isspanned by theset @ = @(#1 X H#'3), i.e.
O, = #.

Each such pair is called realization of #1 ® #2 and will be denoted by
(1 @ H )0 *. ' ;

Let us stress that the realization of #; ® # 2 is not only a Hilbert space —
it must be also specified how elements of J#; X #3 are related to those of J#, which
is expressed by. ¢. .

Two questions naturally arise:

(i) Does for any #1, # 3 at least one realization exist ?
(ii) What is the connection between different realizations of #1 ® #2 (if two or
more of them exist) ?

In order to answer the first question consider the following construction
(cf. ref. [3]): Let F be the set of all complex bilinear forms f[., ..] on J#1 X H#%s,
the equality of f1, f2 € F being defined “pointwise”, i.e. fi = fa means fi[x1, x2] =
= fa[x1, x2] for all [x1, x2] € #1 X #’s. The set F becomes a complex vector space
if one puts

(fv + £2) [x1, x2] = fulxs, x2] + falx1, x2]
(af) [x1, x2] = af[x1, x2] (x€C).

*) Cf. ref. [1]. One can also omit (3) and understand by (#1 ® H#2) g the pair @y,
@ (see ref. [2]), this slight difference being of little importance. Other definitions and their con-

nections to the above one will be discussed below. N
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The zero vector of F will be denoted by Or, ie. Op[x1, xe] = 0 for all [x, x32].
Define now a mapping ¢ : #1 X #2 —F, [y1, y2] ~ @y, by

(2.1 Py [ 1= (o v (s y2)2.
This mapping is obviously bilinear and it is not injective (one-one), i.e. the pair
[v1, ¥2] is not uniquely determined by the form ¢y, 4, . However, ¢ is “almost
injective”, as the following lemma states:

Lemma 2.1:

(a) If @y,,y, = Op, then at least one of i, ys is zero.
(b) Let @y,,4, * Or and @y, = P2z, 5
1
then 21 = ay1, 22 = e for some o €C, o + 0.
Proof: (a) Substituting x; = y1, x2 = y2 into ¢y, 4, [x1, x2] = 0, we get

from (2.1) [y} ly2lf = 0, i.e. y1 =0 or ys = 0.
(b) According to (a) both y; and ys are non-zero, i.e. @y,,y, [v1, ¥2] + 0. Since

(*) (pyuyn [xl’ xZ] - qﬁzlsz! [xl’ x2]
for all [x1, x2] €1 X #a, we have (y1, 211 (Y2, 22)2 + 0. Substitution x; =
- . 1 —
=yi/lyllf into (*) gives (x2,y2)2 = (x2, x222)2 Where a2 = i (y1, 21) * 0.
1

Now, x2 is any vector from J#3 and thus ys = a2zs. Similarly y; = eayz1 with

oy =

I — . | 1
B, y 2 s e s t = —,
Iyl (2, 22) + 0 and, since 22 p” v, weget o = - [ ]

Let us denote by @ the g-image of #; X s (see condition (¢3)) and
introduce the following function ¥ on ® x ®:
22 Y (@y,20 Privs ) = (21, )1 (25 y2)2 -

This definition makes sense: according to the above lemma and elementary properties

of scalar product
"{I((pznzl’ qjylsy:) = W(¢zll9zl” (Flll'-?/a') b

if @z 20 = @z,.2,a0d @y .y = @y,.y, . Comparing (2.2) with (2.1) we find
(2.32) (@z,.z0 Puivs) = Puiw [x15 x2] = az, (1 y2l
(2.3b) V(P Prin) = P @y, Prms) -
In view of obvious relations
P(0r; @y,.0.) = (92,2, Or) =0
one can extend ¥ by linearity from ® x ® to ®; x ®, putting
(24) Ve =3 5 wbiors 5 (8, 2

if m n
f= 2 ai@yny o, &= 2 Bi@z(ii.
§=1 J=1
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Again the value P(f,g) does not change if f andfor g are expressed by means of
another linear combinations. This can be easily seen if one takes into account that

flof, 28’1 = 2 aigyto g0 275 2] = 2 au(pi?s 2001 (0575 2)e
=1 i=1

which implies

(2.49) (f.e) = 5 B, A

In the same way one gets

(2.4b) V(E8) = 3 il ).

Thus ¥ satisfies

® Ploufi + azfe, g) = u¥(f1, 8) + «2¥(f2, ) for
all fi, f2, g € Dy, o1, a2 €C,

(i) ¥(f,8) = Vg ).

We further show that ¥ is a scalar product on @;:
Proof: Because of (i) and (ii) it is sufficient to prove that ¥(f, f) > 0 for all

fe®,and Y(f,f) = Oonlyiff = Op. Letf = > ¢ @y, ), y,(» and assume that gy, ), y,) F
i=1

#+ Op at least for one 7 (otherwise f = Or and ¥(f,f) = 0 due to (i)). Denote
by %, (r = 1, 2) the subspace of 5, spanned by the vectors y! (i = 1,2, ..., m);
its dimension m, = dim ¥, satisfies 1 < m, <m. Let {¢};~; be an ortho-
normal basis for %, and denote by #7{"” the components of y!? in this basis;
then

m, m; ——
Puym = 2 2 IR @, 00
k=11-1
and
m, m,
f: z z ykl (pgl(k),e’(l)
1 k=1
where
m TR TS
yo = 3 i
i=

Substituting this expression for f into (2.4), we get

VA= 3 3 lyml?.
k=1 1=1
Thus ¥Y(f,f) >0, and if Y(f,f) = 0 then all the yi; = 0, i.e. f= Op. (]

Now we complete ®, under this scalar product by the standard procedure
(see e.g. ref. [4]) and obtain thus a Hilbert space 5# such that @, is dense in it.
Hence 5# and the bilinear mapping ¢ satisfy condition (¢3), and they satisfy also
(¢2) due to (2.2). Summarizing, we can give the following answer to our first
question:
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Theorem 1: To any pair of Hilbert spaces .#1, #» there exists at least one
realization of #1 R H#s.

