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A geometrical construction of free objects in the variety of commutative idempotent abelian 
groupoids is given. It follows from the construction that the free objects are cancellation groupoids. 

CBoSoflHbie KOMMyTaTHBHbie HfleMnoTeHTHbie aSejieBbi rpynnoHAbi H KBa3Hrpynnbi. — 
XUHO reoMeTpH^ecKoe onHcaHHe cBoSo^Hbix o6*beKTOB B MHoroo6pa3HH Bcex KOMMVTaTHBHbix 
HfleMnoTeHTHbix a6ejieBbix rpynnoHflOB. noKa3biBaeTcn, MTO STH cBo6oAHbie o6T>eKTbi — rpyn-
noHAbi c coKparneHHHMH. 

Volne komutativni idempotentni abelovy grupoidy a kvazigrupy. — Je dana geometrickd 
konstrukce volnych objektu ve variety vsech komutativnich idempotentnich abelovych grupoidu. 
Z konstrukce plyne, ze tyto volne objekty jsou grupoidy s krdcenim. 

A groupoid G is called 
— commutative if ab = ba for all a,beG, 
— idempotent if aa = a for every a e G, and 
— abelian if ab . cd = ac . bd for all a, b, c, d e G. 
The purpose of this paper is to give a description (and in fact a construction) of free 
groupoids (resp. quasigroups) in the variety 0 (resp. Jf) of all commutative idem-
potent abelian groupoids (resp. quasigroups). For the sake of brevity, such groupoids 
(quasigroups) will be called CIA-groupoids (CIA-quasigroups). Some properties 
of CIA-groupoids and CIA-quasigroups were studied e.g. in [1], [2], [4], [5] and [6]. 

I. Free CIA-quasigroups 

The aim of this section is to describe free CIA-quasigroups. We start with 
a universal-algebraic background. 

Let a (finite or infinite) sequence A = <«i, m, ...> of non-negative integers 
be given. A-algebras are formations A -= <-K,fi,f2, ...> such that X is a non­
empty set and f is an Wi-ary operation in X. (If m = 0, this means ft e X). 
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For any variety K of A -algebras we define a variety K* of A* -algebras in this 
way: A* = <0, m, «2, •••>; a A*-algebra <X, a,fi,f2, ...> belongs to .K* iff 
<K",fi,f2, ...> belongs to IC (and the element a e X is quite arbitrary). 

1.1. Lemma. Let K be a variety of A-algebras and let (X, a,fi,f2, -.•> be 
a free K*-algebra, freely generated by a set Y ~i X. Then the A-algebra <X,fi, /2, ...> 
is free in K; it is freely generated by the set Y \J {a}. 

Proof is easy. 
Let a variety K\ of Zli-algebras and a variety K2 of /^-algebras be given. The 

varieties K\ and K2 are called equivalent if there exists a one-to-one mapping (p of 
K\ onto K2 such that the following two conditions are fulfilled: 
(1) if A e K\, then the algebras A and (p(A) have the same underlying sets; 
(2) if A, B e Ki and if f is a mapping of the underlying set of A into the under­

lying set of B, then f is a homomorphism of A into B iff it is a homo-
morphism of (p{A) into (p(B). 
1.2. Lemma. If the varieties K\ and K2 are equivalent then an algebra AeK\ 

is free in K\ iff (p(A) is free in K2; if Y is a set of free generators in A, then it is 
a set of free generators in (p(B), as well. 

Proof is easy. 
Now we shall construct two special varieties and show that they are equivalent. 
The class ffl is a variety if CIA-quasigroups are considered as universal algebras 

with two binary operations (multiplication o and division : ) . Algebras of the variety 
Jf * have, moreover, one miliary operation. 

The class <% of all uniquely 2-divisible abelian groups (i.e. abelian groups such 
that the mapping x |-> 2x is a permutation) is a variety if these groups are consi­
dered as algebras with two binary operations (addition + and subtraction —) and 
one unary operation (denoted by \x). 

1.3. Lemma. The varieties $f* and °U are quivalent. The mapping (p and its inverse 
(p-1 are defined in this way: if A = <K, a, o, :> e Jf *, then (p(A) = (X, + , —, £> 
where x + y = (x o y) : a and ^x = a o x; if B = <X, + , —, -|> e ^U, then 
(p~\B) = (X, a, o, :>, where a is the zero element of B and xoy = \{x + y). 

