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0. Consider the space C2 with the complex coordinates (x, y). By I's denote the
pseudogroup of local holomorphic diffeomorphisms of C2? ¥ = ¥(x, ¥), ¥ = (%, %)
satisfying &(%, 31)/9(x, y) = 1. We are going to prove the following '

Theorem. Ler G < I'y be a Lie group such that dim G = 3 and the orbits of G

are real hypersurfaces M3 < R4 = C2? with non-trivial Levi form. Then G is locally
Ts-equivalent to one of the following groups:

- 1 -
¢y x——:x—gy—?iBaz—i—c, y=y+ab+ iaBa; a,b,ceR;

(I1) ;c:ax——:?by—{_c, y = —aBbx + ay + ad; a,b,c,deR; a2 — Bb2=1;

(ax + b)(1 — bc — acx) y2 — aZa?c

- = (1 — bc — acx)?y? + a2a2c? ’

I

(1 — bc — acx)?y? + a2a2c?
ay

(IV)  consider (111) with a €iR, beC, c=b. ,

Here, 0 & « € C and 0 + B € R are parameters. The corresponding orbits M3 are .

y= ;ab,ceR;

1) (2 — —4})2 4+ 4B(x — %) =r,

o

_
n (L-2) = —x)2=
(1T (oc &) B(x — x)2=r,
() (x — %)2y%y% + («y + ay)? + 4ryy =0
with reR.

The groups (IIT) and (IV) will be studied elsewhere.
In the second part of this paper, I solve the equivalence problem for hyper-
surfaces of C2? with respect to the pseudogroup of all local biholomorphic mappings.
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It is well known that two real hypersurfaces in C2 are not generally holomorphically
equivalent. The problem of the construction of invariants of M3 < C2 with respect
to the pseudogroup of holomorphic mappings has been treated by E. Cartan (Annali
di Mat,, t. 11. 1932, 17-90); unfortunately, his treatment is very confused.

Let V3 be a differentiable manifold together with a structure consisting of
_ a choice of two tangent directions at each of its points. In what follows, I shall con-
struct (in the general case) an {e}-structure on V3 invariantly associated to the given
structure ; by means of this {e}-structure, the equivalence problem of the structures
of the just described type will be solved. Further, I will show that the construction
of an invariant {¢}-structure on M3 < C2is equivalent to the preceding construction.
The special cases will be treated in a forthcoming paper.

Parts of this paper have been written during my stays at the universities at
Berlin (GDR) and Riga {USSR).

1. Consider.the space: C2, C being the complex numbers, with the complex
coordinates x = x! -+ iy!, y = x2 + ¢y%. Its real form is the space R¢ (R being
reals) with the coordinates (x1, y1, x2, y2) together with the endomorphism I:
R% — R4, I? = —id, defined by (i = 1,2)

0 0 0 0

e o e T T e a.n

In general, on any complex vector space V, scalar multiplication by real numbers is,
of course, defined. Relative to addition, and scalar multiplication by real numbers
only, the elements of V clearly form a real vector space, which will be denoted by
Vo and called the real vector space underlying the complex vector space V. If Vo is
the underlying real vector space of a complex space V, then there is an automorphism
Iy of Vg satisfying I¥ = — id, induced by the automorphism I of V given by
IA = iA, A € V. Further, dimgVo = 2dim.V. Let V be a finite dimensional complex
vector space and Ay, ...., Ay its basis, then A1, loAy1, ...., An, IoAn give a basis for V.
Let W) be a real vector space (of finite dimension). We say that a complex structure
is given on W) if there is given an endomorphism I of W)y satisfying I = —id;
this endomorphism is .an" automorphism, since o1 exists and is given by —Io.
Let Wy be a real vector space with a complex structure defined by Ip. Then:
(i) There exists a basis for Wy of the form A, loAy, ...., An, IoAn; in particular,
dimrW)p is even; (ii) there exists a complex space W such that Wy is the underlying
real vector space of W and I is induced by the complex structure of W. Let us prove
this last proposition. Since dimgrWy > 0, there exists a vector 4; + 0 in W,.
Then A; and oA are independent. In fact, if there exist real numbers a, b such that
aAy + blpAy = 0, then alA; — bA1 =0 and (a2 + b2) A1 = 0. This implies
a=>b=0. We proceed by induction, and assume that an independent set A,
IoAy, ..., Ag, IoAx of vectors.in W has been found (2 > 1).. If dimgpWo = 2k, there
is nothing further to.prove. If dimgW, > 2k, then there is a non-zero vector
Ar+1 € Wo which is independent of the vectors A, ..., IpAx. The vectors A,
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IoA, ..., Ax+, IoAg+1 form an independent set. In fact, if a1, ..., Gk+1, b1, ... b4l
are real numbers such that