Let us mention now, when the question of existence is positively answered,
the following important property of realizations of tensor products:

Lemma 2.1a:

Let 2#, ¢ be a realization of #; R #s.
(a) If @(x1, x2) = 0, then at least one of xi, x2 is zero
(b) If g(x1, x2) =+ 0 and ¢(x1, x2) = @(¥1, v2), then

1
Y1 = ax1, y2 = —a—xz for some «€C, o + 0.

Proof is an obvious modification of that of Lemma 2.1. ]

Let us now pass to the second question. Firstly we prove another useful
lemma:

Lemma 2.2: Let M, (r = 1, 2) beacomplete set in s#,, and let a realization
(#1 R H2)#,p begiven. Then ¢(M; X Mg) is complete in 7.

Proof: Let us take any y, € #,. According to our assumption y, € (M,)z,
i.e. there exists a sequence {y}°, < (M) such that y — y,. Then |y}, —

— |lydlr and (¥, x)r — (v, x)r for any x € #,. Because of (¢2) we have

lp(y1, y2) — g1 y8IP =
' = Iyult 1y2l} + 715 [v8713 — 2 Re(y, 3" (v2s y8)2 = 0,
1.€.
2.5 D = g(#1 X H2) < p(M)2 X (m2)2) < (¢(M1 X M)

(the second inclusion is easily verified using (¢1)). Further (¢(M1 x M)y is

a linear manifold; then (2.5) implies @, < (p(M1 X Mg)), and also @, <
< (p(Mi X M2))z.  On the other hand, from @M1 X M2) = ® we get

((p(Mi Q_Mz));, < @;; hence v((;(ﬁ77X4M2));. =q, =#. |

This lemma has some important consequences:

Corollary 1: Let s#, be separable and &, = {eii’}?i:"f'}f r be an ortho-
normal basis in J#,. Then the (arbitrarily) ordered set ¢(&1 X &2) =
= {p(ef", e") | 1 < i< dim ), | <j < dim #3} is an orthonormal basis in J#.
In other words: If s#, are separable, then for any realization of ) @ 52 the
space S is separable and dim s = dim o . dim s *).

In practical applications, when we deal with a concrete realization, it may turn
out difficult to verify (¢3). The above lemma makes it possible to replace this
condition by a more convenient one:

*) This statement holds for non-separable Hilbert spaces as well; it is only necessary to use

the general definition, according to which dim J# is the cardinality of any complete orthonormal
set in J# (see e.g. ref. [5]).
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Corollary 2: Let 7, (r = 1,2) be separable and &, be an orthonormal
basis in ;. If a mapping ¢ :#1 X # — # satisfies (pl) and (¢2) and
¢(&1 X &) is an orthonormal basis in J#, then (p(H1 X #9))s = H *).

The following theorem shows that a realization can be constructed for any #’
which has an “appropriate” dimension:

Theorem 2: Let 51, # 2 and S be given. Then a realization (#1 Q) #2):#,¢
exists if and only if

(2.6) dim #; . dim #5 = dim # .

Proof: According to Corollary 1 of Lemma 2.2 the condition (2.6) is necessary.
Suppose now that (2.6) holds and denote by (1 @ #2)# 0,90 the ‘“constructive”
realization from Theorem 1. Then dim #¢ = dim 5#; . dim #’ s = dim J#, so
that %, is isomorphic to #. Hence there exists a unitary (isometric) operator U
that maps 2#y onto s#. The compound mapping ¢(., ..) = U(pe(., ..)) maps
H1 X # to H# and, due to the properties of U and ¢o, it obviously satisfies
(@), (@2). Let ye(p(#1 X #9)), ie. (plx1, x2),y) =0 for all [x1, x2] €
€N X Ho; writing y = Ux, x €#p, we get (go(x1,x2),x)o =0 for all
[x1, x2] € #1 X H#s. Since @o(#1 X #2) is complete in Sy, one has x = 0 and
y = Ux = 0. Hence (¢(#’1 X #3))- = {0}, which is equivalent to (¢3). [ |

Thus we see that for any 5#1, #’» there exists an infinite variety of realizations
of #1 ® H#s. We now show that these realizations are closely connected to each
other. For this purpose we introduce the notion of isomorphic realizations:
(A1 @ H2) 4, is isomorphic to (1 @ H2)#",¢' if a unitary operator U from #
onto .#' exists such that

eX) U@(x1, x2)) = ¢/(es x2)
for all
[x1, xg] Erfl X .#2 .

Notice that this definition requires more than a mere isomorphism of 5# and #"’
(this is trivial due to Corollary 1 of Lemma 2.2). The reason is clear from the defini-
tion of tensor product and the remark following it.

Theorem 3.: For given .#’1, /s all realizations (3#1 ® # 2)#°,p are mutually
isomorphic.

Proof: We take any two realizations and denote as usually: @ = @(#1 X #5),
P = ¢'(#y X #3). Because of Lemma 2.la one can regard relation (2.7)
as the definition of a mapping g from ® onto ®’ which, according to (¢2), preserves
scalar product. Since g maps the zero of S to the zero of /#”’, we can extend g by

*) This statement can again be generalized for non-separable J#;'s if one replaces everywhere
“‘orthonormal basis”’ by ‘“‘complete orthonormal set’.
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linearity to a linear operator Vg : ®; — ®;. Clearly, Vo maps ®; onto ®; and
(Vox, Voy)' = (x,y) forall x,ye®;.
In particular for x = y one gets that V is bounded. Extending Vo continuously

by the standard procedure (see ref. [2]) to ®; = # and using the above mentioned
properties of it, we obtain a bounded operator V which maps 2# onto ®; = .#' and
preserves scalar product. Hence V is a unitary operator which has all the properties
required by the definition of isomorphic realizations. [ ]

Remark: According to this theorem, the tensor product s#; X #2 can be
represented by any of its realizations, and the realizations can be understood as
elements of the equivalence class #1 ® 5#s. It is a usual practice in such cases to
interchange the both notions, wherever it is convenient*).

