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Note on a Normality Relation in Lattices 

L. BERAN 

Department of Algebra, Charles University, Prague 

Received 8 November 1973 

In this paper, we define and study a normality relation based in a natural way on a 
lattice generalization of inner automorphisms. 

I. Preliminaries 

The ingenious system of axioms proposed by ZASSENHAUS [4] for a normality rela­
tion < denned on a lattice J£? can be restated in a slightly modified form as the system of 
the following postulates: 

(ZO) c < d => c ^ d ; 
(Zl) a < a u c => ( V x e [c, a u c] c u (a n x) = x 

ET V y e [a n c, a] a n (c u j;) -= y) ; 
(Z2) V c e L c <\c; 
(Z3) v- a, b, c e L c < I b = > a n c < a n b ; 
(Z4) (c < a u c ETy <\a)=>c\jy<]a\J c. 

A remarkable approach to this question was made in the papers [1], [3] by DEAN 

and KRUSE . The corresponding system of axioms is formulated in the following set of 
six conditions: 

(DKO) \/- aeL a <\ a ; 
(DK1) a <\ b => a ^ b ; 
(DK2) (a<]bEJc<\d)=>aOc<\bc\d; 
(DK3) (a <]bETa <\c)=>a <}b u c ; 
(DK4) ( a < ] b E T c < ] d ) = > a u c < a u c u ( b n d ) ; 
(DK5) [a ^ b ET (a < a u c VEL c < a u c)] => a u (b n c) = b n (a u c). 

For the sake of brevity we shall call a normality relation in the sense of Zassenhaus 
(resp. in the sense of Dean and Kruse) a Z-normality relation (resp. a DK-normality rela­
tion). It is well known that every DK-normality relation is a Z-normality relation. 

Various results in appropriate systems of conditions imposed for a normality relation 
were obtained by Noronha Galvao and Almeida Costa [2]. 
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2. A-normal i ty relation 

Let D be a subset of L, D = D(J?) = {dx}xeA, such that every element k e L is 
a join of the elements belonging to a subset of D(J?). Suppose next there exists a map­
ping # from D(J£) to the set of all automorphisms of the lattice S£ = <L; n, u >, 
&: dx I- OA. The set Im # will be denoted byA(&). We write also D(x) = & fl (*]. Let 
further <] be the relation defined on L by a <\ b iff a ^ b and dx: a\-+a for all 
dxeA(b) = {dxeA(J?)\dv t^b}. The relation < is called an A-normality relation 
(determined by D(-^) and #) iff it satisfies the following conditions: 

(n) (dx: c\-^c whenever dx e D(££) and c e L are comparable elements; 

(nn) ( a < | a u c ^ * = aETde D(x)) => 3 di e D(a n (c u </)) 
3 d2 e D(c ox) d <: di u d2; 

(nun) ({d*}x€.*: ^ D{&) ET D(j^) a d^ ^ u dx) => (3 *I,K2, . . . , % e i \ such that with 

^ = &*x o % o ... o «Sn with e, ?, . . . , y> = ± 1). 

The following proposition makes the used terminology legitimate. 

Proposition 1. The system {@X}*€A of all cyclic subgroups of a group & with distin­
guished generators gx e Dx and the mapping ft: @x |-> dx (where dx is the inner auto­
morphism determined by gx, ( S ; : / h (Hgi ; . » define an A-normality in the lattice 
&(&) of all subgroups of the group &. 

Proposition 2. Let & = <L; ^> be a modular lattice^ <& (S£) = L nod let for all 
X e A dx: k\-+k be the identity automorphism on L. Then the relation ^ is an A-normality 
relation. 

Proof. Let d ^ x and a 5j x ^ a u c. Denoting d\ = a n (c u d\ d<t = c n JC, 
we have d\ u d2 = [a u (c n *)] n (c u d) = (a u c) n (a u x) n (c u d) = (a u *) n 
n (c u d) ;= d by modularity of & . 

Theorem 3. ifoery A-normality relation is a DK-normality relation. 

Proof. The validity of (DKO) and (DK1) follows trivially. If dx ^ b n d, a < 6, 
c < i . then dx ^ b and since a <] b, we have (5A : a |-> a and, similarly, dx: c I-* c. 
But 6A is an automorphism and so dx: a n c |-> a n c and we have proved the validity 
of (DK2). It is immediate that (nnn) implies the condition (DK3). 

To prove the condition (DK4), suppose that a <\ b and c < d. Since a u c u 
u (b n d) = U dT where dT ranges over all the elements of D(a u c) U Z)(b n d) there 
exist xi, ^2-..., ŵ G/1 such that (5A = 6jj o ^ o . - . o dx* where a1*; e .0(a uc) U 
U D(b n d). If a^-e D(a u c), ^ : a u c h a u c by (n); if dxj e D(b n d), 
a'xy: a u c |-> (5«y (a) u <5*y (c) = a u c because of dXj ^ b n d ^ b and a <| b 
(resp. d*; ^ d and c <] d). 

The proof is completed by proving that also the condition (DK5) holds: Here we 
shall distinguish two cases. 
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Case I. a<Lb and a < a u c. We shall show that dx = b n (a u c) implies 
^A ^ a u (6 n c). Setting x = b n (a u c) in (nn), we get dx = di u d2 where 
Ji = a n (c u JA) ^ a, d2 = c n b n (a u c) = 6 n c. Thus b n (a u c) = a u (b n c), 
since every element of & is a join of some elements d*. 