Proof. The assertion (p(A) e% follows immediately from the more general 
Toyoda's theorem [8]; some similar constructions can be found in [3] and [7]. 
However, the direct proof of 1.3 is easy. 

It follows from 1.1, 1.2 and 1.3 that for the description of free algebras in Jf 
it is sufficient to find a description of free algebras in °U. 

Denote by R the set of all rational numbers which can be expressed as 2 ~mc 
for some integer c and some natural number m. For any natural number n define n 
significant elements e\, ...,e„ of the cartesian power Rn: 

«? = <1,0, . . . ,0>, 
el = <0, 1,0, . . . ,0>, 

< = - < 0 , . . . , 0 , l > . 
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Put, moreover, 
eg = <0,0, ...,0>. 

1.4. Lemma. The set R is a uniquely 2-divisible abelian group with respect 
to the ordinary addition of rational numbers. The group Rn, with operations defined 
componentwise, is free in the variety °ll; the elements e\, ..., en are its free generators. 

Proof is well-known and easy. 
1.5. Theorem. The set Rn is a CIA-quasigroup with respect to the operation o 

defined by 
<xi, ..., xny o <-yi, ...,yny = <J(xi + yi), ..., \(xn + yn)y . 

This quasigroup Rn is free in the variety tf; the elements eg, en, ..., en are its free 
generators. 

Proof is a trivial combination of the previous lemmas. 
The construction of free CIA-quasigroups of infinite ranks a (and the proof, 

as well) is quite analogous; the underlying set is the set of all those mappings f of a 
into R for which the set {jecu; f(j) ^ 0} is finite. 

2. Free CIA-groupoids 

Denote by P the set of all rational numbers which can be expressed as 2~mc 
for some integers m and c such that m > 0 and 0 < c < 2m. Given an integer 
n > 1, we denote by Fn the set of all <ai, ..., any ePn such that ai + ... + 
+ an < 1. Especially: Hi = P. The set Fn is a groupoid with respect to the 
operation o defined by 

(xi,..., xny o <JM, ...,yny = <iOi + yi)> •••> i(xn + yn)y. 

Define n + \ significant elements eg, en, ...,en of Fn in the same way as in 
Section 1. We shall prove that (Fn, o> is a free CIA-groupoid, freely generated by 
{eg, en, ..., en}. The construction is thus similar as in the case of CIA-quasigroups; 
in fact, the free CIA-groupoid of rank n + 1 is just the subgroupoid generated by 
free generators in the free CIA-quasigroup of rank n + 1. However, the proof is 
more complicated. The difficulty is that we do not know a priori that the free 
CIA-groupoid is cancellative. 

2.1. Lemma. The groupoid (Fn, o> is cancellative and belongs to <&'. 
Proof is evident. 
2.2. Lemma. The groupoid <FW, o> is generated by {eg, en, ..., en}. 
Proof. Denote by H the subgroupoid generated by {eg, el, ..., e*}. We shall 

prove by the induction on m that whenever a, ..., cn are non-negative integers 
such that a+ ... + cn < 2m, then <2"wci, ..., 2~mcny eH. If m = 0, this 
follows from {eg, ..., en} c H. Let now m > 1 be fixed; we shall proceed by the 
induction on the number of those i for which c% is odd. If a, ...,cn are all even, 
then 

<2-*ci, ..., 2~mcny = <2-<»-D \a, ..., 2-<*-D \cny eH 
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by the induction assumption on m. If c\ is odd for exactly one i then c\ + 
+ ... + cn <2m and we may write 

<2-™ci, ..., 2~mcn) = <2-»ci, ••-, 2- w (^ - 1), ..., 2~mcn) o 
(2~mci, ..., 2-"(<:< + 1), ..., 2-mcn) . 

If there are two i, j (1 < i <j<n) such that c* and cj are odd then 

{2-ma, ..., 2~^w> = <2-wci, ..., 2-m(a - 1), ..., 2~m(cj + 1), ..., 2-™c„> o 
<2~™ci, ..., 2-m(a + 1), ..., 2-m(q - 1), ..., 2-™cn) . 

