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Free Commutative Idempotent Abelian Groupoids
and Quasigroups
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A geometrical construction of free objects in the variety of commutative idempotent abelian
groupoids is given. It follows from the construction that the free objects are cancellation groupoids.

CgoGoaHsble KOMMYTaTHUBHbIC HACMIIOTCHTHBIC abeseBbI rpynnoMabl U KBasUIrpynnbl. —
JHano T€OMETPHUYECKOE OIIMCAaHHE CBOOOOHBIX OOBEKTOB B MHOF006p33ﬂH BCE€X KOMMYTAaTHBHbIX
HIOEMIIOTEHTHbIX abesieBbIX rpynnonaoB. IToxasbIBaeTCsI, YTO 3T CBOOOJHBIE OOBEKTHI — rpyn-
MIOMAbI C COKPALICHUAMH.

Volné komutativni idempotentni abelovy grupoidy a kvazigrupy. — Je d4na geometrickd
konstrukce volnych objektt ve varieté viech komutativnich idempotentnich abelovych grupoidu.
Z konstrukce plyne, Ze tyto volné objekty jsou grupoidy s krdcenim.

A groupoid G is called
— commutative if ab = ba for all a, b € G, .
— idempotent if aa = a for every a € G, and
— abelian if ab.cd = ac.bd forall a,b,c,d €G.
The purpose of this paper is to give a description (and in fact a construction) of free
groupoids (resp. quasigroups) in the variety ¢4 (resp. &) of all commutative idem-
potent abelian groupoids (resp. quasigroups). For the sake of brevity, such groupoids
(quasigroups) will be called CIA-groupoids (CIA-quasigroups). Some properties
of CIA-groupoids and CIA-quasigroups were studied e.g. in [1], [2], [4], [5] and [6].

I. Free ClA-quasigroups

The aim of this section is to describe free CIA-quasigroups. We start with
a universal-algebraic background.

Let a (finite or infinite) sequence 4 = {m, ns, ...> of non-negative integers
be given. A-algebras are formations A = <X, fi, f2, ...> such that- X is a non-
empty set and f; is an ng-ary operation in X. (If n; = 0, this means f; € X).

*) 186 72 Praha 8, Sokolovskd 83, Czechoslovakia
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For any variety K of A-algebras we define a variety K* of A4*-algebras in this
way: A4° =<0, m, ng, ...>; a A*-algebra (X, a, f1, f2, ...» belongs to K" iff
(X, f1, f2, ...» belongs to K (and the element a € X is quite arbitrary).

1.1. Lemma. Ler K be a variety of A-algebras and let <X, a, f1, fa, ...) be
a free K*-algebra, freely generated by aset Y = X. Then the A-algebra <X, f1, 2, ...
is free in K, 1t is freely generated by the set 'Y ) {a}.

Proof is easy.

Let a variety Kj of 4j-algebras and a variety Kz of As-algebras be given. The
varieties K1 and K are called equivalent if there exists a one-to-one mapping ¢ of
Ki onto K3 such that the following two conditions are fulfilled:

(1) if A € K3, then the algebras A and ¢(A4) have the same underlying sets;

(2) if A, BeK; andif f is a mapping of the underlying set of 4 into the under-
lying set of B, then f is a homomorphism of 4 into B iff it is a homo-
morphism of ¢(A4) into ¢(B).

1.2. Lemma. If the varieties K1 and Kz are equivalent then an algebra A € Ky
is free in Ky iff ¢(A) isfreein Ka; if Y is a set of free generators in A, then it is
a set of free generators in @(B), as well.

Proof is easy.

Now we shall construct two special varieties and show that they are equivalent.

The class s# is a variety if CIA-quasigroups are considered as universal algebras
with two binary operations (multiplication o and division : ). Algebras of the variety
A"* have, moreover, one nullary operation.

The class % of all uniquely 2-divisible abelian groups (i.e. abelian groups such
that the mapping x |-> 2x is a permutation) is a variety if these groups are consi-
dered as algebras with two binary operations (addition + and subtraction —) and
one unary operation (denoted by }x).

