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In this paper, we define and study a normality relation based in a natural way on a
lattice generalization of inner automorphisms.

I. Preliminaries

The ingenious system of axioms proposed by ZAsSENHAUS [4] for a normality rela-
tion <] defined on a lattice .# can be restated in a slightly modified form as the system of
the following postulates:

(Z0) c <ld=>c=<d;

(Z1) a<gavuc=> (¢ x€[cau (] cufanx)=x
ETvyelancal an(uy =y);

(Z2) \+ celL c<c;

(Z3) »+ a,b,ceL cdb=anc<Janb;

(Z4) c<av cETyga)=cuy <Jauvc.

A remarkable approach to this question was made in the papers [1], [3] by Dean
and Kruse. The corresponding system of axioms is formulated in the following set of
six conditions:

(DKO0) \t aelL a<a;

MDK1) aJb=>a=b;

(DK2) (a <]{bETc gd)=anc<gbnd;

(DK3) (@ 1bETa<qc)=>a<qbuc;

(DK4) (a <{bETc<qd)=>avuc<Jaucu(bnd);

(DK5) [a=<bET(a<JavucVELcJave)=auvubne=bn(avc).

For the sake of brevity we shall call a normality relation in the sense of Zassenhaus
(resp. in the sense of Dean and Kruse) a Z-normality relation (resp. a DK-normality rela-
tion). It is well known that every DK-normality relation is a Z-normality relation.

Various results in appropriate systems of conditions imposed for a normality relation
were obtained by Noronha Galvao and Almeida Costa [2].
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2. A-normality relation

Let D be a subset of L, D = D(¥) = {d3}1¢ 4, such that every element k€ L is
a join of the elements belonging to a subset of D(.#). Suppose next there exists a map-
ping ¥ from D(%) to the set of all automorphisms of the lattice & = (L; n, u),
& :d; |- 0;. The set Im & will be denoted by A(%). We write also D(x) = £ N (x]. Let
further <] be the relation defined on L by a <] b iff a < b and 8;: al—a for all
02€4(b) ={01€4(L)|dy < b}. The relation < is called an A-normality relation
(determined by D(Z) and ) iff it satisfies the following conditions:

(m) (0a:cl—>c whenever d; € D(#) and c € L are comparable elements;

(mn) (@a<Jauc=x=aETdeD(x)=3dieD(an (cu d))
IdseD(c n x) d=<diuds;

(nnn) ({dxjxex = D(Z) ET D(F)3dy < U dx) = (3 x1,%2, ..., %a € K such that with
x€K
Oy =205,00%0...00, withe,,...,p =+ 1).
The following proposition makes the used terminology legitimate.

Proposition 1.  The system {D;}1c 4 of all cyclic subgroups of a group & with distin-
guished generators g, € D; and the mapping §: D, |~ 65 (where O, is the inner auto-
morphism determined by g, 65: H |~ (Hé ;. D) define an A-normality in the lattice
L(Y) of all subgroups of the group 4.

Proposition 2. Let & = (L; <) be a modular lattice, ? (¥) = L nad let for all
AeA 6i: k|~ k betheidentity automorphism on L. Then the relation < is an A-normality
relation.

Proof. Letd < xand a<x=<a U c. Denotingdi=an (cud),ds=cn x,
we have diuds =[avu(cnx)]n(cud)=@uc)n(@aux)n(cud)=(au xn
n (¢ u d) = d by modularity of & .

Theorem 3. Every A-normality relation is a DK-normality relation.

Proof. The validity of (DK0) and (DK1) follows trivially. If d4 < b n d, a < b,
¢ < d, then d; < b and since a <] b, we have d,: a |— a and, similarly, d;: c|—c.
But d, is an automorphism and so d;:a n ¢|—a n ¢ and we have proved the validity
of (DK2). It is immediate that (nnn) implies the condition (DK3).

To prove the condition (DK4), suppose that a <] b and ¢ <]d. Since a U ¢ U
U (b n d) = U d; where d, ranges over all the elements of D(a U ¢) U D(b n d) there
exist 1, %2, ..., #n €/ such that §; = 6:_1 o 6;‘:1 0...0 6:,‘1 where dy;eD(@ v ¢) U
UDGbnd). If dgyeDauvc), d,:aucl—~avc by (m); if d, € Db n d),
dyj: @ U cl> 0y (@)U Ox; () = a u ¢ because of dy; = bnd <=band a b
(resp. dx; = d and ¢ < d).

The proof is completed by proving that also the condition (DKS5) holds: Here we
shall distinguish two cases.
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Case I. a<b and a <]a U c. We shall show that da < b n (a U ¢) implies
di=au(nc). Setting x=bn(auc) in (nn), we get d; <d; U d> where
disan(cvdy)y=a,d2=cnbn@uc)=bnc. Thusbn(@uc)=avu (bnoc),
since every element of % is a join of some elements d;.

CaseIll.a<band c Javec Ifdi<bn(avc),thend;<bandd; <avc,
hence, by (nn), there exist di, ds such that d; <di U ds,di <cn(audy)<cnb,
d2<an(auc)=aandso di=<au (bn o).