For example, one often says “s is the tensor product of #1,# 2" and writes
H =H1 QHs if #, ¢ isa currently used realization of #; ® 52, the mapping
@ being implicitely “‘determined” by the “natural” relation of s# to #; and #3
(see Examples 2.1 and 2.2 below). Also from the point of view of applications,
namely those in quantum theory, it is convenient to understand by the tensor
product one of its realizations (in general unspecified); in the following sections we
shall do so. On the other hand, we must be careful with this mterchangmg of notions
when different tensor products are involved. If #, ¢ and 7, @ are given realizations
of #1 ® H g, Jfl ® %2, respectively, then different relations between # and #
may exist but we cannot automatically write these relations between #; & 52 and
#1 @ #5 without having a meaningful definition of them.

Thus our second question is fully answered. Let us now prove one property
of tensor products that we shall use in Section 4:

Lemma 2.3: Let J#, ¢ be a realization of 5 ® #2 and ¥', 4" be ortho-
gonal subspaces of #;. If ¥ = 4’ + ¢”, then

(2.8) G X H2)a= @G X H)r + (9" X H2))a.

Proof of this lemma is based on the following statement which is a simple
consequence of the definition of the orthogonal sum (see e.g. ref. [2]): If linear
manifolds L;, L2 are orthogonal, L; | L2, then their direct sum satisfies

(2.9) L@l =L + L.

Now, the sets (¥’ X #2) < H, (F" X H3) < H# are orthogonal because of
(p2) and hence (p(¥' X #2)r L ((F" X Ha))a.
Since ¥’ < ¢, 9" < ¥, it obviously holds

(2.10) @G X #2))r @ (F" X HoNr < (P(F X H2)a.

n
Let us consider an arbitrary z = (p(% X #%2))s, i.e. 2= Y oaplx(?,x"),x €
is1

*) This is the same situation as e.g. in L2(a, b) and analogous functional spaces, elements
of which are usually called “functions’’, while in fact they are classes of equivalent functions.
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x{) € #3. Each vector x{” can be uniquely written in the form x{? = x;) 4 x?,
where x;'? ¢ %' and x,'” €¥”. Using further bilinearity of ¢, one can write
z =2 + 2" where 2z €(@(@ X H2)) 2" €(@@" X #2)) and therefore
equality holds in (2.10). One then obtains (2.8) by putting L1 = (¢(F' X H#3))s
Lo = (p(%" X H#3))s in (2.9). ]

Before finishing this general part let us notice that the definition of tensor
product #; ® #2 and of its realizations can be easily generalized for the case of
any finite number of the 5#,’s by virtue of a multilinear mapping ¢ : J#1 X #z X

. X Ay — H# with the properties analogous to (¢2), (¢3);the above theorems can
be reformulated for 1 ® #'2 & ... ® H#» in an obvious way. We shall not in-
troduce tensor product for infinite systems of Hilbert spaces.

We shall now discuss several examples of tensor products which occur fre-
quently in applications.

Example 2.1: Consider the realization (L*R) ® L%*R)).:r:,, Where ¢ ex-

presses the following “natural” relation of L2(R2) to L2(R):
(@p(x1, x2)) (11, £2) == x1(e1) x2(t2)  (x1, x2 € L2(R)) .

The Fubini theorem implies that ¢ is a (bilinear) mapping from L2R) x L2(R)
to L2%(R?) such that (¢2) is satisfied. If & = {ex}p—, is an orthonormal basis
in L%(R), then the (arbitrarily) ordered set {p(e;, ex)}7,—, is an orthonormal basis
in L%(R?) (see ref. [2]). Hence, due to Corollary 2 of Lemma 2.2, L2(R2), ¢ isa
realization of L2(R) @ L2(R), and it is this realization that one currently under-

stands by the tensor product of L%(R) & L2R) (cf. Section 1). In the sense of the
remark to Theorem 3 we conventionally write

.11) L%R) ® L%R) = L%(R?).
This result can be obviously generalized as follows
(2.11a) L2(R™) ® L2(R™) = L2(Rm+n)

for any natural m, n. One obtains further generalization for the spaces L2(M,, du,)
of ur-square integrable functions on a u,~measurable set M, (where yr, r = 1, 2, is
a general measure) in the following way (see ref. [3]): let w12 be product measure
of K1y U2 then

(2.11b) L2(M1, d,ul) ® Lz(Mz, d‘uz) = Lz(Ml X Mg, dylz) .

Example 2.2 (vector-valued functions): Let 5#9 be separable; consider the
vector space of all mappings f : R® — ¢ (with the “pointwise” defined addition
and multiplication by complex numbers) such that

f Hf(tla L2y ..oy tn)“;"} dn dtz, vdty < oo

R

One can define scalar product on this vector space by

(2.12) f, 8 =R,[' (f(t15 t25 «ves Ln)s &(115 L2y vvs tn))o di1 dia ... i
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and obtain thus a Hilbert space which is called the space of vector-valued functions
and denoted by L2%R"; #q) (see refs. [2], [3] for further details). For example,
L%(R3; C") is the space formed by n-tuples of square integrable functions ;(r)*):

Y(r) = {yi(r), pa(r), ..., pu(r)}, such that

> [ ()2 ddr < oo ;
i=1 R?

then

n

W, @) = 2 [ wir) gu(r) d3r .

i=1 R
Thus L2(R3; C2) is the space used in the elementary quantum-mechanical des-
cription of the electron spin, L2(R3; C#%) is used in Dirac’s theory etc.
We show now that L2%(R?”; #p) is a realization of LZ(R?") X . **) The
corresponding (bilinear) mapping is ‘“naturally” defined by

((p(xl, XQ)) (ll, 12y ooy [n) = x1(t1, 12y «oy ln) . X2

where x; € L(R"), xz €4, i.e. the value of ¢(x1, x2) at a point {z1, t2, ..., tn} €
€R™ is obtained by multiplying x2 € #¢ by the complex number x1(z1, t2, ..., ta).
Using (2.12) one easily finds

(p(x1, x2), P(y15 y2)) =

= (xZ, yZ)O . ,f xl([l, 12y «eey tn) 3)1_(‘[1; L2, 'i:_t;bj d[l dlZ eee dln

R”

and hence (¢2) is satisfied. Finally, if &1 = {¢}32, and &3 = {fi}dm#° are
orthonormal bases in L2%R») and 5, respectively, then the (arbitrarily) ordered
set {ples fx) |7, B = 1,2, ...} is an orthonormal basis in L2(R7; #g) (ref. [2]).
Thus we can write conventionally

(2.13) LYR™) @ #o — LAR?; Ho) .