Lemma is thus proved. 
Denote by T the set of all finite sequences <.xr, ...,xp) such that p > 1, every 

Xi is either 0 or 1 and whenever p>2, then xp -i = 0 and xp = 1. For any two 
elements u = <*i, ..., xp) and z; = <-yi, ...,yg> of T define an element u * v e T 
by the induction on p + q: 
(1) 0 * 0 = 0; 1*1 = 1; 0* 1 = 1 *0 = <0,1>; 
(2) if p = 1 and q>2, put w * z> = <*i, jr> --^yq)', 
(3) if p > 2 and # = 1, put u * v = <j!i, *i, ..., *p>; 
(4) in the case p > 2 and 4 > 2 we count (x%, ..., *p> * <y2, •••>y<?> = 

<2i> ...3 zr) and put 

u *v = (xi, zi, ..., sr> if *i = y\', 
u * z> = <0,1> if r = 2 and JCI ^ y\\ 

u * v = (xi,yi, Z2, >••, zr) if Y > 3, x\ ^ j!i and x\ = z\\ 
u * v = <yi, xi, ^2, ..., zr) if r > 3, xi ^ yi and yi = 01. 

2.3. Lemma, Let a ClA-groupoid <G, o) and two elements a, b e G be given. 
The mapping ha,b of T into G, defined by 

ha,b(fy = a, 

ha,b(\) = b and 
ha,b(xi, ..., Xp) = ha,b(xi) o ha,b(x2, -, xv) if p > 2, is a homo-

morphism of <P, *> into <G, o>. 

Proof. The operation * was defined so that this might be true. 
2.4. Lemma. If we put <G, o> = <Fi, o>, a = 0 and b = 1 in Lemma 2.3 

then the mapping /zo,i is an isomorphism of <T, *> onto <Fi, o>. 
Proof. By 2.2 and 2.3 it is sufficient to show that the mapping h = ho,i is 

injective. We shall prove by the induction on p + q that h(x\, ..., xp) =h(y\, *..,yq) 
implies <#i, ..., xv) = (yi, >.-,yq). This is evident if either p = 1 or q = 1, as 
r > 2 implies /t(#i, ..., zr) $ {0,1}. Let p>2 and q>2. Suppose xi = 0 and 
yi = 1. We have 0oh(*2, ...,xp) = 1 o h(y2, ->-,yq), which is possible only if 
h(x2, ..-, xp) = 1 and h(y2, --^yq) = 0; the last equality gives q = 2 and j!2 = 0, 
a contradiction with <1,0> £ T. A similar contradiction can be derived from xi = 1, 
yi = 0. We get x\ = yi, so that 

h(xi) o h(x2, ..., xp) = h(xi) o h(y2, •••>yq); 
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as <Fi, o> is cancellative, h(x2, ..., xv) = h(y2, >->,yq) and the induction assump­
tion can be applied. 

2.5. Lemma. The groupoid <Fi, o> is free in <&; it is freely generated by the 
set {0,1} = {el

0,e\}. 
Proof follows from 2.2, 2.3 and 2.4. 
Now we shall prove by the induction on n that <FW, o> is freely generated by 

{«g, ej*, ..., el} in <&. The case n = 1 is settled by 2.5. Let n > 2. 
We do not know yet that <FW, o> is free. However, there exists a free 

groupoid in ^ , freely generated by {eg, e", . . . , ^ j ; one such groupoid denote by 
<GW, *>• 

For every i = 0,1, ..., w define a binary relation 6^ in Gn by <x,3>> e(9* 
iff x * e'- = y * en

{. 

2.6. Lemma. Every &t is a congruence relation of <GW, *>. 
Proof is easy. 
2.7. Lemma. The congruence &o f] &i f] ... f] 0n is trivial. 
Proof. Suppose <x,jy> e&o f)&i f] ... f) ®w- Denote by D the set of all 

a e Gn such that x * a = y * a. By the definition of &i we have {̂ g, e\, ..., 
£jj} g D. It is easy to see that D is a subgroupoid. Hence D = Gn, so that 
JC, y e D and consequently 

x = x*x=y*x = x*y=y*y=y. 

