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I. Introduction

If M is a set then Sy will be the monoid of all mappings of M into M. Let G be a
groupoid. Define

Lo —{(ho)| hoe S M) = o(x) .y yxy G},
Re ={(A0) |4 0€Se Axy) =x.g(y)vx,yeG},
Me={(%0)]20€ESeAx).y = x.0) v x,y€CG},
Ag¢={A| eS¢, o€ Sc(4 0) € L¢},

Az ={A| A€ Se, I 0€ Sclo, ) € L}

Re¢ ={L| 1€ Sg, 30 Se(4 0) € R} »

R; ={A| 1€ 8¢ F0€Selo, }) € Re}

D ={A|AeSe,JoeSe(h0)eMc},

D, ={A|AeSe, o€ Sclo, N e},

A ={2|2eSe, (3 HEZLa}

Re ={A|1eSq, (3 ) e Rc}

Dc = {A| AeSe, (A A) EMe} .

The mappings from Ag(Rg, P¢) are sometimes called the left (right, middle) regular
mappings. Some properties of these regular mappings can be found e.g. in [1], [3] and [4].

Let G be a groupoid. We shall say that G is /-transitive if for all x, y € G there exists
Aedg with A(x) =y. Similarly we define the A°-transitivity, etc.

A groupoid G is said to be a u-homotope of a groupoid G(o) (having the same
underlying set), provided there exist two mappings «, # of G onto G such that xy =
= a(x)o B(y) forall x,y€G.

If G is a groupoid and x € G then L. (R;) will be the left (right) translation by x
(ie. Li(y) = xy, Rz(y) = yx).

2. Main results. The following three lemmas are obvious.

2.1. Lemma. Let G be a groupoid and 4, g € S¢ . Then:

() (ho)eZe iff IR, =Ro0yx€G.
(i) (hbo)eZLe iff Ay = Loy yx€G.

"



(iii) (A, 0)€ R iff ALy = Lyoyx€G.
(iv) (4 0) €Re iff AR; = Ryr) yx€G.
V) (hoede ff Lyp =Lz yxeG.
(vi) (A o)eMe iff RzA=Romyyx€G.
2.2. Lemma. Let G be a groupoid. Then:
(i) The sets L¢, #¢ are submonoids in the monoid S¢ X S¢.
(ii) The set .# ¢ is a submonoid in the monoid S¢ x S% (S% is the opposite monoid of
Se).
(iif) The sets /lc, A%, Re, RE, e, ¢G,Aa, R¢ are submonoids of the monoid Sg.
(iv) If A4,0€ ®¢ and Ao = o, the Age Dq.
v) A. N R: < De.
2.3. Lemma. Let G be a commutative groupoid. Then:
(i) ZLe=Re, Ac = Re, At = R
(i) If (A, 0) €M ¢ then (g, ) €M ¢. In particular, D¢ = DE.
(ii) 4% = Pe.
2.4. Proposition. Any /I-transitive (R-transitive) groupoid is a right (left) divi-
sion groupoid.
Proof. Let G be a /A-transitive groupoid and x,y, 2 € G be arbitrary. There is
(4, 0) € L¢ suchthat A(2x) =y. Hence y = A(2x) = g(2) . x. Similarly for the second
case.
2.5. Proposition. Let G be such a groupoid that G.G = {xy | x,y € G} =
Then:
() Ado=poAyiedeyocRe.
(i) If (4, 0),(0,7) € Le(Ze) and if pr = 7p, then Ag = oA.
(iii) If G is PD-transitive (D*-transitive) then G is a left (right) division groupoid.
Proof. (i) Let y € G be arbitrary, y = ab for some a,be G. We have Ao(y) =
= Zo(ab) = Aa . B(b)) = «(a) . B(b) = o(«(a) . b) = 0A(ab) = 0A(y), where (4,0)€ L¢
and (o, B) € Ze-.
(ii) Ao(xy) = ot(x).y =70(x).y = oA(xy) y %,y €G.
(iii) Let G be P-transitive and x,y € G. Thereare a, b€ G and (g, y) €4 ¢ such that
ab =y and ¢(x) = a. Hence y = ab = ¢(x) . b = x . p(b). Similarly, if G is D*-tran-
sitive.
2.6. Proposition. Let in a groupoid G there be at least one element x such that the
mapping R is one-to-one. Then:
() prh=ApyopeDeyieg.
@) If (4,0),(0,7)e L¢ and As = ok, then ot = 70.
(iii) If G is A-transitive then G is /A°-transitive.
(iv) If G is R*-transitive then G is a right cancellation groupoid.
W) If (9, 9);(x, B)€Mc and B = By, then pu = ap.
Proof. (i) Let (0, )€ L¢, (p, p) M and y€ G be arbitrary. We may write
Ry 2g(y) = 2p() - x = o(@(3) - x) = 0(y - ¥(x)) = A() . p(x) = PAY) . x = RapA(y).
Hence ¢A(y) = Ap(y).
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(i) or(y).x = Ao(yx) = oA(yx) = 70(y) . x.

