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In the present work, two integral equations with Meijer’s G-function in the kernel have been
solved. The technique employed in finding the solutions of integral equations is somewhat different
than the techniques used in [1], [2], [6]. Later some special cases are discussed.

I.Introduction

Some inversion integrals for integral equations involving either a Chebysheb or
Legendre or Gegenbauer polynomial in the kernel are given [1], [2], [6]. The central
theme of this paper is to find the solutions of two integral equations with the G-function
as kernel. As a large variety of functions that occur frequently in the problems of analysis
and mathematical physics are only specialised or limiting forms of the kernel used in
the present integral equations, our problem may prove of general interest. Later some
specialised cases are derived from the main results.

We recall the definition of Meijer’s G-function [4, p. 207]:
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The following results will be needed in the development of the solutions.
A special case of [5, p. 212, (79)], taking # = 1 and replacing « by zy, is expressed as:
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Similarly, another special case of [5, p. 200, (97)]; taking 4, — 1 and replacing a by zy,
is given by the relation:
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2. Theorem 1.

If the integral equations
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exist, then the solution of (2.1) is given as
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Proof. Let us suppose that both @(x, z) and ¥(z2) exist. Substituting the value
of D(x, z) from (2.1) in (2.2), we obtain
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By inverting the order of integration which permissible due to the convergence of the
integrals involved, one can get
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From (1.2), we arrive at
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This is now in the form of the generalised Hankel transform [7, (1.1)], and hence
inverting by applying [5, p. 5, (1)], we can find the solution (2.3).

3. Applications

(i) With A = — m, our theorem leads to

Corollary 1. If the integral equations
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exist, then the solution of (3.1) is given by
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where the generalised Hankel kernel in (3.3) is introduced by Bhise [3].
(ii) When A = —m, k + m = 1/2 and using [4, p. 216, (3)] the theorem leads to
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Corollary 2. If the integral equations
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exist, then the solution of (3.4) is expressed as
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where J,(x) is Bessel function.
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4. Theorem 2.
If the integral equations
f G 22 [z(xy) —Lk—m—12—v2, —k+m+ 1/2 42 ] .
35 | V2—A—mv2— A4+ m—v]2+A+m—v2+A—m0
f() dy = Dy(x, 2)

x

R(»2—2A—m)>—1, R(2—2i+4+m>—1, (4.1)
and
fw Dy(x, 2) dx = V3(2) , 4.2)
0

exist, then the solution of (4.1) is expressed as:
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The proof of this theorem easily follows by proceeding on the lines of Theorem. 1.
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