Ca$* / / . a = b and c < a u c. If d* ^ b n (a u c), then dx <i b and d* = a u c, 
hence, by (nn), there exist di, d2 such that dA = di u d2, di = c n (a u d*) = c n ft, 
d2 = a n (a u c) = a and so dA = a u (b n c). 

Proposition 4. Let <£ be a lattice satisfying the condition 

(H) V u,veL u <l u \j v => u o v <iv 

(u [) v covers u implies that v covers u n v). 

Let further D(&) = L and let for all XeA dx : k |->- & be the identity automorphism 
on L. 

Then the relation < defined on L by a < b iff a = b VEL a <lbis an Abnormality 
relation. 

Proof. Suppose that a < a u c^x^ayd = #. In the case a = a u c we can 
put di = c \j dyd2 = c. If (i) a < a u c and x = a, then di = a n (c u d), 
dz = c n a are such that di u d2 S= a n d = d. If (ii) a < a u c and x = a u c, then 
a n (c u d) < (a u c) n (c u d) = c u d by (H) and so either a n ( c u d ) = c u d 
or a n (c u i ) < c u d. In the former case we can use the argument of (i). In the 
latter case, note that a n (c u d) = c u (a n (c u </)) = c u a\ If a n (c u a*) = 
= c u (a n (c u d))y then a = c, a contradiction. Hence, putting d± = a n (c u d), 
J2 = c, we get di u d2 = c u (a n (c u d)) = c u d = d. This completes 
the proof. 

We make the observation that the preceding proposition fails to hold for lattices 
satisfying the condition 

(H) u (\ v <iv => u <iu \) v . 

A counterexample can be constructed as follows. To the lattice 2 x 3 we join a new 
element f satisfying the relations <0;1> < | < < 2 ; l > e 2 x 3 , f#= <1;1>. The relation 
< defined on the lattice £?i (obtained by this construction) in the same way as in the 
proposition 4 is such that £ < <2; 1>, <2; 0> < <2; 1>. Suppose < is an A-normality 
relation. By Theorem 3, every A-normality relation satisfies (DK2) and so we get 
<0; 0> = f n <2; 0> < <2; 1>, a contradiction. 

Suppose now that < is an A-normality relation defined on a lattice S£. Since < 
is also a Z-normality relation, every two maximal chains r = c o < c i < . . . < c O T = 
= M, t = do < d\ < ... < dn = u have the same length m = n. We shall denote it by 
[u: t]. If I eLes and if there are so = s, s i , . . . , st such that so < $i < ... <3 s* = 1, 
the element s is said to be subnormal and we write in this case s < < 1. If 0 = so < si < 
< ... < Sk = 1 and if $*-i < Si for each integer i = k> the series {5{}*«0 -s called 
a composition series of the lattice j£?. 
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Theorem 5. If < is an A-normality relation defined on a lattice & having a com­
position series and if the relation < satisfies the condition 

a < b=> YAe/L dx(a)< dx(b), 
then 

( W < < 1 E T / I < < 1 ) = > / W U W < < 1 . 

Proof. The assertion holds whenever [1 : m] or [1 : n] or [1 : 0] equals to 0. Sup­
pose that q = 11: n\ ^ 1, s = [ 1 : m] ^ 1, r = [1 : 0] ^ 1 and that the assertion holds 
for all the elements co < < JU < < t, co < < v < < t of the lattice & which are 
such that either [1: fjt] < p or [1 : v] < q or [t: to] < r. Let {hi} and {kj} be maxi­
mal chains, 

m =ho < h\ < ... < hp = 1, n =ko<\ k\ < ... < kq = 1 . 

Since [1: h\] = p — 1, h\ u ko < < 1 by our inductive hypothesis. If h\ U ko < 1, 
then [h\ U ko: 0] < r. Now ^ = m < < h\ u &o, v = n < < h\ u ^ and so 
m u w < < A i u A ? o < < 1 from which m u w < < 1 follows at once. Hence we may 
assume that h\ u ko = 1 and that &i u /*o = 1. 

If there exists a X such that J* ^n,dx€ D(J?) with <5;i(m) =# m, then the assump­
tion m U dx(m) = m implies m ^ dx(m). But w < < 1 implies (by hypothesis on < ) 
that in this case dx(m) < < 1. Since [1: m] = [1 : dx(m)] = [1 : m] + [m: dx(m)]y 

we have [m: Sx(m)] = 0, hence m = dx(m)y a contradiction. Thus m < m u dx(m) 
and m < < Aj>_i = e, <5A(/W) < < hv-\ = t, [t : 0] < r and by hypothesis 
m u dx(m) < < Ap-i < 1. Therefore [1 : m] > [1,'ffiu <5A(W)] and using again the 
inductive hypothesis we obtain m u <5A(W) U n < < 1. Because of dx ^ « ^ m u w> 
we have <5A(»0 ^ ^(w U «) = m u w which yields m U w < < 1. 

By what we have just seen, we may assume that dx(m) = m and d^(n) = n for all 
dx ^n^dn^k m. 

If dx^ h\ u n, then there exist «i,̂ 2> ..o ** such that 6X = d^1 o d^1 o . . . 
... o <5* * and {^i, ^23 . . o **} = { îj «2> • • •> **} U {*i > *2 > • • •> ** } w n e r e for each 
H' we have dx> g /n and for each x" we have dx» ^ w. Since <5*- (m) = m and since 
m < Ai, d*> 5£ h\ implies that 6V (m) = m9 we get <$(w) = m. Hence m < h\ u « = 1 
and, similarly, w < 1. By (DK4) we conclude that w u n < 1 and the theorem is prove 
proved. 
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