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On a Conjugate Semi-variational Method 
for Parabolic Equations 

I . HLAVACEK 

Mathematica l Inst i tu te , Czechoslovak Academy of Sciences, Prague 

Formulating the heat conduction problem in terms of the heat flux vector, a particular case 
of a general parabolic equation with positive definite and positive semi-definite operator coef­
ficients is obtained. To such problem, the so-called semi-variational method can be applied, 
yielding a sequence of approximations with an increasing accuracy. Even the first approximation 
shows favourable numerical results in comparison with the corresponding procedure for the 
original problem. 

Let us consider the following mixed problem 

x = (xi, xz,... xn) eQ, 0 < t < T < OO , (1) 

u(.,0)=<p, (2) 

u = g on r u X (0, T> , (3) 

du 

дv 

дv 

= P on Г д x , ( 0 , Г>, (4) 

OLU+^- = P on Гvx(0,Ty , (5) 
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where Q is a bounded domain with a Lipschitz boundary J1, ---— = -̂ — vu repeated 

dv dxi 

Latin index implies summation over the range 1, 2, ...,«, vt denote the components 

of the unit outward normal to r. The boundary consists of four mutually disjoint 

parts ru, A , r v and r0. Each of ru, A 3 r v is either open in r or empty, mes r0 

is zero. We assume 
0 < ao fg a(*) 5g ai < co , x eTv . 

Let us denote 

---— = hi, Aw = --r— = div h , hm = hy . (6) 
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The approach can be applied to more general parabolic problems (cf. [2](b)), e.g. 
to the equation 

du d I , . du \ , 
dxj, 

Differentiating (1) with respect to xjc and using (6), we are led to problem 

A h * - ^ d i v h = ^ , A _ l , 2 , . . . , , , (7) 

h ( . , 0 ) -g rad<p , (8) 

/ + div h - - | - on A X (0, T>, (9) 

hv = P on A x (0, T>, (10) 

a(f + divh) +-^hv = 4~P o n A X (0, T>. (11) 

The problem (7) — (11) will be called conjugate to the original problem (1) — (5) 
(cf. [1]). Henceforth, we set P — 0 on A X (0, F> for brevity. 

Let us define the following linear spaces and bilinear forms: 

HB = {xe [LZ(Q)Y> XV 6 L2(A)}, HA={Xe [La(-Q)]», div X 6 U(Q% 

HA = {XeHA, Xv = 0 on A}, r = HA()HB, 

(<p, \p) = j cpip dx, (<p, ^)rs = J W d^> ^ = A or A , 

£(h, X) = (*<> #) + ( a _ 1 ^ 2>)A, > h , x e B 5 , 
-4(h, x) = (d-v h, div x), h, x e HAy 

i?(h, h) - ||h|||, A(h, h) _ H > INI2A + INII - ||h||V • 
Let L2«0, F>, H) denote the space of measurable mappings u(i) of <0, F> 

into a normed space H such that 

flK0ll'*d*<oo. 
0 

Assume that the data satisfy the following conditions: grad^ eHs, f(.,t)e Lz(Q), 

^g(.,t) eW^(Q), -^P(-,t) eLz(rv), re<0, T>. 

We say that h(x, t) is a weak solution of the conjugate problem (7) through (11), 

if h eL2«0, T>, r), 4JJL eL2«0, T},HB), 

B{w>*) + A(*> *> = -">div *> + ( f > *-)ru + ("- 14r' *)r. > 
0<t^T, %e-r, 

B(h(.,0) —grad9J,x) = 0, X e ^ - 0 2 ) 
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The definition (12) corresponds with the equation 

~ dh 
dг 

Ah = / (13) 

in iT, where B is a positive definite and A a positive semi-definite operator. Hence 

the semi-variational method [2a] can be applied. If {x1, X2> •••> X^} form a ^ a s ^ s °f 

a subspace Jt <= V and x = T/M is the time-increment, then e.g. the first approxi­

mation h<1>(., mx) (so-called CRANK-NICOLSON-GALERKIN) is given by 

N 

h(!)(., mx) = 2 < X y > m = 0, 1, 2, ... M , 

<^wo -= o> , w m+i = 2am —wm , (14) 

(^ + T T ^ ) a ™ = ^ w W + T T ( F ^ m r ) + F ( m T + T ) )> 

* « = -3(x*>x0, •*« = (̂X*> X9 > 

co,- = H(grad ^, xO > P i W = </(WT), X '> > (15) 

by </(0> X> denoting the right hand side of (12). 
Using finite elements with the diameter d in [W{

2

1](Q)]n C HA 0 HB, the 
estimate of the type 

m 

\\Tm\\B + ( ^ T J T (^ + **+0 *) i = °0* + ^ 
can be proved for z m = h( . , mx) — h^)(., mx) and any m. 

The second approximation (cf. [2]) is proved to be fourth order correct in x. 

Numerical examples of the first approximation were calculated for the case 

n = 1, Q = (0,1), T = 1,6, r = ru, g = 0, 99 = 0, the solution of which is 

u = te'1 . x\\ — x ) 2 with the use of cubic elements on <0,1>. Comparing the 

du 
derivatives —— (0, t), we obtain 10 till 103 times smaller errors by the conjugate 

ox 

method than by the original one, though the gross amounts of the computing work 

(the size of matrices) were the same. 
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