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I. Introduction 

If M is a set then SM will be the monoid of all mappings of M into M. Let G be a 
groupoid. Define 

&G = {(A, Q) I A, Q e SG, K*y) = Q(x) -y\fx,yeG}, 
&G = {(A, Q) I A, Q e SG, Kxy) = x . Q(y) y x,y e G} , 
MG = {(A, Q) I A, O e SG, A(*) .j> = x . OCv) y *,y e G} , 
/ IG = {A I Ae 5 C , 3 Q G5G(A, e) E ^ G } , 

ylc = {A I Ae SG, 3 D e Safe A) e& G } , 
RG = {A I A e So, 3 Q e 5G(A, O) 6 ^ G } , 
KG = {A I AeSG, 3 Q eSG(Q, X)e@G} , 
<PG = {A I A e SG, 3 0 e SG(A, 0) e ^ G } , 
0G = {A I A e SG, 3 0 e SGfe, A) e ^ G } , 

-4G = {A|AeSG,(A,A)e-^G}, 
KG = {A|AeSG,(A,A)e^G}, 
0G = {A|AeSG,(A,A)e^G}. 

The mappings from AG(RG> ^G) are sometimes called the left (right, middle) regular 
mappings. Some properties of these regular mappings can be found e.g. in [1], [3] and [4]. 

Let G be a groupoid. We shall say that G is /1-transitive if for all x,yeG there exists 
A EAG with X(x) =y. Similarly we define the A '-transitivity, etc. 

A groupoid G is said to be a ^-homotope of a groupoid G(o) (having the same 
underlying set), provided there exist two mappings oc, /? of G onto G such that xy = 
= OL(X) O ff(y) for all #, y e G. 

If G is a groupoid and XEG then LX(RX) will be the left (right) translation by x 
(i.e. KzCv) = xy, Rx(y) =yx). 

2. Main results. The following three lemmas are obvious. 
2.1. Lemma. Let G be a groupoid and A,QESG • Then: 

(i) (A,o)e^G iff ARX = RXQVXEG. 

(ii) (A,O)e&G iff AL̂  = Le(iC) yxEG. 
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(iii) (A, p)e0tG iff XLZ = L^p y x e G . 
(iv) (A, Q) e <%G iff XRX = RQix) v* e G. 
(v) (A, p) e^c? iff LXQ = LMx) yxeG. 
(vi) (A, p) G ^ G iff Rxl = RQ(x) yxeG. 

2.2. Lemma. Let G be a groupoid. Then: 
(i) The sets J£?G, 0tG are submonoids in the monoid SG X 5G. 

(ii) The set J( G is a submonoid in the monoid SG X SG (SG is the opposite monoid of 
SG). 

(iii) The sets AG, AG, RG, RG, <&G> Q^AG* RG are submonoids of the monoid SG. 

(iv) If A, p e &G and Ap = pA, the Ap e 0G. 

(v) , i j n R*G .= ^ . 
2.3. Lemma. Let G be a commutative groupoid. Then: 

(i) J?G = ®G,AG = RG,AG=RG. 

(ii) If (A, Q)eJiG then (Q,X)eJ/G. In particular, 0G = &*G. 
(iii) AG c 0 G . 

2.4. Proposition. Any /1-transitive (J?-transitive) groupoid is a right (left) divi­
sion groupoid. 

Proof. Let G be a yl-transitive groupoid and x,y,zeG be arbitrary. There is 
(A, p) e S£G such that X(zx) = y. Hence y = X(zx) = Q(Z) . x. Similarly for the second 
case. 

2.5. Proposition. Let G be such a groupoid that G .G = {xy \ x, y e G} = G. 
Then: 
(i) Ap = pA y A eAG y p e RG . 
(ii) If (Xy p), (o*, T) G 3?G(@IG) and if pT = Tp, then Ao = oX. 
(iii) If G is ^-transitive (0*-transitive) then G is a left (right) division groupoid. 

Proof, (i) Let y e G be arbitrary, y = ab for some a,beG. We have XQ(y) = 
= XQ(ab) = X(a . /3(b)) = a(a). /3(b) = p(a(a). b) = pA(ab) = pA( -y), where (A, a) e &G 
and ( p , / 3 ) G ^ G . 

(ii) Ao-(rv) = pT(s). -y = Tp(x). y = c/A(rv) y x,-y G G. 
(iii) Let G be 0-transitive and x j e G . There are a, bGGand (9?, \p) eJJG such that 
ab = y and <p(x) = a. Hence y = ab = <p(x). b = x . ip(b). Similarly, if G is ^ - t r a n ­
sitive. 