Lemma is thus proved. 
As <Fw-i, o> is free (by the induction assumption), there exists a homo-

morphism a of <Fn_i, o> into (Gn, *> such that afcg-1) = 4> a(^i_1) = e\* •••> 
a(^n-i) = en-i- By 2.5 there exists a homomorphism ft of <Fi, o> into <GW, *> 
such that /8(0) = el and /5(1) = e*. Define a mapping y of Fw into Gn by 

y(*i, ..., xw) = a(*i, ..., xw-i) * fi(xn). 

2.8. Lemma, y zs a homomorphism of <FW, o> into (Gn, *>. 
Proof. y«*i , ...,*n>o<3ri, . . . ,-yn» = 

y(K*i + y0> •••> K*» + y^)) = 
a(K*l + yi)> ~> \(xn-l + yn-l)) * Pik(Xn + }'n)) = 
a«Xi, ..., #n-l>0 <3!i, ...,*yn-l» *P(xnOyn) = 
(a(*l, ... , *»-i) * a(yl> . . . J J ' W - O ) * (•#(*") *P(yn)) = 

(a(xi, ... , *»_i) * P(xn)) * (a(yl> - j ^ - l ) *P(yn)) = 

y(xu . . . ,*») *y(yi> • • • J « ) • 

Denote by F^ the set of all <xi, ..., xn} eFn such that xi + ... + JCW < ^. 
Evidently, F'n is a subgroupoid. Define a mapping 99 of Fw into F„ by 95(̂ 1, ..., xn) = 
= <£*i, ...,£*»>. 

2.9. Lemma. 9? is an isomorphism of <FW, o> onto (JF„, o>. 
Proof is easy. 
Define an endomorphism \p of <GW, *> by ip(x) = x * e%. 
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2.10. Lemma, y is a homomorphism of <GW3 *> onto the subgroupoid G'n of 
<GW3 *> generated by {el, en * eg, ..., en * el}. 

Proof is easy. 
As <Gn, *> is free, there exists a homomorphism d of (Gn, *> into <FW3 o> 

such that d is identical on {el, en, ..., en}. Denote by do the restriction of d to 
G'n, so that do is a homomorphism of (Gn, *> into (and, evidently, onto) (Fn, o>. 

2.11. Lemma, do is injective. 
Proof. The homomorphism yy^do of (Gn, *> into <GW3 *> is identical on 

the generating set {e0
l, en * el, ...,en * el} of (Gn, *> and consequently identical 

on Gn. 
2.12. Lemma. For every i = 0, I, ...,n the factor-groupoid Gn\&i is cancel-

lative. 
Proof. As the role of free generators is symmetrical, it is sufficient to prove 

that Gn\®o is cancellative. As &o is just the kernel of f, the homomorphism 
theorem gives an isomorphism of Gn/0o onto G'n; by2.113 Gn can be embedded 
into the cancellative groupoid (Fn, o>. 

2.13. Lemma. The groupoid (Gn, *> is cancellative. 
Proof. By 2.7 and 2.12, Gn is isomorphic to a subdirect product of cancellative 

groupoids. 
Now we are able to finish the induction. By 2.13 and the definition of y, ^p is 

evidently an isomorphism of <GW, *> onto (Gn, *>. By 2.11, do is an isomorphism 
of (Gn, *> onto (Fn,o}. The mapping (p^dotp is thus an isomorphism of <GW, *> 
onto (Fn, *>; it maps {el, en, ..., en} identically onto itself. 

We have proved: 
2.14. Theorem. The groupoid (Fn, o> is free in & for any « > 1; it is freely 

generated by {el, e\, ..., en}. 
^-free groupoids of finite ranks are thus described. The case of infinite ranks 

is now easy: 
2.15. Theorem. Let a cardinal number a be given. Denote by F the set of 

all mappings f of a into P such that f(j) #= 0 holds only for a finite number of 
elements j ' e a . For any f,g e F put fog = h where h(j) = \(f(j) + g(j)). The 
groupoid <F3 o> is free in $; it is freely generated by the set E of all f e F such 
that f(j) e{0,1} for all j ecu and f(j) = 1 for at most one j . 

Proof. F is the union of all subgroupoids generated by finite subsets of E. 
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