k+1 k41
Zl a;d; + 21 bjloA; = 0, - (1.2)
- o
then
k+1 k+1

2. ajlod; — Zl bjA; = 0.
Jj=

1=

From these, we obtain
k41
Z (ajak+1 + bsbr+1) 45 + Z (bjak+1 — asbr+1) IoA; + (@341 + b3y1) Ari = 0.

All coefficients being zero, we have ag41 = bx41 = 0, and (1.2) implies a1 =
= ... =ax = by = .... = by = 0. The complex vector space W is constructed from
the elements of W)y by defining the operation of scalar multiplication by a complex
number ¢ =a + 1b as cA = aA + bloA.

_ Let I" be the pseudogroup of all local holomorphic diffeomorphisms of C2. Each
y €I induces a diffeomorphism of R% denoted by ¥y, too. The local diffeo-
morphism y of R4 given by

= fixd, y7), ' =gl(x!,y7); 1= 1,2; (1.3)

is an element of I' if and only if the functions f¥, g* satisfy the Cauchy-Riemann
equations
oft  ogt oft agt
W T e
Let I's < I be the pseudogroup of diffeomorphisms x = %(x, y), y = 3(x, y)
of the space C2 or R? resp. satisfying

ij=1,. (1.4)

ox Ox
I ox oy
o 3) _ Y
3y y) — = 1. (1.5)
’ %5 95
ox dy
It is easy to see that y € I is an element of I’ if and only if y pfeserves the 2-form
& = dx A dy; ‘ (1.6)
indeed,
NI RN [ C %))
DP=di Ndy=——5®
NY= Sy
Define
p=di pd—dyl A dy:, p=did A dy?+dir A de?, (L)

obviously, @ = ¢ + ip. Of course, we may write
¢ =1%@x A\ dy+dx \ dy), y=—%}i(dx A\ dy — dx A\ dy). (1.8)
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We have
o(v, w) = —o(lv, Iw), y(v, w) = — (v, Iw) for v, w € R4
Indeed, let

d d ] d
—a 1 2 Y 2_Y
v=a g TG T e TG
d d 0 ad
S | 1 2 2
w=c ax1+d ayl—l—c ax2+d6y2'
Then
7] a d 7
- —p_ 2 1.9 g2 Y 2_Y
Iv b Fw +a v b o +a 3y’
0 ] d ad
Y P 1_ % 2 2 2 Y
Iw d T +c v d e +c 3y
and

(v, w) = alc? — a%l — bld? + b2l = — g(lv, Iw),
(v, w) = ald? — b2l + blc? — a2dl = — ¢(v, Iw).

(1.9

(1.10)

(1.11)

In C2, this may be rewritten as follows. Introduce the well known vector fields

a_1(a_.a) a_1(a+‘a)
o 2\ed  ter) T 2\ i)

Then

2 _2 2 a_.(a_i)
i ox L ax’ oyt \ox ox/)’

and the vectors v, w may be written as

d d — d — 0
— A1 2 1 2
v=4A ax+A ay+A 65+A 3’
d a —, 0 — 0
= Cl__ 2 __ 1___ 2
w=0C ax—{—C ay+C 33?+C 3

with
At = at + b, Ct=ct +idi; i=1,2.