Example 2.3 (Fock spaces): Let 5 be a separable Hilbert space and 7,
@n be a realization of the n-fold tensor product # @ # @ ... ®HF (n = 2, 3, ...).
The above mentioned ‘‘current realizations” are usually used and thus 7, ¢, need
not be explicitely specified. We denote further #9 = C, #! = 5 and define the
Fock space F () over H# .

(2.149) F(H) = 3 @A **x),
n=0
As a typical example we shall consider .#(L2(R?)). Denoting again the points of

*) The points of R3 are denoted by r - “radius-vectors”.

*x) In this form, namely as tensor products of a space referring to orbital quantum numbers
and of that referring to spin quantum numbers, the spaces L2(R%; C*) usually occur in quantum
theory — cf. refs. [6], (7], [8].

*x%) See ref, [2] for the definition of the infinite direct sum of Hilbert spaces.
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R3 by r and putting #* = L2(R3%) (see Example 2.1), we find that elements of
F(L2(R3)) are sequences

¥ = {yo, p1(r1), pa(rs, ra), ...}
where yo €C, yn € L¥R3") (n = 1,2, ...), such that

ol2 + 2 [ [wa(rs, ray oy )2 d3r1 d3re ... d3 7y < 0.
n=]1 R

Two subspaces of F(#°) are of special interest for quantum theory: the symmetric
(Bose-Fock) space Fs(#) and the antisymmetric (Fermi-Fock) space F ().
Construction of these subspaces is discussed in detail in refs. [2], [3], and we shall
remind here only its main features.

Let &%, be the permutation group of n elements (n>2) and denote by
n(o) the parity of permutation o €%y, ie. n(c) = +1. To each c€¥, a
unitary operator Up(c) on 7 is assigned in such a way that the family {Un(o) |
| 0 € n} is a unitary representation of #,. This fact implies that the operators

1
Su=- 2 Uuo)
n ey,

An=—r > 7o) Un(o)

¢ €L

are projections. The spaces F4(#) and F4(#) are then defined by

2.15) FuH) =3 ©® Sat™
(2.16) FoH) =S @ Aphr
n=0

where S, = Ar = I, for r = 0,1 (I, is the unit operator on #7). For #» =
= L%(R3") one obtains from the definition of Ujy(0):

(Un(0) yn) (Fo1y> Fa(2)s -+ Fo(m)) = Yn(rL, ¥, ..oy Fu)

and this relation implies that the space S,L2%(R3%) consists of functions wy,(ry,
ra, ..., rp) which are invariant under any permutation of {ri, r, ..., ra}, while the
functions belonging to A,L2(R37) change sign according to the parity of the
permutation involved.

The importance of Z () and F4(5#) for quantum theory is obvious: they
serve for the description of boson and fermion field, respectively.

Concluding this section, we shall establish connections between Definition 1
and other occuring definitions of the tensor product. These definitions describe in
fact constructions of some special realization, say 4, @4, of #1 ® #2. One of
these constructions, in which a subset of the space of all complex bilinear forms on
H1 X Ko is used as #q (see e.g. ref: [3]), has been applied in the proof of
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Theorem 1. The construction described e.g. in ref. [9] starts with the Hilbert space
# 4 of antilinear Hilbert-Schmidt operators from 51 to #2; then a mapping gq
from #1 X #2 to A4 is constructed that is shown to satisfy (@l)—(@3) *).
Another construction (see e.g.ref. [10]) consists in the direct extension of 5#; X 2
to a Hilbert space by formal summing.

These definitions have one common disadvantage : the realizations of #1 & # 2
which are of practical importance (e.g. (2.11), (2.13) etc.) are usually not identical
with 4, @q. It is then necessary to introduce a rather vague notion of ‘“‘natural
isomorphism™ [3]: for example L2(R2) is said to be ‘“‘naturally isomorphic™ to
L%(R) ® L2(R), which in the language used here means that (L2(R) ® L%R)).#4, ¢a
and the realization from Example 2.1 are isomorphic realizations.

On the other hand, we regard as an advantage of Definition 1 that it corresponds
to the general algebraical definition of the tensor product of vector spaces (see e.g.ref.
[11]; the ‘“‘category-theoretical fashion” of the definition is, of course, more elegant,
but it would need too many preparatory notions to be presented here). Naturally,
the latter definition does not contain conditions analogous to (¢2) and (¢3) which are
related to the topological structure of involved Hilbert spaces. However, it represents
a general starting point for defining tensor products of some other important spaces
(e.g. Banach, locally convex etc.): the corresponding definitions may be obtained
by adding to it certain “‘topological” conditions.

3. Tensor product of operators — general case

Throughout this section we shall understand by T, (r = 1,2) a densely defined
linear operator (in general unbounded) on Hilbert space 5#,; the domain of T
will be denoted by Dy, i.e. D; = #,. We shall construct from the T,’s an operator
on #1 X # s — this operator will be called tensor (or Kronecker) product of T1, Ts
and denoted by 71 ® Te. It is clear from the preceding section that the result of
such a construction will depend on the choice of realization of #; & 2. In the
sense of the remark to Theorem 3 we shall in the following always understand by
#1 ® #2 one of its realizations S, ¢ (without specifying 5# and ¢ explicitely).
The connection between operators 71 &) T2 obtained for different realizations of
H#1 R Ho will be discussed below.

Let us consider a mapping 7 12 from (D1 X Dg2) to 2 defined by

(3.1) '0/-12((]7(361, xz)) = (p(Tlxl, T, xz) for all [x1, x2] €D1 X D2

Using the linearity of 7,’s and Lemma 2.1a one easily verifies that J 12 is well
defined, i.e. T 12(@(x1, x2)) = T 12(p(¥1, ¥2)) if @(x1, x2) = @(y1, y2). The domains
D, are linear manifolds; therefore ¢(D1 & D2) contains the zero vector of # and
clearly 7120 =0.