(iii) Let a,be G be arbitrary. There is (4, 0) € L such that A(ax) = bx. However
R;(b) = bx = Max) = o(a) . x = Rzo(a), and therefore o(a) = b.

(iv) If ay = by for some a, b,y € G, then ax = a. o(y) = Aay) = A(by) = bx, where
(%, 0) € ZA¢ 1is such that o(y) = x. Hence ax = bx, and consequently a = b.

(v) Obvious.

2.7. Proposition. Let in a groupoid G there be at least one element x such that

the mapping L is one-to-one. Then:

() pA=IlpyoecP:yreR].

@) If (4,0),(0,7)€ B¢ and Ag = o4, then pt = 7p0.

(iii) If G is R-transitive then G is R*-transitive.

(iv) If G is A"*-transitive then G is a left cancellation groupoid.
W) If (@, ), (a, f) €M ¢ and g = ap, then yf = By.

Proof. The proof is dual to that of 2.6.

2.8. Proposition. Let G be a A°-transitive (R"-transitive) groupoid and let there
be at least one element x € G such that the mapping R.(L;) is onto G. Then G is A-transi-
tive (R-transitive).

Proof: For the first case only. If a,b e G are arbitrary, then there are y,2€G
and (4,0)€%¢ such that yx =b,2x =a and p(z) =y. Hence A(a) = A(2x) =
=p(2).x =yx =b.

2.9. Lemma. Let G be an R-transitive (/1-transitive) groupoid. Then:

(i) Any mapping from A¢(R¢) is a mapping onto G.
(i) If 4, 0eAe(Re) and A(a) = o(a) for some a€ G, then 1 = o.
Proof. For the first case only.
(i) G is a left division groupoid (by 2.4) and 2.1 (ii) yields the result.
(ii) Since G is a left division groupoid, G.G = G. Let x € G be an element. By the
hypothesis there is « € R¢ with a(a) = x. Applying 2.5 (i) we get Ax = ad and ox =
= ao. Hence A(x) = Aa(a) = aA(a) = ag(a) = ou(a) = a(x).
2.10. Theorem. Let G be a /A and R-transitive groupoid. Then:
(1) G is a division groupoid.
(i) A¢ and Re are mutually isomorphic groups and card A¢ = card Rg =
= card G.
(iii) Any mapping from /¢ and Rg¢ is a permutation.
Proof. (i) See 2.4.
(ii) First we show that A¢ is a group. To this purpose it is enough to prove that it is a
right division groupoid (since /¢ is a monoid). For let 4,0 €4¢ and x € G be arbi-
trary. There is T €/¢ such that tA(x) = o(x). However tA€Ad¢ and 2.9 yields now
TA = p. Similarly we can prove that R¢ is a group. Further, for any A€/ thereisa
uniquely determined ¢ € R¢ with A(x) = g(x) (by the hypothesis and by 2.9). Setting
o =A(A) we get, for all o,fede Alf) (x) = af(x) = a AP) (x). But ad(p) =
= A(f)x dueto (i) and 2.5 (i). Hence A(xf) (x) = ad(f) (x) = A(B) a(x) = A(B)A(x) (x)
and so 4:A¢— R in an antihomomorphism. Using 2.9, we may check easily that A is
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a biunique mapping. Thus the groups /A¢ and R¢ are antiisomorphic and therefore
isomorphic. The equality card G = card A¢ = card R¢ is obvious from 2.9.
(ili) Since A¢and Rg are groups having the identity mapping 1¢ as the unit element, it is
evident that every mapping from A¢ or R¢ is a permutation.
2.11. Theorem. Let Gbe a A* and P-transitive groupoid and let there be at least
one element x € G such that the mapping R is one-to-one. Then:
(i) Ag and D¢ are mutually isomorphic groups and card G = card ¢ = card AY.
(ii) Any mapping from A and D¢ is a permutation.
(iii) If G. G = G then G is a left division groupoid.
Proof. The proof is similar to that of 2.10.
For ease of reference we give the following proposition ;it is proved in [4, Theorem9].
2.12, Proposition. Let G be a groupoid. Then the following are equivalent:
(i) G is a u-homotope of a groupoid possessing a unit.
(ii) There are two elements x,y € G satisfying