2.6. Proposition. Let in a groupoid G there be at least one element x such that the 
mapping Rx is one-to-one. Then: 
(i) <pX = X<p\j<pe&G\/le/lG. 
(ii) If (A, p), (cr, T) G Ĵ G? and Xo = oX, then pT = Tp. 
(iii) If G is /1-transitive then G is ./l*-transitive. 
(iv) If G is R*-transitive then G is a right cancellation groupoid. 
(v) If (<p, ip), (a, f$)eJtG and ip/J = /3^, then qxx = oi<p. 

Proof, (i) Let (p, A) e&G, (<p, w) £^G and yeG be arbitrary. We may write 
Rx X<p(y) = X<p(y) . x = Q(<p(y) . x) = Q(y . ip(x)) = X(y) . xp(x) = <pX(y) . x = Rx(pX(y). 
Hence <pX(y) = X<p(y). 
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(ii) QT(y). x = Xo(yx) = oX(yx) = TQ(y). x. 
(iii) Let a,beG be arbitrary. There is (A, Q) E &G such that X(ax) = bx. However 
Rx(b) = bx = X(ax) = g(a) . x = RXQ(O), and therefore O(a) = b. 
(iv) If ay = by for some a, b,y e G, then ax = a. Q(y) = X(ay) = X(by) = bx, where 
(A, Q) e 0tG is such that q(y) = x. Hence ax = bx, and consequently a = b. 
(v) Obvious. 

2.7. Proposition. Let in a groupoid G there be at least one element x such that 
the mapping Lx is one-to-one. Then: 
(i) yX = X(p\/q)e&G\jXeRG. 
(ii) If (A, o), (a, T) e 0tG and ACT = al, then OT = TO. 
(iii) If G is /^-transitive then G is R*-transitive. 
(iv) If G is A*-transitive then G is a left cancellation groupoid. 
(v) If (cp, \p), (a, ($)eJtG and <pa = a<p, then y>/3 = ftxp. 

Proof. The proof is dual to that of 2.6. 
2.8. Proposition. Let G be a A '-transitive (R* -transitive) groupoid and let there 

be at least one element xeG such that the mapping RX(LX) is onto G. Then G is ̂ -transi­
tive (/^-transitive). 

Proof: For the first case only. If a>beG are arbitrary, then there are y,zeG 
and (A, Q) e 3?G such that yx = b, zx = a and Q(Z) = y. Hence X(a) = X(zx) = 
= Q(Z) . x = yx = b. 

2.9. Lemma. Let G be an /^-transitive (yl-transitive) groupoid. Then: 
(i) Any mapping from AG(RG) is a mapping onto G. 
(ii) If A, a eAG(RG) and X(a) = o(a) for some aeG, then A = a. 

Proof. For the first case only. 
(i) G is a left division groupoid (by 2.4) and 2.1 (ii) yields the result. 
(ii) Since G is a left division groupoid, G . G = G. Let xeG be an element. By the 
hypothesis there is OLGRG with a(a) = x. Applying 2.5 (i) we get Aa = aA and era = 
= ao\ Hence X(x) = Aa(a) = aA(a) = acr(a) = o*a(a) = a(x). 

2.10. Theorem. Let G be a A and K-transitive groupoid. Then: 
(i) G is a division groupoid. 
(ii) AG and RG are mutually isomorphic groups and card AG = card RG = 

= card G. 
(iii) Any mapping from AG and RG is a permutation. 

Proof, (i) See 2.4. 
(ii) First we show that AG is a group. To this purpose it is enough to prove that it is a 
right division groupoid (since AG is a monoid). For let A, QEAG and xeG be arbi­
trary. There is TEAG such that TA(JC) = Q(X). However rXeAG and 2.9 yields now 
TA = o. Similarly we can prove that RG is a group. Further, for any A eAG there is a 
uniquely determined QGRG with X(x) = Q(X) (by the hypothesis and by 2.9). Setting 
o = A(X) we get, for all a, £ eAG, A(afi) (x) = a/3(*) = a A(fi (x). But xAtf) = 
= A(P)OL due to (i) and 2.5 (i). Hence A(OLP) (X) = aA(fi) (x) = A(fi) a(jc) = A(P)A(OL) (JC) 

and so A : AG -> RG in an antihomomorphism. Using 2.9, we may check easily that A is 
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a biunique mapping. Thus the groups AG and RG are antiisomorphic and therefore 
isomorphic. The equality card G = cardAG = card RG is obvious from 2.9. 
(iii) Since AG and RG are groups having the identity mapping 1 G as the unit element, it is 
evident that every mapping from AG or RG is a permutation. 