*) A similar construction has also been used by Jauch [1] for proving existence of a realiza-
tion for each J#1 ® .
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We thus arrive at the following definition:

Definition 2: Tensor (Kronecker) product of linear operators 7T, (r = 1,2)
with domains Dy is the linear operator which is obtained by linear extension of
mapping Z12 to (p(D1 X D3))s, ie. the domain Dige of T1 @ T2 is
(p(D1 x D2))a and the action of 71 ® T2 on any x € Diga, x = _Z ap(x?, x57),
x(? €Dy, is given by =1

(3.2) (T @To)x = 3w f(Tuxf?, Ty ).

The basic properties of 71 @ T are summarized in the following theorem*):
Theorem 4:Let T, (r = 1,2) be densely defined, i.e. D, = #,. Then

(a) T1 ® T2 is densely defined,
(b) the adjoint of 71 @ T2 exists and

(3.3) (i@ To)* > T @ TS **),
(¢) if T1, T are symmetricsois 71 ® T2,
(d) if Ty, Ts are closable sois 71 &® T3 .

Proof: (a) This statement immediately follows from Lemma 2.2.
(b) Existence of (T1 ® T2)* follows from (a). Let y eD(T; ® T), ie.

y = Z Bip(y{?, yi") where y9 €eD(T;}) and let us take an arbitrary vector
X € D(T1 ® T2), x = Z oup(x(?, x§"), x? €D,. According to definition of T,
itholds (Trx{”, y9)y = (x“’ TryiMefor r =1,2, i =1,2, ...omy j = 1,2,.
Using these relations and property (p2) from Definition 1, we find

(T ®@ T2) %) =( Z wup(Tixf?, Taxy), Z Brp(yi", y§)) =

(3.4) -

£M=

wuBy(Tix?, i) (Tax§?, i)z =
J

s ~ME T

ll

oup(x{”s 23, Z BTy, Tfy§) =

1
(T ® T5 ) -
Hence D(T{ @ T4) « D((T1 ® T2)*) and (T} ® T5h) y = (T1 ® Tp)ty for all
y eD(T{ @ Ty+), which is (3.3).

(c) Because of (a) we only have to verify T1 ® T2 < (T1 ® T2)*. This
relation is easily obtained from (3.3) using the obvious implication
3.5) T, eS@r=1,2) == T1®T2< S1 ® S2

for S =T;.

*) Elements of the theory of unbounded operators, e.g. definitions and properties of the
adjoint operator, of closed, closable, symmetric operators etc. can be found in refs. [2], [3], [5].

**) This is analogous to be relation (7'S)* > S+T+ that is valid for any densely defined

operators T, S onJ# for which (TS)* exists. This relation becomes equality if T is bounded.
We shall see in the next section that equality holds in (3.3) if both Tj, T2 are bounded.

II

(,
(
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(d) This statement is a direct consequence of the following general property
of densely defined operators: T is closable if and only if 7+ is densely defined.
Now, if T1 and T are closable then (a) together with (3.3) implies that (71 @ T2)*
is densely defined, i.e. 71 ® T2 is closable. n

Remark 1: Suppose 71, T2 areself-adjoint. Then, according to (¢), T1 ® T
is symmetric. However, 71 ® T3 is in general not self-adjoint. Infact 77 ® T2 is
essentially self-adjoint (e.s.a.), i.e. its closure is self-adjoint (see the second part of
this paper or ref. [3]).

Remark 2: It is well known from linear algebra that for linear operators on
a finite-dimensional -# the following “arithmetical” rules hold:

(3.6) (Mi+8)R®Te=T1 T2+ S1® T,
(3.7) (T181) ® (T282) = (Th @ T2) (S1 ® S2) .

We shall show in the next section that these rules remain valid in infinite-dimensional
Hilbert spaces as far as only bounded operators T, Sr (r = 1, 2) are considered.
For unbounded operators domains must be taken into account, so that only the follow-
ing weaker “rules” can be easily obtained in the general case:

(3.6a) (Mi+8S)R@Tec i @Tz+ S1 ® T2,
(3.72) (T181) @ (T282) < (T1 ® T2) (St ® S2) .

Remark 3: According to statement (d) 71 ® Te exists if 7, and 7. are
closable. In this case some authors (cf.ref. [3]) do not make difference between
T1 ® T2 and its closure and call both these operators “tensor product of 77 and 73”.
We shall even in this case understand by tensor product the operator determined
in Definition 2 and use explicit notation 77 ® T2 for its closure except the case
when Ti and T2 are bounded: we shall see in the next section that 77 &) T2 is
then bounded and, according to the usual convention, we understand by 7T\ & T2
its continuous extension to Dig2 = 7, i.e.

(3.8) Ti1®Te=T1 ®Ts if Ty, T» are bounded.

We shall conclude this section by showing that there is a close connection
between operators 71 X 72 obtained for different realizations of # X #s.

Theorem 5: Let 71 ® T2 and (71 ® T2)' be tensor products of Ti, T2
obtained for realizations (#1 Q H#'2)#,p and (1 X #2)# ¢’ respectively. Then
T: ® T2 and (71 ® T2)' are unitarily equivalent.

Proof: According to Theorem 3 there exists a unitary (isometric) operator
from # onto #' such that ¢'(x,y) = Ve(x,y) for all x € #1, y € # 2. For any

n n . .
x €D1ga, x = > oyp(x{",a§"), one has Vx = 2 wgp'(x{”, x{) € D{g, and
i=1 i1
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similarly one proves that each vector x’' € D{5, can be written as Vx where x € D1g9,
ie. x = V-lx'. Thus Dg; = VDig2. It holds further for any x' € D{g,, x' =

n
= 3 G, )

i=1
(Ty @ To)'x' = 3 aui'(Tax}?, Taxt?) = 3 o;Vp(Tix{?, Toxt?) =
i=1 i=1

=V ® Te) V1x'. [ ]

Remark: If Ti, T» are closable then (71 ® T2) and (ﬁ®_T—3)’_ are alsq
unitarily equivalent, since V, V-1 are continuous and any vector x € D(7T7 & T%)

is the limit of a sequence {xn} < Dig2 such that (71 ® Ts3) xn — (11 ® T2) x.