1.3. Lemma. Thevarieties#* and W are quivalent. The mapping ¢ anditsinverse
@1 are defined in this way: if A =<(X,a,0, ) e#", then p(A) =<X, +, —, >
where x +y = (xoy):a and ix =aox; if B=(X,+, —, 3> €U, then
e Y(B) =(X, a, 0, :), where a is the zero element of B and xoy = }(x + v).

Proof. The assertion ¢(A) € % follows immediately from the more general
Toyoda’s theorem [8]; some similar constructions can be found in [3] and [7].
However, the direct proof of 1.3 is easy.

It follows from 1.1, 1.2 and 1.3 that for the description of free algebras in #
it is sufficient to find a description of free algebras in %.

Denote by R the set of all rational numbers which can be expressed as 2-"c
for some integer ¢ and some natural number m. For any natural number » define »
significant elements e, ..., ¢} of the cartesian power R”:

& =<1,0,..,0>,
e =4<0,1,0,..,0>,

e =<0, ...,0,1>.
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Put, moreover,
el =<0,0,...,0>.

1.4. Lemma. The set R 1is a uniquely 2-divisible abelian group with respect
to the ordinary addition of rational numbers. The group R™, with operations defined
componentwise, is free in the variety U ; the elements €}, ..., e} are its free generators.

Proof is well-known and easy.

1.5. Theorem. The set R is a CIA-quasigroup with respect to the operation o
defined by

X1y wvs %) O Y1y oey Yap = <Fx1 + ¥1)s -5 3(xn + yn))
This quasigroup R™ is free in the variety H# ; the elements ef, €}, ..., €} are its free
generators. ,

Proof is a trivial combination of the previous lemmas.

The construction of free CIA-quasigroups of infinite ranks « (and the proof,
as well) is quite analogous; the underlying set is the set of all those mappings f of «
into R for which the set {j €a; f(j) % 0} is finite.

2. Free CIA-groupoids

Denote by P the set of all rational numbers which can be expressed as 2-7¢
for some integers m and ¢ such that m >0 and 0 < ¢ < 2™. Given an integer
n > 1, we denote by F, the set of all <{ay, ..., any € P* such that a; 4 ... +
+ an < 1. Especially: F; = P. The set F, is a groupoid with respect to the
operation o defined by

Xty o5 X0) O Y1y wens Ym) = <%(x1 + 31)s ooy %(xn + ya) .

Define n + 1 significant elements e, ¢}, ..., e* of F, in the same way as in
Section 1. We shall prove that (Fy, o) is a free CIA-groupoid, freely generated by
{ed, €}5 ..., €x}. The construction is thus similar as in the case of CIA-quasigroups;
in fact, the free CIA-groupoid of rank # -+ 1 is just the subgroupoid generated by
free generators in the free CIA-quasigroup of rank #» + 1. However, the proof is
more complicated. The difficulty is that we do not know a priori that the free
CIA-groupoid is cancellative.

2.1. Lemma. The groupoid {Fn, o) is cancellative and belongs to 4.

Proof is evident.

2.2. Lemma. The groupoid {Fgn, o) is generated by {e}, ¢}, ..., €"}.

Proof. Denote by H the subgroupoid generated by {eg, e, ..., e#}. We shall
prove by the induction on m that whenever ci, ..., cx» are non-negative integers
such that ¢ + ... + ¢» <2™, then 2-"™c1, ...,2 "Mcpy> €eH. If m =0, this
follows from {e}, ..., ¢!} < H. Let now m > 1 be fixed; we shall proceed by the
induction on the number of those 7 for which ¢; is odd. If ¢, ..., ¢, are all even,

then
Q2 My, iy 27 Mgy = 2-m-D) Loy, L, 2-m-D) Lo, e H
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by the induction assumption on m. If ¢; is odd for exactly one 7 then ¢ +
+ ... + cn < 2™ and we may write

2Mcyy vy 27Mcy> = (2-Mcpy ooy 27™(c; — 1), ooy 27 Mcp) 0
27Meyy oy 27™(cg + 1), ooy 27Mcp)y .