(«) Lz, Ry are onto,
B) v u, v, 2€ G, uy = vy implies uz = vz,
() ¥ 4, v, 2€ G, xu = xv implies zu = zv.

2.13. Theorem. Let G be a groupoid. Then the following conditions are equivalent:
(i) GisA,A4*,R,R*, @, " -transitive.
@ii) Gis A,4°, R, R*-transitive.
(i) Gis a A*, R*-transitive division groupoid.
(iv) Gis A*, R*-transitive and there exist x,y € G such that the mappings L., Ry
are onto.
(v) G is a u~homotope of a group.
Proof. (i) implies (ii) and (iii) implies (iv) trivially.
(ii) implies (iii) by 2.4.
(iv) implies (v). We show that the elements x,y satisfy («), (8), (y) from 2.12. For let
uy = vy and z€G. Thereis (4, 0) € Z¢ with o(y) = 2. So uz = u.p(y) = Awy) =
= Mvy) =v.9(y) = vz and we have proved (f). Similarly (y). Thus G is a u-homo-
tope of a groupoid G(0), which has a unit. By [4, Theorem 7], G(o) must be a group.
(v) implies (i). By the hypothesis there are two mappings «, of G onto G and a
group G(o) such that ab = «(a)o f(b) for all a,beG. For a,ucG let yyla) =
= uoa, 0y(a) = aou. Then obviously (Vu,ou) € L, (OusTu) € B¢ and  (Au, 0u)
€Mc where oy, Tu, Au, 0u € S¢ are arbitrary mappings satisfying:
Yut = &0us 0uf = Bru; fou = yubs thu = Ouct..
From this we can easily deduce that G is a 4,4°, R, R*, @, ®"-transitive groupoid.
2.14. Corollary. Let G be a groupoid and let there be x, y € G such that the map-
pings Ly, R; are one-to-one. Then the following are equivalent:
(i) Gis A, P-transitive.
(ii) Gis R, @*-transitive.
(iii) G is A, R-transitive.
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(iv) Gis 4,4, R, R*, @, " -transitive.
(v) G is a quasigroup isotopic to a group.

Proof. (i) implies (v). G is a division groupoid (by 2.4 and 2.5) and hence from the
hypothesis and from 2.12 we see that G is a u-homotope of a groupoid G(o) having a
unit. However (see [4, Theorem 7]) G(o) is a group and so G is A" and R*-transitive
according to 2.13. Further, by 2.6 and 2.7 G is a cancellation groupoid and consequently
a quasigroup.

(ii) implies (v). Similarly.
(iii) implies (v) by 2.6, 2.7 and 2.13.
(v) implies (iv), (iii), (ii) and (i). See 2.13.

2.15. Remark. The author does not know, whether there exists a /1, R-transitive
groupoid not being a u-homotope of a group.

3. A-transitive groupoids. If G is a groupoid then let A¢(B¢) be the submonoid
in S¢ generated by all the mappings Rz(L.), x € G.

3.1. Lemma. Let G be a /-transitive (ﬁ-transitivc) groupoid and let there be
a,be G such that ab = a(ba = a). Then b is a right (left) unit in G.

Proof. Given x € G there is Ac A¢ with A(@) = x, and hence xb = A(a):b =
= Mab) = Ma) = x.

3.2. Theorem. Let G be a groupoid. Then the following are equivalent:

(i) G is aA-transitive division groupoid and a right quasigroup.

(i) G is A-transitive and there is a € G such that the mapping L, is onto.