If T and T’ are unitarily equivalent, 7' = VTV -1, then all properties of T’
can be easily derived from those of T (if V is known). Moreover, some important
characteristics such as norm (if T, 7' are bounded) or spectrum (if 7, 7" are self-
adjoint) are identical. Thus, although one gets for different realizations of 51 & 52
different tensor products of given two self-adjoint operators Ai, A2, they (or strictly
speaking their closures) all have the same spectrum, eigenvalues etc. Hence the
notions like “spectrum of 4; ® A2” etc. are meaningful and depend only on 41, A2.
These topics will be discussed in the second part of this paper.

4. Tensor products of bounded operators

We shall now discuss the tensor products 71 &) T2 of bounded T,’s. There
are two reasons for considering this case separately:
(i) the general properties of tensor products derived in the preceding section
become much simpler and easier applicable,
(ii) several classes of bounded operators are of basic importance for quantum
theory.
Throughout this section we assume that each bounded operator is defined every-
where in its corresponding Hilbert space and use the following notation:

B, C ... general bounded operator

A ... Hermitian

Uu ... unitary

E ... projection

|2 ZZN trace class, in particular statistical operator.

Operators on the starting Hilbert spaces ¢, (r = 1, 2, ...) are always marked by
a lower index (e.g. Br, C;), especially unit and zero operator in ., are denoted by
I, and Oy, respectively. Operators on J#1 ) 52 are written either in the “explicit

form” B; @ Bz or they are printed in bold face; in particular symbols B, have
the following meaning

(4‘1) Bl =Bl ®12, Bz=11 ®Bz
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and similarly in the case of n-fold tensor product
(4.12) r=h QL® ... L1 @B @I ® ... ® In.

Theorem 6: The tensor product B; ® Bz of bounded operators B, on
#(r = 1,2) is bounded and

4.2 1By @ Bal = ||Billr . Bl *).

Proof: Let &, = {e!’} be a complete orthonormal set in #, and denote
&N = (p(&1 X &2))s. Since D(B;) = #,, we have Dig2 > &@ and also
D(B;) =€ &@®, D(B2) > &®. Let us further denote by (Bi ® Bz)e the operator
(B1 @ Bg) } €W, the symbols (B1)o, (B2)o having the analogous meaning for
operators B, Bg, respectively. For any x €@,

m n m n
x= 2 2 “iiq'(eii)aeli))) we get [x[2= > 3 |agyl?
i=1 j=1 iS1 o
and thus
n m
(IBix|2 = || Z ( 2 wip(Bief”, eg"))? =

n

=2 Z ayyp(Bief”, ef)|? =
)_

Z llp(B1 ‘Z agge(”, e )2 <

j=1 1=

< By -21 [ _zl ouselIF = 1Bl Il ,
j=1i=

=

i.e. (B1)o is bounded and ||(B1)ol < ||Bili. In the same way one gets [[(B2)ol <
< ||B2llz. Further, since for any x € &@W

(31 ® Bz) X = Blex 3

(B1 ® Ba)o = (B1)o (B2)o .
Hence (B: ® B3)o is bounded and
l(B1 ® B2)oll < [I((B1)oll l[(Bz2)oll < ||Bullx [|Ballz

Now &@ = # (see Lemma 2.2) and therefore the standard continuous extension
of (B1 ® Bs)o gives a bounded operator defined everywhere in 2#. In the sense of
Remark 3 to Theorem 5 we identify this extension with B; &) Bgz; thus

1B1 @ Ball < [IBillx [|Ballz -

In order to prove the opposite inequality we take, for a given & > 0, unit vectors
er €y such that

™ [Bredlr > [IBdlr — ¢ .

it holds

*) We denote by || . || the norm on the Banach space £(#,) that is formed by all bounded
operators on J#-.
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Now ¢(e1, e2) is a unit vector in ## and hence it must hold
1B1 @ Ball = [I(B1 @ Ba) @(e1, e2)l| = [|Bieillr [|Bzezll2 -
Using (*) we further get
By @ Bell = ||Bill1 [|Bzllz — &([Bulls + [|Bzll2) + 2.
Since ¢ is an arbitrary positive number, this relation impli'es

Bt @ Bal| > [|Bafli [|Ballz. W

Remark: Although || .|| on the left-hand side of (4.2) refers to some realization
of #'1 ® # 2 by means of which B; & B: is defined, we see from the right-hand-
side expression that ||B; ) Bg|| depends only on the ||By’s. In fact, it follows
immediately from Theorem 5 that the norm of any bounded B; & B: is realization-
independent.

Lemma 4.1: Let B, C, be bounded operators on 5#,. Then
(a) the following ‘““arithmetical” rules hold

43)  (xBi ® Bs) = (B ® «B2) — a(B1 ® Bs) forany xeC,
44) (Bi1+C)®B2+C2)=B1®B2+C1QXB2+B1®C2+C1® Cz,

(4.5) (B1C1) ® (B2C2) = (B1 ® Bs2) (C1 ® C2) ;
(b) B; ® Bz = 0 if and only if at least one of Bi, Bj is zero operator;
(c) if B1 ® B2 # 0 and B1 ® B2 = C1 ® C2, then

Ci1 = aB;, Cg = %Bz for some « €C, « % 0.

Proof: (a) Let us remind that two bounded operators B, C on #, which
satisfy Bx = Cx for all vectors x of a complete set M < 5, are equal. It is
therefore sufficient to verify that (4.3) — (4.5) hold for any x € p(#1 X #°2), which
is obvious.

(b) This statement follows immediately from (4.2) and (4.3).

(c) Forany x, € #, it holds

™) @(Bix1, Baxz) = p(Cix1, Caxz) .

Condition B; & Bz + 0 together with (b) implies that both B; and B are
non-zero, i.e. that there exist vectors x* € #, (r = 1,2) such that B,x!” % 0.
It then follows from (*) and Lemma 2.1a
(Brx(,“), Crxs,“))r 4': 0 .