If there are two 7,5 (1 <17 <<j <mn) such that ¢; and ¢; are odd then

Q27 Meyy ooy 27Mep> = (27 Mcyy oy 27M(c; — 1), 00y 27™(cy + 1), ooty 27 ™cp> 0
Q2 My, oy 27M(c; + 1)y o0y 27™(c5 — 1), 00y 27 My

Lemma is thus proved.

Denote by T the set of all finite sequences <xi, ..., xp» suchthat p > 1, every
x¢ is either 0 or 1 and whenever p > 2, then xp1 = 0 and x, = 1. For any two
elements u = <{x1, ..., xpy and v = {y1, ..., yq» of T define an element u+v e T
by the induction on p + g¢:

(1) 0+0=0; 1+1=1; 0+«1=1+0=<0,1>;

2 ifp=1and ¢>2, put u+v=<xX,Y, --Yg)5

(B) ifp>2and g=1, put u +v = {1, X1, ..., Xp)3

(4) inthecase p>2 and ¢ > 2 we count {x2, ..., Xp) * (Y2, co0y Yqp =
{21, ...» 2ry and put

U v = X1, 21, ..oy 29y if X1 = y13

u+ov =<0,1> if r =2 and x1 # y1;
UV =X, Y1, 225 -3 Bry I ¥2>3, x1 7% y1 and x1 = 21;
U v =y, X1, 82, ..., Zry if r >3, a1 # y and y = 21.

2.3. Lemma. Let a CIA-groupoid {G, o) and two elements a,b € G be given.
The mapping ha,p of T into G, defined by

Na,5(0) = a,

hap(1) =b and

ha,b(x15 -5 Xp) = ha,p(x1) © ha,p(x2, ...y Xp) If p=>2, is a homo-
morphism of {T, +> into {G, o).

Proof. The operation + was defined so that this might be true.

2.4. Lemma. If we pur (G,0) = <{(F1,0), a=0 and b =1 in Lemma 2.3
then the mapping ho,1 is an isomorphism of <{T, ) onto {F1,0).

Proof. By 2.2 and 2.3 it is sufficient to show that the mapping s = hg,1 is
injective. We shall prove by theinductionon p + ¢ that A(x, ..., xp) = A(y1, ..., ¥¢q)
implies {x1, ..., xpy = <{¥1, ..., Yg». This is evident if either p =1 or ¢g=1, as
r > 2 implies A(z1, ..., 2r) ¢ {0,1}. Let p > 2 and ¢ > 2. Suppose x; = 0 and
y1 =1. We have 0o A(xs, ..., xp) = 1 0 h(y2, ..., ¥q), Which is possible only if
h(x2, ..., xp) = 1 and Ah(ys, ..., yq) = 0; the last equality gives ¢ = 2 and y2 = 0,
a contradiction with {(1,0> ¢ 7. A similar contradiction can be derived from x; = 1,
yn =0. We get x; =y, so that

h(x1) © h(x2, ..., xp) = h(x1) 0 h(y2, ..., Vg);
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as (F1,0) is cancellative, A(xz, ..., xp) = A(y2, ..., ¥¢) and the induction assump-
tion can be applied.

2.5. Lemma. The groupoid {Fi,0) is freein G ; it is freely generated by the
set {0,1} = {e}, el}.

Proof follows from 2.2, 2.3 and 2.4.

Now we shall prove by the induction on # that {Fy, o) is freely generated by
{es, ety ..., e} in 9. The case n =1 is settled by 2.5. Let n > 2.

We do not know yet that {(F,,o) is free. However, there exists a free
groupoid in ¢, freely generated by {el, ¢}, ..., e!}; one such groupoid denote by
{Gny *).

For every 7 =0,1,...,n define a binary rclation ®; in G, by <{x,y> €06,
iff x«ef =yxel

2.6. Lemma. Every O; is a congruence relation of {Gn, +).

Proof is easy.

2.7. Lemma. The congruence @¢ (Y Or () ... () On is trivial.

Proof. Suppose <{x,y> €@y Y O1 () ... () Oxn. Denote by D the set of all
a € Gy such that x xa =y ~a. By the definition of @; we have {e}, ¢}, ...,
e’} = D. It is easy to see that D is a subgroupoid. Hence D = Gy, so that
x,y € D and consequently

X =X+*X=Y*xX=X*xYy=YyY*x)Yy =23.