2.11. Theorem. Let Gbe a A* and 0-transitive groupoid and let there be at least 
one element xeG such that the mapping Rx is one-to-one. Then: 
(i) AG and &G are mutually isomorphic groups and card G = card &G = cardAG. 
(ii) Any mapping from AG and 0G is a permutation. 
(iii) If G . G = G then G is a left division groupoid. 

Proof. The proof is similar to that of 2.10. 
For ease of reference we give the following proposition; it is proved in [4- Theorem 9]. 
2.12. Proposition. Let G be a groupoid. Then the following are equivalent: 

(i) G is a /^-homotope of a groupoid possessing a unit. 
(ii) There are two elements x,yeG satisfying 

(a) Lx, Ry are onto, 
(/3) y w, v, z e G, uy = vy implies uz = vz, 
(y) yu,v,zeG,xu = xv implies zu = zv . 

2.13. Theorem. Let G be a groupoid. Then the following conditions are equivalent: 
(i) G is A9 A *, _R, R *, 0 , 0 * -transitive. 
(ii) Gis A,A*> R,R*-transitive. 
(iii) G is a A*> R*-transitive division groupoid. 
(iv) Gis A*,R* -transitive and there exist x,yeG such that the mappings LXy Ry 
are onto. 
(v) G is a ^-homotope of a group. 

Proof, (i) implies (ii) and (iii) implies (iv) trivially. 
(ii) implies (iii) by 2.4. 
(iv) implies (v). We show that the elements x,y satisfy (a), (/?), (y) from 2.12. For let 
uy = vy and z e G. There is (A, Q)e0tG with Q(y) = z. So uz = u . Q(y) = h(uy) = 
= h(vy) = v . Q(y) = vz and we have proved (l3). Similarly (y). Thus G is a //-homo-
tope of a groupoid G(o), which has a unit. By [4, Theorem 7], G(o) must be a group. 
(v) implies (i). By the hypothesis there are two mappings a, /? of G onto G and a 
group G(o) such that ab = a(a) o /3(b) for all a,beG. For a,ueG let yu(a) = 
= uoa, du(a) = aou. Then obviously (yw, au) e &G> (8U, ru) e 01 G and (AM, QU) 
eJtG where au, ru, Xu, QU e SG are arbitrary mappings satisfying: 
yu& = cx.au, duf$ = f}ru, f$Qu = y t tj8, aAw = 6UCL . 

From this we can easily deduce that G is a yl,_4*, /?, K*, 0 , 0*-transitive groupoid. 
2.14. Corollary. Let G be a groupoid and let there be x>y e G such that the map­

pings Ly, Rx are one-to-one. Then the following are equivalent: 
(i) G is Ay 0-transitive. 
(ii) G is /?, 0*-transitive. 
(iii) G is A, .R-transitive. 
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(iv) G is A,A\R,R\0, &*-transitive. 
(v) G is a quasigroup isotopic to a group. 

Proof, (i) implies (v). G is a division groupoid (by 2.4 and 2.5) and hence from the 
hypothesis and from 2.12 we see that G is a /j-homotope of a groupoid G(o) having a 
unit. However (see [4, Theorem 7]) G(o) is a group and so G is A* and R*-transitive 
according to 2.13. Further, by 2.6 and 2.7 G is a cancellation groupoid and consequently 
a quasigroup. 
(ii) implies (v). Similarly. 
(iii) implies (v) by 2.6, 2.7 and 2.13. 
(v) implies (iv), (iii), (ii) and (i). See 2.13. 

2.15. Remark. The author does not know, whether there exists a A, /^-transitive 
groupoid not being a ya-homotope of a group. 

3. yl-transitive groupoids. If G is a groupoid then let AG(BG) be the submonoid 
in SG generated by all the mappings RX(LX), xeG. 

3.1. Lemma. Let G be a /l-transitive (/^-transitive) groupoid and let there be 
aybeG such that ab = a(ba = a). Then b is a right (left) unit in G. 

Proof. Given x e G there is XEAG with X(a) = x, and hence xb = X(a): b = 
= X(ab) = k(a) = x. 

