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Integral Equations and Boundary Value Problems 
for Elliptic Partial Differential Equations 

E. LANCKAU 

Technical University, Depar tment of Mathematics , Karl-Marx-Stadt 

Using the Bergman integral operator methods, boundary value problems for partial differen­
tial equations of elliptic type are solved by means of a singular integral equation. 

(1) We consider in a simply connected domain G elliptic differential equations 
of the form (u = u(x, y)) 

Au + a(x, y) ux + b(x, y) uy + c(x, y) u = 0 

or with the complex notation z = x + iy, z = x — iy, 

uzz + A(z, z) uz + B(z, z) uz + C(z, z) u = 0 . (1) 

We assume that all the solutions of equation (1) regular in G can be represented by 
a certain transformation of analytic functions of the complex variable z also re­
gular in G: 

«(*,*) = rr/(*)]. (2) 
Further we prescribe that the solution u(z, z) satisfies the boundary con­

dition 

/ u(z, z) = 0(z) for z e C = G , (3) 

here / is a linear operator. 
Finally we assume that the analytic function of the variable z satisfying the 

boundary condition 
*/(*) = <p(j*) for z eC 

can be written in the form 
/(*) = K<p(z) (4) 

with a linear operator K. Such formulae exist for the first (Dirichlet) and the 
second (Neumann) boundary value problems, for example. The operator (2) 
transforms the function (4) into the solution 

u(z,z) = TK(p. (5) 

If this solution solves the boundary value problem (1), (3), then 

ITKtp = 0 for zeC. 
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This is a functional equation for the uknown function <p, while 0 is a given 
function. If this equation has been solved, we find the solution of the boundary 
value problem (1), (3) immediately by formula (5). 

Now we describe the method for a special operator (2,); for another examples 
see [2]. We constrict ourselves to the first boundary value problem for the unit 
circle C. Then (4) reads 

J _ (£ „,л s + z љ 

І7tІ J >«=1*:P*'>7=7T- (4,) 

C 

But the method is also applicable for other boundary conditions and other domains. 
(2) The operator (2) may be choosen in the form 

T[f] = 2m j E(z, z, t)f(z(l - t2)) dt / (1 - r 2 ) 1 / 2 . (20 

This is the (slightly modified) Bergman integral operator of the first kind [1]. Here 
the "generating function" E(z, z, t) satisfies a certain differential equation connected 
with the equation (1); there exist infinitely many generating functions. Inserting 
the function (4') into the operator (T), we have for \z\ < \s\ = 1 the solution (after 
changing the integrations and with t = sin w) 

.i/2 

l i s -4- z cos2w ds 
u(z, z) = <P w(s) 5— E(z, z, sin w) dw • — (5') 

J J s—zcos^w s 
C —n\2 

For z eC the left hand side is a given function 

0(z) = Rc j>(p(s)K(z,z,s)^. (6) 

c 

This is an integral equation with a singular kernel for (p(s): 

/

s ~\~ z cos 2 w _ 
— E(z, z, sin w) dw . (7) 

s — zcos2w 
-njl 

(3) Investigating the type of the singularity of the kernel for s = z, we use 

Taylor's formula: 

E(z, z, sin w) = E(z, z, 0) + sin w Et(z, z, 0) + — sin2w Ett(z, z, v) 

with 0 < v = v(w) < sin w. By symmetry we have 

nil 

f 
J s — z COS2W 

-я/2 

s + z COS2W . , л 

sin w dw = 0 ; 
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and from 

f \+P™\™ áw-<2(l p)~-I- 1) 
J 1 —pcos-w 

—n\2 

follows 
K{z, z, ]S)=7tE{z, ź, 0) (2(s / (s - z ) ) - l - — 1) + K+(z, z, s) . 

Here 
л/2 

K+{z, 
1 \ s •+ Z COS2ZÜ 

z, s) = — 1 — sin2rø Ett(z, z, v) áw 
2 J s — øcos^fü 

' —я/2 

(8) 

is a continuous function, for the integrand is continuous for all w and for s = z, 

too. 

Therefore the integral equation (5') has a kernel with a weak singularity: 

0(z) = Re j 2nE(z, z, 0) <j> cp(s) (s(s — z))~-l- ds + 

c 

+ j <p(s) [K+(z, z, s) - nE(z, z, 0)] -y- j . 

c 

(4) A very easy example we get by A = B = 0, C = 2(1 + zz)~-. 

Kreyfiig gave the generating function 

E(z,-z,t)=\ * - r2 ; 

thus £(#, J, 0) = 1, and the kernel of equation (8) becomes for zz = 1 
*/2 

s + z cos2«; . 
K+(z, Ï, 5) = - 2 . J sin2w dw 

s — z cos-w 
- 7 1 / 2 

= TT(1 — 4s(l — (1 — zjs)-l-)jz) ; 

the equation (8) reads 

0(z) = 27tRe (f> <p(s) [ « Ä — 0))"1/2 — 2(1 — (1 — zls)-l-)lz\ ds . 

c 
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