(iii) Gis a u-homotope of a group and G possesses a right unit.

(iv) There are a group G(o) and a mapping ¢ of G onto G such that xy = xo d(y) for all
xy€G.

Proof. (i) implies (ii) trivially.

(ii) implies (iii). Since L, is onto, there is j € G with L,(j) = a, and consequently j is a
right unit in G (by 3.1). Further, the pair a, j satisfies the conditions («), (8), () from
2.12. Indeed, («) and (p) are obvious since j is a right unit and L, is onto. For (y) we use
the 71-transitivity. If au = av for some u, v € G and z € G is an element, then z = A(a)
where Ac/¢ is suitable. Hence zu — Ma)u = Mau) = Mav) = 2v. Thus G is a
u-homotope of a groupoid with a unit and an application of [4, Theorem 7] yields (iii).
(iii) implies (iv). We have, for all x,y € G, xy = a(x) o f(¥); G(0) is a group and o,
are mappings of G onto G. Since G has a right unit j, xj = x = a(x) 0 f(j) forall x e G.
Hence a(x) = x0 (8())* and xy = «(x) 0 A(3) = x0 (B({))~L0 A(») = x0 &(3).

(iv) implies (i). Obvious.

If G is a quasigroup then C¢(D¢) will be the right (left) multiplication group cor-
responding to G.

3.3. Theorem. Let G be a groupoid. Then the following are equivalent:

(i) G is a quasigroup and C¢ = {Rx | x€ G} (i.e. for all a,b€ G thereare ¢,deG
with RsRp = R; and R;! = Ry).

(i) G is a division groupoid, A¢ = {Rz|x€ G} {l¢} (i.e. forall a,beG there is
c€ G with R, = R4Rp), and there exists x € G such that the mapping L, is one-toone.
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(iif) There are a group G(0) and a permutation 0 of the set G such that ab = ao 4(b)
for all a,b€G.
(iv) G is a quasigroup possessing a right unit and G is isotopic to a group.
(v) Gisa A-transitive groupoid and there exist x,y € G such that L is onto and Ly
is one-to-one.

Proof. (i) implies (ii). It is obvious, since {R;|xe€ G} {l¢} = 4¢ = Ce.
(ii) implies (iv). By the hypothesis there exists a binary operation o on the set G with the
property c.(aob) = (ca).b for all a,b,ce G. We can write, for all »,v,2€G>
x(uo(voz)) = (xu) (voz) = (xu.v)z = (x(uov)) 2 = x((uo v) oz). However the
mapping L, is one-to-one, and so %0 (v0 2) = (#0 v) 0 2, i.e. G(0) is a semigroup. On
the other hand, G(0) is a division groupoid, as it is easy to see, and consequently G(o)
is a group. Further, ab = (x. L;!(a)) b = Ly(L;!(a)o b) for all a, b€ G. From this it
is obvious that G is a quasigroup and that the unit of G(0) is a right unit in G.
(iv) implies (v). By 3.2.
(v) implies (iii). According to 3.2, there are a group G(0) and a mapping 6 of G onto G
such that ab = a0 d(b) for all a,b. Hence L, = y,6 where yy(a) =yoa for all
a € G, and consequently ¢ is a one-to-one mapping (since Ly is so).
(iii) implies (i). Given a,b€G we have RgRy(2) = 2b.a = z0 d(b)o 6(a) =
=20 00"Yd(b) 0o 6(a)) = 20 d(c) = Re(z) and R;l(2) = z0 (6(@))! =
=20 00"Y(d(a))"! = 20 6(d) = R4(2) forall zeG.

3.4. Corollary. Let G be a groupoid. Then the following are equivalent:
(i) Gis A and R-transitive.
(ii) G isadivision groupoid, A¢ = {R; | x€ G} U {l¢} and B¢ = {Lz | x€ G} U {l¢}.
(iii) G is a group.