Proposition 4. Let . be a lattice satisfying the condition

H) Y uvel u<<uVo=>uno <o
(u U v covers u implies that v covers u n v).

Let further D(¥) = L and let for all A€ A 01: k |~ k be the identity automorphism
on L.

Then the relation <] definedon L by a <1 b iff a = b VEL a << b is an A-normality
relation.

Proof. Supposethat a <]a U c=x =a,d = x. In the case a =a U ¢ we can
put di=cud,dz2=c. If (i) a<<auc and x=a, then di=an (cv d),
deo=cna aresuch that diuds =and=d If(ii)a <au cand x =a U c, then
an(cud)d@uc)n(cud)=cud by (H) and so either an (cud)=cud
or an (cud)<<cud. In the former case we can use the argument of (i). In the
latter case, note that an(cud)<cu(@n(cud)=cud If an(cud)=
=cV (an (cud)), then a =c, a contradiction. Hence, putting d1 =a n (c U d),
do = ¢, weget diuds =cuU (@an (cVUd)=cud=d This completes
the proof.

We make the observation that the preceding proposition fails to hold for lattices
satisfying the condition

H) unv<o>u<uUo.

A counterexample can be constructed as follows. To the lattice 2X 3 we join a new
element & satisfying the relations <0; 1> < & <<2;1>€ 2% 3, & + (1; 1). The relation
< defined on the lattice .7 (obtained by this construction) in the same way as in the
proposition 4 is such that & <] <2; 1), <2; 0> <1 (2; 1>. Suppose <l is an A-normality
relation. By Theorem 3, every A-normality relation satisfies (IDK2) and so we get
030> =& n (2;0) < <2; 1), a contradiction.

Suppose now that <] is an A-normality relation defined on a lattice #. Since <
is also a Z-normality relation, every two maximal chains t =cp << ¢c1 <... < ¢y =
=u,t =do <dy <... <dn = u have the same length m = n. We shall denote it by
[u:2). If 1 e Les and if there are so =5, 51,...,sgsuch thatso < 51 < ... < sg =1,
the element s is said to be subnormal and we write in this case s <] <] 1. If0 =50 < 51
<J...<sg=1 and if 5,1 < 5; for each integer i < k, the series {sg}f_o is called
a composition series of the lattice .#.
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Theorem 5. If <\ is an A-normality relation defined on a lattice & having a com-
position series and if the relation <| satisfies the condition

a<llb=¥Mled di(a) < 8a(b) ,
then

mMIA1IETa<] < D)=>mun]l.

Proof. The assertion holds whenever [1: m] or [1: n] or [1: 0] equals to 0. Sup-
posethat  ={1:n] = 1,s =[1:m] = 1,7 = [1: 0] = 1 and that the assertion holds
for all the elements 0 < < p < <, 0 < <I» << < ¢ of the lattice ¥ which are
such that either [1:u] <p or [1:9] < g or [i: ] <r. Let{k} and {k;} be maxi-
mal chains,

m=h<lh<.lhp=1 n=k<k<..<kg=1.

Since [1: ] =p—1, h1 U kg <A <I 1 by our inductive hypothesis. If A1 U & <1,
then [A1 U ko:0] <r. Now pu=m<I <lhUk,y=n<<lh Uk and so
mun<<huky<\<1 fromwhichm v n <]<l 1 follows at once. Hence we may
assume that &3 U k) = 1 and that k; U Ay = 1.

If there existsa A suchthat dj < n,d; € D(¥) with 0;(m) & m, then the assump-
tion m U di(m) = m implies m = §;(m). But m < <I 1 implies (by hypothesis on <])
that in this case dx(m) <\ <\ 1. Since [l1:m] = [1:0:(m)] = [1: m] + [m: dx(m)],
we have [m:03;(m)] =0, hence m = 6;(m), a contradiction. Thus m < m v 8x(m)
and m < <] hp1 =1, 0am) <] <\ hp-1 = ¢, [t: 0] < r and by hypothesis
m U 6)(m) <\ < hp-1 <\ 1. Therefore [1:m] > [1:m U d2(m)] and using again the
inductive hypothesis we obtain m U d3(m) u n < <\ 1. Because of dx=n<=mu n,
we have d;(m) < dx(m U n) =m u n which yields mu n <J < L.

By what we have just seen, we may assume that d,(m) = m and d,(n) = n for all
dy=n,d, =m.

If dy =< h1 U n, then there exist »1,%2, ..., #x such that d,, = 63,1 o 6:1 O ...
coo 0 0E and {1, w2y ..oy i} = {3fs #gy s 25} U {%], %55 ..., x;} where for each
%' we have d,» < h; and for each »” we have dy. < n. Since dx. (m) = m and since
m <l b, d» < b implies that ,. (m) = m, we get 6(m) =m. Hencem < b un=1
and, similarly, » < 1. By (DK4) we conclude that m u n <] 1 and the theorem is prove
proved.
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