Lemma is thus proved.

As (Fp,0) is free (by the induction assumption), there exists a homo-.
morphism « of (Fp_1,0) into {Gp, =) such that a(e} 1) = e}, a(et1) =e¢y, ...,
a(er}) = e*,. By 2.5 there exists a homomorphism f of (Fi, 0> into {(Gp, >
such that #(0) = ¢} and (1) = €. Define a mapping y of F, into G, by

P(x1y ey Xn) = o(X1, «ovs Xn-1) * Blxn) .

2.8. Lemma. y is a homomorphism of {Fn,0) into {Gp, *).
Proof. YLy oovs X0 © Y1y ooy Y)) =
Y& + 1)s -5 3(xn + y0) =
a(3(x1 + y1)s s 3(xn-1 + Yn-1)) « BR(xn + yn)) =
(X1 eees Xn-1) 0 Y1y oy Yn-1)) * (X0 O yn) =
(2(15 -5 Xn-1) * A(Y15 -5 Y1) * (Blxn) * B(yn)) =
(%(x15 20> Xn-1) * B(xn)) » (Y15 -5 Y1) * B(yn)) =
Y1y ooy X0) * Y(V1s +oe5 V) -

Denote by F, the set of all {x1, ..., xx) € F, such that x1 4 ... + xp < 3.
Evidently, F, is a subgroupoid. Define a mapping ¢ of F, into F, by ¢(x1, ..., xp) =
= <%x1, ceey %xn>

2.9. Lemma. ¢ is an isomorphism of {Fn,0) onto {F,, o).

Proof is easy.

Define an endomorphism  of {Gpn, +) by y(x) = x «¢€}.
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2.10. Lemma. v is a homomorphism of {Gn, +» onto the subgroupoid G, of
{Gn, +y generated by {e}, e} « e, ..., €} + €p}.

Proof is easy.

As {Gyu, +> is free, there exists a homomorphism & of (G, +» into {(Fp,0>
such that § is identical on {e, €7, ..., e!}. Denote by do the restriction of ¢ to
G,, so that d¢ is a homomorphism of <G,, =) into (and, evidently, onto) <{F,, o).

2.11. Lemma. Jg is injective.

Proof. The homomorphism yp-1dy of <G,, «» into {Gn, +» is identical on
the generating set {e}, e} = ¢}, ..., e ~ e} of {(G,, > and consequently identical
on G,.

2.12. Lemma. For every i = 0, 1, ..., n the factor-groupoid Gn|O; is cancel-
lative.

Proof. As the role of free generators is symmetrical, it is sufficient to prove
that Gg/@ is cancellative. As @y is just the kernel of p, the homomorphism
theorem gives an isomorphism of G/@¢ onto G,; by 2.11, G, can be embedded
into the cancellative groupoid {Fp, o).

2.13. Lemma. The groupoid {Gn, +y 1s cancellative.

Proof. By 2.7 and 2.12, G, is isomorphic to a subdirect product of cancellative
groupoids.

Now we are able to finish the induction. By 2.13 and the definition of o, v is
evidently an isomorphism of (G, +) onto {G,, »». By 2.11, d¢ is an isomorphism
of {G,, »» onto (F,, o>. The mapping ¢1doy is thus an isomorphism of {(Gy, *>
onto {Fp, +y; it maps {e}, e}, ..., &'} identically onto itself.

We have proved:

2.14. Theorem. The groupoid {Fn, 0) is freein G for any n > 1; it is freely
generated by {eg, e}, ..., el}.

%-free groupoids of finite ranks are thus described. The case of infinite ranks
is now easy:

2.15. Theorem. Ler a cardinal number o be given. Denote by F the set of
all mappings f of o into P such thar f(j) £ 0 holds only for a finite number of
elements jea. For any f,geF put fog=h where h(j) = Lf(§) + &(})). The
groupoid (F, o) 1s free in ¥; it is freely generated by the set E of all f € F such
that f(j) €{0,1} for all j €a and f(j) = 1 for at most one j.

Proof. F is the union of all subgroupoids generated by finite subsets of E.
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