3.2. Theorem. Let G be a groupoid. Then the following are equivalent: 
(i) G is a yl-transitive division groupoid and a right quasigroup. 
(ii) G is yl-transitive and there is a e G such that the mapping La is onto. 
(iii) G is a //-homotope of a group and G possesses a right unit. 
(iv) There are a group G(o) and a mapping d of G onto G such that xy = x o d(y) for all 
x,yeG. 

Proof, (i) implies (ii) trivially. 
(ii) implies (iii). Since La is onto, there is j eG with La(j) = a, and consequently j is a 
right unit in G (by 3.1). Further, the pair a,j satisfies the conditions (a), (/?), (y) from 
2.12. Indeed, (a) and (/3) are obvious since/ is a right unit and La is onto. For (y) we use 
the yl-transitivity. If au = av for some u,veG and z e G is an element, then z = X(a) 
where XEAG is suitable. Hence zu = X(a)u = X(au) = X(av) = zv. Thus G is a 
//-homotope of a groupoid with a unit and an application of [4, Theorem 7] yields (iii). 
(iii) implies (iv). We have, for all x,y eG,xy = OL(X) O /3(jy); G(o) is a group and a, /? 
are mappings of G onto G. Since G has a right unit / , xj = x = a(jc) o /?(;') for all xeG. 
Hence a(jc) = xo (p(j))-1 and xy = OL(X) O fi(y) = xo (/^(j))-1 o fi(y) = xo d(y). 
(iv) implies (i). Obvious. 

If G is a quasigroup then CG(L>G) will be the right (left) multiplication group cor­
responding to G. 

3.3. Theorem. Let G be a groupoid. Then the following are equivalent: 
(i) G is a quasigroup and CG = {Rx \ xeG} (i.e. for all a,beG there are c,deG 
with RaRb = Rc and R-1 = Rd). 
(ii) G is a division groupoid, AG = {Rx \ xeG}\J {IG} (i.e. for all a,beG there is 
ceG with Rc = RaRb), and there exists xeG such that the mapping Lx is one-toone. 
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(iii) There are a group G(o) and a permutation 6 of the set G such that ab = a o d(b) 
for all a,beG. 
(iv) G is a quasigroup possessing a right unit and G is isotopic to a group. 
(v) G is a yl-transitive groupoid and there exist x, y e G such that Lx is onto and Ly 
is one-to-one. 

Proof, (i) implies (ii). It is obvious, since {Rx \ x e G} (J {lG} ^ AG ^ CG. 
(ii) implies (iv). By the hypothesis there exists a binary operation o on the set G with the 
property c . (a o b) = (ca). b for all a,b,ce G. We can write, for all w, v, z e G> 
x(u o(v o z)) = (xu) (vo z) = (xu .v)z = (x(u ov)) z = x((u o v) oz). However the 
mapping Lx is one-to-one, and so uo(vo z) = (uov)o z, i.e. G(o) is a semigroup. On 
the other hand, G(o) is a division groupoid, as it is easy to see, and consequently G(o) 
is a group. Further, ab = (x . Lr^(a)) b = Lx(L~x(a) o b) for all a>beG. From this it 
is obvious that G is a quasigroup and that the unit of G(o) is a right unit in G. 
(iv) implies (v). By 3.2. 
(v) implies (iii). According to 3.2, there are a group G(o) and a mapping 6 of G onto G 
such that ab = ao 6(b) for all a, b. Hence Ly = yyb where yy(a) =yoa for all 
a e G, and consequently 6 is a one-to-one mapping (since Ly is so). 
(iii) implies (i). Given a,beG we have RaRb(z) = zb .a = zo 6(b) o S(a) = 
= zo dd-Xdtf)o 6(a)) =zo d(c) = Rc(z) and R?(z) = zo (6(a))-1 = 
= zo dd-^a))-1 = zo 6(d) = Rd(z) for all zeG. 

3.4. Corollary. Let G be a groupoid. Then the following are equivalent: 
(i) G is A and .R-transitive. 
(ii) G is a division groupoid, AG = {Rx \xeG}[j {lG} and BG = {Lx \ x e G} (J {lG}. 
(iii) G is a group. 