It is easy to check that

d 7} — 0 — 0
Y IRy | BN’ | SISy | S
Iv=1iA 3% + 14 3 1A PT: 1A 35’
0 0 — 0 — 0
— i1 2 C1 C2 2
Iw =1iC ax+1C 3 iC 5 iC Pr

and :
@(v, w) = }(ALC% — A2C! + AlC? — A%CY) = — o(lv, Iw),

w(v, w) = — }i(A1C?2 — A2CL — ALC? + A2CY) = — ¢ (v, Iw).
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Let X = X(x,y), Y = Y(x, y) be a local holomorphic diffeomorphism of C2.
Then
- - X, Y) (X, Y)
dX NdY +dX \NdY=—=—""dx \ dy + ———=
A dYHARN 0w NPT oy
Thus: Let y be a local diffeomorphism of R* defined on U < R4. Then y € I's if and

only if

dz A dy.

(@ya . I)(va) = (I . dya)(va), (1.12)
P(vas wa) = P(dya(va)s dya(wa))
for each a€U; vg, wa € Tq(RY) = R4

From now on, consider the following situation: In R* with the coordinates
(x1, y1, x2, y2) be given a complex structure I (1.1) and the form (1.7;); let I'; be the
pseudogroup of local diffeomorphisms of R# satisfying (1.12).
Now, let M3 < R?* be a hypersurface. At each point m € M3, consider the
space
Tm = Tm(M3) () ITm(M3). (1.13)

Obviously, dim vy, = 2 and I(tm) = tm. The pseudogroup I'; induces on M3 the
following structure: at each point m € M3, we have a tangent plane 7p, and its
endomorphism I, : T — T satisfying I2, = — id; further, there is given a 2-form
@* (the restriction of ¢) on M3 such that

w*(vm, u’m) = — (P*(Im'vm, Imwm) for Vmy XDm € Tm.
Of course, ¢* %= 0.

2. Let us suppose that the field of planes 7, is non-integrable. Let us investigate
this supposition more carefully. Define a partial complex structure on a manifold X,
dim X = p, as an assignment of a tangent space t; < T;(X) and an endomorphism
I; : 15 — 74, I = — id, to each point x € X; let dimt; = 2q. Consider a fixed
point xo € X and its neighbourhood U such that there are tangent vector fields
Vly ooos Vs Wy ..y Was ULy -, Up —24 1IN U satisfying vi(x), wi(x) € T2 and Ivi(x) =
=wi(x)in U; write 4,7, ... = 1, .., ¢; 4, B, ... = 1, ..., p — 2¢q. Then

[’Ui, 'z)j] = az-‘vk + bfiﬂIk + C?,'ua, (2'1)
[vi, wy] = dior + el + fiiuas
[, wy] = gﬁ’,vk -+ .hf,'wk + k?jua-

Let Vo €15, be a fixed vector. On U, consider an arbitrary vector field V' such
that V(xo) = Vo and V(x) €7, for each x € U. Then there are functions pf,
¢* (on U) such that

V = ploy — qtw. (2.2)
At each point x € U, consider the vector IV; of course,
1V = gtvy + plas. 2.3)



"' We have
[V, IV] = [ptvs — q'wi, giv; + plwj] = (2.4
= (p*. vigF — ¢' . wigk — ¢' . vip* — p*. wipk + afipiq! +
+ dip'p! + diig'e’ — gip’q!) vk + (p* . vip* — ¢t wip* +
+ ¢ . vigk + pt . wigk + Bipted + elip'p? + eliglqd —
— hiig'p?) wie + (5p'e’ + fip'p! + fid'd — Kiplqt) ta.
Let my : To(X) — Tz(X)/t: be the natural projection. We see from (2.4) that
Lz, (Vo) = nz,([V, IV(x0)) € Tz (X) /7, (2.5)

does not depend on the choice of the field V extending the vector Vy. Thus we get
a well defined map