Proof. (i) implies (iii). Since G is Z, R-transitive, G is a division groupoid, and con-
sequently G has a unit (by 3.1). So G is a group (see [4, Theorem 3]).
(i) implies (iii). By the hypothesis there are two mappings «, #: G x G — G such that
ab.c=a.ab,c) and b.ca =p(b,c).a for all a,b,ceG. Hence R €R¢ and
LyeAg; all b,ceG. Since G is a division groupoid, G is /-transitive and R-transitive.
By 2.10, any mapping from R¢ and /A ¢ is a permutation and therefore G is a quasigroup.
Applying 3.3 (and the dual theorem) we see that G possesses a unit and so it is a group
([4, Theorem 3]).
(iii) implies (i) and (ii) trivially.

4, Applications. If G is a groupoid and xi,..., ¥, € G, then we set

(%15 25 Xn) = x1(x2(x3(... Xn_2(Xn_1 . xn))))
[*15 ..oy 0] = ((((x1%2) X3) ... Xn_2) Xn_1) Xn .

4.1. Proposition. Let G be a groupoid. Then the following statements are
equivalent:
(i) G is a division groupoid and there exists 7 > 3 such that (x1,..., Xs) =
= (X15 ... ¥n_1) . X forall xi,...,x, €G.
(ii) There are a group G(0) and an automorphism d of G(0) such that 672 = l¢ and
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ab = ao &(b) forall a,be G. Inthis case G is a quasigroup and § is an automorphism
of G.

Proof. (i) implies (ii). We have, for all xi,...,xn_2,a,b€G,
Lzng;_ an_‘_, (ab) = (xl, ceey X2y, Ay b) = (xl, ey Xn_2, a) b=
=LzLs, ...Lz, 5(a).b. Hence Ly Ly, ... Ly, e/ and since G is a division grou-
poid, G is Z-transitive. According to 3.2, there exist a group G(o) and a mapping 6 of G
onto G such that ab = ao 6(b) for all a, b € G. Further, G has a right unit j and with
respect to [4, Theorem 11] and [4, Lemma 15] we may assume (without loss of generality)
that j is also the unit element in G(0) and d(j) = j. Now let us write 0"~1(a) =
=70 d(jo 8(jo (... 6(jo (@) = (js+--4>@) = (js -+ J) - @ = ja = &(a).
So 671 = §. However 0 is a mapping onto G, and hence 672 = l¢. In particular, &
is a quasigroup. Finally d(ao b) = §(ao 67~%(b)) =
=70 (a0 d6(jo d(... (o dB))) = (jsasfs s> b) =(Jrasfs..f) . b =ja.b=
= 6(a) 0 4(b). Thus ¢ is an automorphism of G(0) and consequently of G, too.
(ii) implies (i). If x1,..., x» € G, then by the hypothesis
(%15 -+ s Xn) = %10 0(x20 6(... (xpn_10 O(xn)))) =
= x1 0 §(x2) 0 0%(x3)0...0 0" 2(x,_1) 0 67 1(x,) =
= %10 0(x20 (x30 (... 0(xn_20 8(xn_1))))) © 6(xn) = (X1 +.-» Xn_1) - Xn »
and we are through.

4.2, Proposition. Let G be a division groupoid satisfying the identity
(%15 .5 ¥n) = [x1, ..., xn] for some n > 3. Then G is a group.

Proof. We see immediately that Ly Ls,... Ly, ,€A¢ and Rz R., ... Rz, €Re
forall x1,...,x, € G. Since G is a division groupoid, G is /A and R-transitive. Hence, by
2.10, any mapping from /¢ and R¢ is a permutation, and therefore G is a quasigroup.
Now, according to [2, Theorem 4], there are a group G(o0),p, ¢ € Aut G(0) and ce G
such that ab = ¢(a)o co y(b) for all a,beG.

Hence
P(x1) 0 O p@(x2) 0 Y(c) 0 ... 0 Y"2P(xn_1) © YP"~%(c) © Y~ Y(xn) =
= @"~1(x1) 0 p"2(c) 0 p"2y(x3) O ... 0 P(c) O PY(xn_1) O ¢ O Y(x,) for all
X1, ... ¥n €G. In particular, ¢(x1) = ¢"~1(x;) for each x,€G, and so pn-2 = g,
Further, @(x1)0 co pg(x2) = @™ 1(x1) 0 ¢™2(c) 0 @™~ 2y(x2) = @(x1) © €O P(x2) ,
ie. yp(x2) = yp(x2). From this, ¢ = l¢. Similarly v = lg, and consequently G is
a group.
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