Proof, (i) implies (iii). Since G is A, K-transitive, G is a division groupoid, and con­
sequently G has a unit (by 3.1). So G is a group (see [4, Theorem 3]). 
(ii) implies (iii). By the hypothesis there are two mappings a, /?: G x G-> G such that 
ab . c = a . a(b, c) and b . ca = /3(b, c). a for all a, b, c e G. Hence Rc e RG and 
Lb eAG; all b,ceG. Since G is a division groupoid, G is ^.-transitive and -R-transitive. 
By 2.10, any mapping from RG and AG is a permutation and therefore G is a quasigroup. 
Applying 3.3 (and the dual theorem) we see that G possesses a unit and so it is a group 
([4, Theorem 3]). 
(iii) implies (i) and (ii) trivially. 

4. Applications. If G is a groupoid and xu ...,xneG> then we set 

(*1, ..., Xn) = Xi(x2(xz(... Xn_2(xn-l . Xn)))) 
[Xu ..., Xn] = ((((XIX2) X3) ... Xn_2) Xn_i) Xn . 

4.1. Proposition. Let G be a groupoid. Then the following statements are 
equivalent: 
(i) G is a division groupoid and there exists n > 3 such that (xu • • o xn) = 
= (xu • • •> xn_i). xn for all *i, ...,xneG. 
(ii) There are a group G(o) and an automorphism d of G(o) such that dn~2 = lG and 
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ab = a o d(b) for all a,beG. In this case G is a quasigroup and d is an automorphism 
ofG. 

Proof, (i) implies (ii). We have, for all xu .. .> xn-2<> a,beG, 
LXlLXt... LXn_2 (ab) = (xu ..., xn-2, a, b) = (xu .. .,*n-2, a). b = 
= LXlLXt... LXn_2 (a). b. Hence LXlLXt... LXn_2 eAG and since G is a division grou-
poid, G is ̂ 4-transitive. According to 3.2, there exist a group G(o) and a mapping 6 of G 
onto G such that ab = a o 6(b) for all a,beG. Further, G has a right unit j and with 
respect to [4, Theorem 11] and [4, Lemma 15] we may assume (without loss of generality) 
that/ is also the unit element in G(o) and d(j) =j. Now let us write <5n_1(a) = 
= jo d(jo d(jo d(... d(jo d(a))))) = (;, . . . ,/ , a) = ( / , . . . , ; ) . a = ja = 6(a). 
So d71'1 = d. However d is a mapping onto G, and hence dn~2 = \G. In particular, d 
is a quasigroup. Finally d(aob) = d(ao dn~2(b)) = 

= jo d(ao d(jo d(... d(jo (3(b))))) = (; ,a, j , . . . , / , b) = (j,a,j,...,;). b = ja . b = 
= d(a) o 6(b). Thus d is an automorphism of G(o) and consequently of G, too. 
(ii) implies (i). If xu ...3xneG, then by the hypothesis 
(Xl, . . . , Xn) = ^1 O 6(x2 0d(... d(xn-l O S(xn)))) = 

= xi o d(x_) o d2(x3) o ... o <5»-2(*,»_i) o dn-\xn) = 
= Xl O 6(X2 O 6(X3 0 6(... S(xn_2 O S(xn_i))))) O 6(xn) = (xu • •., Xn-l) . Xn , 
and we are through. 

4.2. Proposition. Let G be a division groupoid satisfying the identity 
(jti,..., xn) = [xu •. o xn_ for some n > 3. Then G is a group. 

Proof. We see immediately that LXlLXt... LXn_2 eAG and RXiRXi... RXneRG 

for all x i , . . . , xn e G. Since G is a division groupoid, G is A and JR-transitive. Hence, by 
2.10, any mapping from AG and RG is a permutation, and therefore G is a quasigroup. 
Now, according to [2, Theorem 4], there are a group G(o), <p^e Aut G(o) and c e G 
such that ab = <p(a)oco ^(b) for all a>beG. 
Hence 
9?(JCI)oco f<p(x_)o \p(c)o ... o y>n~2q>(xn-i)o yn~2(c)o ^pn-1(xn) = 
= 9?n~1(xi)o<pn-2(c)o<pn-^(x_)o . . .o<p(c)o^(x n_i)oco ^p(xn) for all 
xu... xneG. In particular, ^(JCI) -= <pn-\xi) for each JCIGG, and SO <pn~2 = G. 
Further, <p(xi)oco ^p<p(x_) = ^7l_1(xi)o<pn-2(c)o<pn-2\p(x_) = <p(x_)oco y(x_) , 
i.e. ^p<p(x_) = ip(x_). From this, <p = lG. Similarly ^p = 1G, and consequently G is 
a group. 
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