Lz LTy —> Tz(X)/TI (2.6)
which is called the Levi map of the given partial complex structure (at the point
x€X). If vy, wi, uqg € T(X) as above and #q = 7(ug) € T,(X)/rz, then

La(V) = La(plos — qg'wn) = 2.7)
= (ciip'q! + fip'p? + fiid'd’ — Kiip'qt) ua.
From this and (2.1), we see that the field {,} is integrable if and only if Ly (V)=0
for each x € X and each V €1,.
To compare our notion of the Levi map with the well established notion of the

Levi map used in the literature, let us calculate the Levi map of a real hypersurface
X2n-1 < Cr. Suppose that X27-1 js given by the equation

F(gYy .., 2™ 3, ., 3" = 0 (2.8)

in the neighbourhood of the point 2! =0, ..., 2#» = 0. Of course,

F(z., ..., 2™ 2, .., 2%) = F(z1, ., 2% &1, .., &%), (2.9

F(zt, 2%) being a real function. In a suitable small neighbourhood of the origin of C»,
consider the one-paramateric set of hypersurfaces

F(zl, .., 2% 2!, ., 2") =a, a€(—e¢,eé). (2.10)

Let v be a real vector field around the origin of C*. Then

0 - 0
'U=A'a—z,+A‘-5§;, (2.11)
and the vector field v is given by
. 0 —~ 0
Iy = zA‘a—zi — lAia_E‘ . (2.12)

Indeed, write 2¢ = x* 4 #yt, and (as usual)




Then

a 0 0 0 _.( 0 a)
o0 Lo oy \aw o,
and ’
6o _9 ;9 __ 3
oxt 9yt > T oyt oxt
Then
v=a‘—a%+b‘wa‘=(a‘+ib‘)—52—‘—{—(a‘—»ib‘)-a%,
a 0
Iy b—-i— o —(—b‘—}—za‘) +(~bi iat) == =
ozt

= i(at + 1b?) ~a—Z—‘ — i(at — ib?) —a%

We are looking now for the vector fields » (2.11) which are tangent to the hyper-
surfaces (2.10), the vector fields Iv (2.12) having the same property. This yields

a oF — OF
= —_— 3 ‘ ————
A = O i — i =,

i.e.,

oF — OF

| J t_ —
4 3 0, A4 PR 0. (2.13)
Because of F = F, we have
oF oF

oz ozt

indeed, write F(z2%, 2¢) = f(x1, ..., x*, y1, ..., y"), then

aF_;(af af)’a_F_%(af_F.af)‘_

P2t 2 \ad  Tayt)’ ot oxt T oyt
Thus the system (2.13) is equivalent to
oF
[ i—
A4 32— 0. (2.149)

It is easy to see that the coordinates z‘ in C® may be chosen in such a way (by a
linear change) that

F(zY,..,2m 2 .., 2") = 2" 427 4 G(2L, ..., 2" L, 21, .., 2%-1, 2% — zm);

G, ..., 0) = 0; (2.15)
96O, .0 _ o 9G0,..,0 _, 60,0 _,
020 - 0z 7 @t —2m)

fora=1,...,n— 1.