()

Substituting x; = x{° into (*) and taking scalar product with ¢ (TII?;‘IO—‘IF_ s yz)
X371

we get

(Clx{OD, le{O))l

(Bax2, y2)2 = B0 (Caxz, y2)2
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and, since x2, y2 are arbitrary,

By = aC>
where
_ (Gix", Bixi)
| Bix{ ([}
Similarly

,_ (Coxy”, Baxi")o

1
B1 = «'C;y where « — ¢ =,
1Bax]2 B

Corollary: Operators Bi, B, commute for any Bj, Bs:
(4.6) BiBs = BsB;y = By ® B2. *)

The list of “arithmetical” rules should also contain a relation between
(B1 ®@ B2)7! and Bfl, B,;! assuming all the inverses exist. Such a relation can be
easily derived for regular B,’s**). The reason for this restriction is that for a regular
bounded B; the inverse B,! not only exists but is also bounded (see refs. [2], [3]),
and thus B! ® B;! is bounded. Then we get from (4.5):

(B1 ® B2) (Bi' @ By') = (B' ® By') (B1 ® Ba) =1,
which is equivalent to the following statement:

Lemma 4.2: If B;, By are regular bounded operators, then B; ® Bs is
regular and

4.7 (B1 ® B2)"! = B]! ® B;'.

The tensor product Bi & Bs, like any bounded operator, has a unique
bounded adjoint that is determined as follows (cf. Theorem 4):

Lemma 4.3: Let B, be bounded operators on 2#,. Then
(4.8) (B1 @ B2)* = Bff @ Bf .

Proof: Operators B; are bounded and sois B ® By, i.e. D(Bf ® By) = #.
The rest follows from (3.3). W

Corollary: If A1, A2 are Hermitian, so is A1 ® As.

We shall now use the above three lemmas to derive some properties of B; X Bs
for several important classes of B,’s.

*) Using this one can formulate precisely statements of the following type that occur currently
in textbooks on quantum mechanics: “If a1, a2 are observables referring to particles / and 2
respectively, then the corresponding (Hermitian) operators A1, A2 commute”. In fact, operators
A1, A2 act on different Hilbert spaces and thus their product and commutator is not defined.
Applications of the tensor-product formalism for description of composite systems will be discussed
in the second part of this paper.
**) A linear operator T on J# is regular if it maps bijectively J# onto .
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Lemma 4.4: (a) If A1, A are positive*) so is 41 @ A2. Then

(4.9) V4 ®@4: =4 ® )4, .

(b) If Ui, Us are unitary so is Ui ® Ubo.
(c) If Ei, E; are projections so is E; ® Ep; the range of E; ® Es is then
given by

(4.10) (E1 @ E2) # = (p(E1#1 X Ea#'s)); .

Proof: (a) To any A >0 there exists a unique positive V/T such that
V4 /4 = A. Using (4.5) for B, = C, = |/ A, we see that A1 ® A is the square
of Hermitian operator l/ A1 ® ]/ As and hence A1 ® Az is positive and formula
(4.9) holds (J/ 41 ® Az is unique!).

(b) This follows immediately from Lemmas 4.2 and 4.3.

(c) E1 ® Ez is a projection since it is Hermitian and idempotent, i.e.
(E1 ® E2)? = E} ® E3 = E1 ® E2. For proving (4.10) let us introduce the
following notation:

EY =E,, E®=1I —E
GO =ENHr (=1,2), ie. 9P = (@H)L.
Further, let
Ey=E" ®E), Fy= @@ X% Gj=12).
Then (4.10) becomes
En# = %u.

Now

EY EV) = 64E , EM 4 E® = I,, and thus

2
EikEﬂ = (SijéklEuc and Z Eij =1.
ij-1
These relations imply

. -
™ z + Ey# =, ie. (Eu#)L =Eip# 4 Eat# § Eog .
1,/=1
On the other hand, the subspaces %;; are orthogonal ; using Lemma 2.3 we find
2

(**) ‘21 + %=, ie. (911)L =%+ Goa1 + Doz .

1=
For any x1 € (", x2 €%’ one has

Euyp(x1, x2) = @(E{ x1, B’ x2) = @(x1, X2)
so that
w(F{" X 9) < Ey#

*) A bounded operator A is positive if (Ax, x) > 0 for all x. Notice that each positive
operator is Hermitian — this follows immediately from the ““polarization identity’’ (see refs. [2], [3].)
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and consequently
(**%) Gy < EyH .
Relation (4.10) is obtained if one observes that (*), (**) and (***) imply
(%n)*- < (Eun)t, ie. Yu->En¥. N
Corollary 1: If A, > A4,>0, then A1 ® 42> A ® A, >0.

Proof: This follows immediately from statement (a) if one writes A; ® A2 —
— Al ® Ay =(A1— A) ® A2 + A] ® (A2 — A;) and takes into account that
the sum of positive operators is positive.

Corollary 2: Let B, be bounded operators. Then
4.11) |Bi ® Be| = |Bi| ® |Bs| .

Proof: Let us remind that for any bounded B one denotes by |B| the
positive operator VB'FB . Then (4.11) is easily obtained from (4.9). H

Corollary 3: Let E,, E, be non-zero projections. Then

(a) E1 ® E: + E| ® E, is a projection if and only if E; + E| or E; + E,
is a projection,

(b) E1 ® E: — E{ ® E, is a projection if and only if E; — E; and E; — E,
are projections*),

() (E1 ® E2) (E; ® E;) is a projection if and only if EiE; and E:E, are
projections **),

Proof: (a) The “if” part is simple. The “only if” part can be proved in the
same way as it is done for “single” projections (see e.g. ref. [2]).

(b) If E, E' are projections, then the following three statements are equiv-
alent [2]:
(i) E — E’ is a projection
(i) E—E >0
(iii) EE' = E'E=E'
Now, if E1 ® E2 — E| ® E, is a projection, i.e. (E1 ® E2)(E; ® E;,) = E| ® E,
then, according to Lemma 4.1, EiE| = aE,, E:E;, = —:(—E.;. Multiplying the first
relation by E; from the left and reminding that E,, E| are non-zero, we find o = 1,

i.e. Er — E, are projections. Conversely, if E, — E, are projections, then (ii) and
Corollary 1 imply that E1 ® E: — E{ ® E; is so.

*) We do not specify ranges since nothing more can be said about them than what holds for
“single’’ projections: (E + E') # = (EA) + (E') and (E — E") is the orthogonal comple-
ment of E'S¥ in E#.