The geometrical meaning is very simple: The tangent hyperplane To(X2”-1) at the
origin is given by 2" + 2% =0, ie., x?» = 0.
Of course, dF(z2f, z¢)/d2z® + 0 in a neighbourhood of the origin, and (2.14) may
be written as
oF oF

aza—}-A ~a;——0 (ph...=1..,n—1). (2.16)

Its general solution is given by

Aa

oF oF
Aa=Baan, Anr = — Ba 353
Bl, ..., B® -1 being arbitrary complex-valued functions, and we get
oF 0 oF 0 — oF 0 — oF 0
=B e B B m B G
oF 9 oF o oF 0 oF 0
=1 — 1B8 —
fo=iBe 0z" 028 B 028 0zn iB? oz" dzf +iBe dz8 dz® ~
At the origin of C”, we have
0F(0,...,0) 1 0F(,...,0) 1 dF(o0, ..., 0) —o o0F(, ..., 0) 0
02" - ozr 02 - dza -
and the vectors (2.17;) are given by
0
Thus the space 79 < To(X2”-1) is spanned by the vectors
d d . 0 . 0
py + Frt 1 Fy —1 35a > o= 1,...,n— 1.
From (2.17), we get
.., 02F(0) 2 ... 02F(0) o
= 6 -~/ T 8 g
[0 oo = B B0 o aw a5 — BB’ Grap00 o
02F(0) @ azF(O) 7 | = 92F(0) o
— BB e agr T BB ez oz T BB e
-~ 02F0) o 02F(0) o a2F(0) 0
_ 6~~~ — B5 2
Bt B et e~ BB zanzn agr T BB sy 5am
. 2F(0) 8 . 82F(0) @ . — 82F(0) @
— /B8 R DA ——— B8 IR A > ] -
BB aioen dan T BB Gapes G BB Gigan ape T
i 02F() @ 02F(0) o — 02F(0) o
8 =~ /BSBa_ — 7/
+ BB e waw T BB g 5z — ‘BB angs zm
~.= 02F(0) o —— 0%F(0) @
6Ba ___ ' _~ ___ BB — =
BB ez aze BB raaze azm
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e
T (3'@ 525523. + BB aa:fa(fi) 'i(aZa - aga) B
— 2B L0 (0 — 25) -

Of course,

F _.( 2 a)
ayr ' \dzn 7] -

Consider once again the natural projection 7o : 7o — To(X2%1)/79, and write

a -
TTo ay" = U,

_ —_ 22
2 e D) e 2O,
0z¢

then

Lo (B ’ 3z 329028

This is the classical formula for the Levi map. It is easy to. prove that L; = 0 at
each point x € X27-1 is equivalent to the condition that X22-1 is locally holo-
morphically equivalent to a hyperplane of C=.
3. Let us consider a manifold M3 with the structure described at the end of
No 1. At each point m € M3, let us choose a frame (v1, v2, v3), vi € Tm(M3), such
that 7., is spanned by o3, v2 and Inv1 = ve2. Each other frame of the same type
is given by
W] = AVl — ﬂ'z)g, we = ﬂvl + awg, (3.1)
w3 = yv1 + 6v2 + @us; (e +fH @ * 0.
Let v, 2" € Tm(M3),
v = av1 + bvg + cvs, v = a'v1 + b've + c'vs. 3.2)
Then
@*(v, v") = A(ab' — a'b) + B(ac' — a'c) + C(bc' — b'c), 3.3)

where A, B, C are reals. For v, v’ € tm, we have ¢ = ¢’ = 0 and
@*(v, v") = A(ab’ — a'b), ¢*(Iv, Iv") = A(ab' — a'b).
From the condition ¢*(vm, wm) = — ¢*(Imvm, Imwm), we get A = 0. Let

v = awy + bws + cws, v = a'wy + b'ws + ¢'ws,
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w, ws, w3 being given by (3.1). Write

@*(v, v') = B(@c' — a'¢) + Cbe' — b'c).
Then

a=od +pb, b=—fa+ab, c=qc

and . _

B = g(aB — fC), C=g¢(fB+ «C). 34
The case B= C =0 being excluded (otherwise ¢* = 0), there exist frames
(w1, we, w3) with B =1, C = 0, and we have the following result: On M3, the con-
sidered structure induces a G-structure Bg(M3) such that (v1, v2, v3)m € Be(M3) if
and only if v1, v2 € Tm, Imv1 = v2 and ¢*(v, ¥') = ac’ — a'c, v and 2’ being given
by (3.2); if {w1, ws, w3}m € Be(M3), then

W = av1, Wg = av, w3 = yv1 + Ove + alvg; « F O. 3.9

The last assertion follows easily from (3.4) ; indeed, we should have 1 = ag, 0 = Bp..
Consider a G-structure Bg(M3) of this type, i.e., G is the group of the matrices

a 0 O
(00‘0),01#:0. (3.6)

In a domain V < M3, choose a section (21, v2, v3) of Bg(M3); then

[v1, v2] = @ + agv2 + asvs, 3.7
[v1, v3) = b1t + bove - bavs,
[ve, v3] = c1v1 + c2v2 4 c3vs,
ay, ..., c3 being functions on V. In what follows, let us restrict ourselves to manifolds
with non-integrable field of planes 7, ; thus as + 0 on V. From the Jacobi identity

[v1,[v2, v3]] + [v2,[v3, v1]] + [vss[21, v2]] = O,
we get
vic1 — ve2b1 + vsa1 + aics + bics — bsci — agc1 = 0, (3.8)
vice — vebe + v3az + bacz + aghy — bacz — @bz = 0,
v1c3 — v2bs + vsaz + asce + asby — arbs — agcz3 = 0.
Let (w1, ws, w3) be another section of Bg(M3), let us have (3.5) with «,y, é
real-valued functions on V. Then

(o1, we] = Arwn + Aswe + Asws, 3.9

[w1, w3] = Biwn + Bewe + Bsws,

[w2, w3] = Ciwn 4 Cowz + Csws.
We have

[w1, wo) = [av1, ave] = o . v . v2 — o . vox . V1 + a2(@1v1 + agve + asvg) =

] = Aiavn + Asove + As(yvs + vz + alog),
1.€.

—a . vex + a2ay = a Ay + yAs, «.vie + a2as = adz + 6A43, a2az = a143. (3.10)
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Thus there exists a section (w1, ws, ws) satisfying As = 1, 41 = Az = 0, and we
have the following result: There exists (locally) exactly one section (v, vg, v3) of
Bg(MB3) satisfying :
[v1, va] = V3, (3.11)
[v1, v3] = i1 + bave + bavs,

[ve, v3] = a1v1 + cove + cavs.

The integrability conditions (3.8) reduce to

vicr — veby + bicg — bger = 0, (3.12)
v1c2 — vaba + bacg — bace = 0,
v1cs — vebs + c2 + by = 0.
Now, let Be(M3) be transitive. Then by, ..., c3 are constants, and the equations
(3.12) reduce to

bicg — bzc1y = 0, bocg — bscg =0, c2+ b =0. (3.13)
Let b3cg + 0. Then there are real numbers A, B, C such that
[v1, v2] = 3, (3.19)

[v1, v3s) = ABCvy — AB2%vs + Bus,
[ve, v3) = AC2%vy — ABCvs + Cvs; BC # 0.
Let b3 + 0, c3 = 0. Then ¢1 = ¢ = by = 0 and (3.11) are of the form

[v1, v2] = 03, (3.15)
[v1, vs] = Avz + Bus, :
 [vz, v3) = 0; B + 0;
the case bg = 0, cs + 0 is symmetric. For b3 = c3 = 0, we get
[v1, v2] = 73, (3.16)

[v1, v3] = Av1 + By,
_ [ve, v3) = Cvy — Ava.
The following result follows: The Lie algebra of G (see the Theorem) s of the
type (3.14) or (3.15) or (3.16) resp.
Finally, let us prove the existence of the transitive G-structures of the types
(3.14)- (3.16). A simple check shows that the vector fields

1 0 1 d 3 0
P—— —_ 2y — — — - —_ —_
U = 2 (l + 2y 3x ) ax + 2 (2x + z 3"3’) ay + 2 (y xZ) az ’