**) Concerning the range of (Ei & Ez) (Ei' ® E2') see the following Remark.
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(c) If both Ei\E, and EE; are projections, then
&) Ei\E| ® E:E; = (E1 ® Ez) (E{ ® E;)

is a projection. Conversely, assuming that the non-zero E; ® Es and E; ® E;
commute, we obtain from (*) and Lemma 4.1

E1EI' = ocEl'E1 and EzEé = é Eg’EZ .

One easily finds (e.g. multiplying the first relation by E; from the both sides) that
« = 1, i.e. E; and E, commute and thus E,E, are projections. N

Remark: If EiE; and EE, are projections, then using the rule

(EE"# = (E#) (\ (E'F)
we get from (*) the following interesting formula which supplements Lemma 2.3
(4.12) (@1 X F))a N (@(F] X Fo)a =
= @1 N %) X (T2 N T = (@(F1 X F2) N (%1 X G

where we denote

gr:Er”r, g::E;Wr.

Bounded operators on a separable Hilbert space*) have many properties similar
to those of linear operators on a finite-dimensional space, for example one can
represent them by infinite-dimensional matrices, generalize the notion of trace for
some of them etc.

Suppose now the #,’s separable (i.e. any space in which J#; ® ¥ is realized
is separable). We shall derive formulae expressing elements of a matrix representation
of Bi ® Bg, its trace, etc. by means of corresponding quantities for the B,’s.
Let &, = {e!"};2, be ortonormal bases in #,; then vectors ez = @(e{”, e)
(#,7 = 1,2, ...) in some fixed order form an orthonormal basis & in /#. Denote by
b® the matrix representation of B, with respect to &, i.e. b} = (Bre!®, e),.
Then the matrix representation b0 & b of B; ® Bz with respect to & is
determined as follows:

(4.13) (M ® b®)q,g k. = (B1 @ B2) ex,p> ei.n) =
= (Buet?, ef)1 (Bael, )z = bPBIP .
We thus see that the well-known formula of linear algebra concerning the direct
product of matrices remains unchanged in the infinite-dimensional case.
Before proceeding let us remind some points from the theory of bounded

operators on separable # :
1. Absolute norm (see refs. [2], [5]).

*) We assume for convenience everywhere in the following dim J# = oo. All the formulae
which will be derived are of course valid also in the finite dimensional case.

95



The quantity
N(B) = ( 3 [Bexl?)!r2
k=1

does not depend on the orthonormal basis {ex}r.; by means of which it is expressed.
If N(B) < oo then B is called Hilbert-Schmidt operator and N(B) is its absolute
norm. Each Hilbert-Schmidt operator is compact. Hermitian compact operators
are of special importance since they have a pure point spectrum, i.e. their eigen-
vectors form an orthonormal basis.
2. Trace classes (see ref. [3]).

The trace of a bounded operator is obtained by extending the usual definition of the
trace to the infinite-dimensional matrix representation of bounded operators.
However one must add some further conditions to ensure convergence of the series

oo
> (Bex, ex) and its independence of the basis. It appears that these requirements
EoL

are satisfied by each bounded operator W for which N(VTWT) < oo. Such an
operator is called trace class. Since V |W| is Hermitian one can rewrite the above
condition as follows

(4.14) éqm ers er) < 0o . %)

The sum of this series is again basis-independent and (4.14) further implies:
(i) theseries

2. (Wek, ex)
k=1

is absolutely convergent and its sum is basis-independent. One can therefore define
the trace of W by

(4.14a) Tr W = 5 (Wex, ex) -
k=1

(i1) WB and BW are trace classes for any bounded B and
(4.15) Tr WB = Tr BW .

3. Staustical operators (see refs. [1], [2]).
Let W be a positive trace class. From the relation

(Ax, x) (Ay, y) = |(4x, y)|?
which is valid for any positive A and all x,y €., one gets using (4.14)
NW)<TrW <oo.

Hence each positive trace class has a finite absolute norm and is therefore compact.
A positive trace class W is called statistical operator (density matrix) if it is
“normalized”, i.e. if

TrW=1.

*) Notice that owing to the uniqueness of the square root it holds |W| = W if W > 0.
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Let us now return to tensor products and conclude this section by the following
lemma that will be used in the second part of this paper when we shall discuss how
a composite quantum system can be described by means of its subsystems.

Lemma 4.5: Let #, (r = 1,2) be separable. Then
(a) if By, Be are Hilbert-Schmidt operators so is B1 ® Bz and

(4.16) N(B;1 ® Bz) = N(B1) N(B2) ;
(b) if Wi, Wy are trace classes so is W1 ® Wa and
(4.17) Tr((Wl ® Wz) (Bl () Bz)) = Tr(W1Bl) Tr(Wng)

for any bounded Bi, Bo.

Proof: (a) Let us take arbitrary orthonormal bases &, < ', (r = 1,2) and
& = @p(61 X €2) = H (see the text preceding (4.13)). Since N(B:i & Bs) is
basis-independent, we can use & for calculating it:

N2Z(B1 ® Bz) = (Z (Br ® B2) eq,p|? =(Z)||Blei”\]f [ B2es|I5 -
]

i)
The order of summation is given by the order of vectors in &. However, since all

terms in the series are non-negative, summation can be carried out in any order.
Thus

N(B: ® Bs) = (EluBle;“n? . ElnBze;f’us )2 = N(By) N(Bs) .
1= 1=
(b) Using (4.9), (4.11), (4.14) and (4.16) we find
Tr [Wh @ Wa| = N2(J[Wr @ Wa| ) = N2(|/[Wh] ® |[Wa|) =
= N( |[/1wA] ) N2(|/[Wa]) = Tr | W] Tr |[Ws| ,

ie. Wi ® Wz is a trace class. Then operator (W; ® W2) (B1 ® Bz) =
= (W1B1) ® (WaBs) is also a trace class and the series

S (WiBie{”, ef")1 (WeBzey, e )o
(%))

is absolutely convergent. Applying the same argument as in (a) we get
Tr(W1 ® Ws) (B1 ® Bg)) = Tr(W1B1 ® W2Bs) =

= _Zl(WxBle{“, e{"n ,Zl(Wszeéf’, ef))e =
i= j=
= Tr(W1B)) Tr(W2B>) . [ |

Corollary: If W), W are statistical operators so is W1 Q) Who.
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