1 ] 1 0 3 0
u2=?(1 - 2y+3x2)3;+7(2x—z+3xy)3;+—2—(y+xz)—a—£ ’

0 0 0
on R3 satisfy
[u1, ug) = us, [w1, us] = us, [uz, us] = wur. (3.18)
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In a suitable neighbourhood of the point (=, 0, 0) € R3, consider the vector fields

sin x
CoS x

cos x
sin x

. 0 0
m = sin(y + ) 5o+ e s (4 ) — St cos(y +2) 5 s

a cos x . 0 sinx d
wz—COS(y—{—z)—a—x———msm(y—I—z)E osxsm(}’*f‘z)g,
0 0
wa—?y——FE, (3.19)
the direct check proves
[w1, wa] = 2ws, [w1, ws] = — 2ws, [ws, ws] = 2uw1. (3.20)

Now, consider the G-structure (3.14). Obviously, [Cv; — Bvs, v3] = 0. On a
neighbourhood of a point mg € M3, consider local coordinates (x, y, 2) such that

7} 0
C'le—‘sz—s.;; vazix—;

this being always possible. Let

0 0 ] . 0 0 0
vz—mg—}—ﬂ@—{—y»a?, 1.€., C?)].—B(X'a—x—+(3ﬂ+1)-é-y—+3)/§.
From (3.14,,2), we get
oo . O oy ox B ay
—a—.))__‘C’ W_O, a—y-—o, W— C’ W—’_AC, E_—O‘
Consider the particular solution « = C(y — x), # = — ACx, y = 1. Then
0 0 0
—_ _ .2 1 s 1
21 = By — x) P +(C ABx) 3 + BC Fra (3.21)
] 0 ]
Ve = C(y—*x)—a-;—ACxW-}-a—z 5
J— a .
S P

this vectors being linearly independent and satisfying (3.14), they generate a G-struc-
ture of the type (3.14) on R3. Similarly, the vector fields
0 ad 0 7] 0
7= — (Bx-}—y)—a;— Axg;—f"g, LRl U
generate a G-structure of the type (3.15) on R3. The type (3.16) is a little more com-
plicated. First of all, suppose 4 = B = 0; the G-structure of this type on R3 is
generated by the vector fields

0 ] 0 ] 0
mza_x, ‘122—-—03’3;‘*‘35‘67‘*‘6—2; ")3—@- (3.23)

(3.22)
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Similarly, the G-structure of the type (3.16) with A = C = 0 is generated by the

vector fields

0 a 0 0 0
vl——By—a—;—-x—é;—f—a—z, ‘vzzg, v3='@. (3.24)

Now, consider the case A2+ BC =0, AB % 0, i.e.,
[v1, v2] = w3, [v1, v3] = Avi + Bos, [vg, v3] = — T v1 — Avs.

We see that [Av; + Buwg, v3] = 0, and the vector fields

0 d d
n=—Byg—rot o (3.25)
0 d 0
ve=ABy -+ 1+ 4 50— A5-,
. ad
V3= ox

generate the G-structure of this type on R3. If 42 4 BC # 0 then the Lie algebra
(3.16) L satisfies [L, L] = L and it contains a basis (u1, us, u3) satisfying (3.18) or a
basis (w1, we, w3) satisfying (3.20).

4. Consider the space C2 and the pseudogroup I'. The relation between the
1-parametric local subgroups of I" and the holomorphic vector fields on C2 is well
known. Let

d a
v = a(x’y) “E + b(x: y) a—y‘ (41)

be a (locally defined) holomorphic vector field; the corresponding local group Gy
consists of the maps

pe: X=f(x,y,1), y=gxy10, te(—¢e¢) 4.2)
given by
(x5t og(x, y, ¢
anxl_)‘ = a(f(x, y; 1), g(x, ¥, 1)), ”g(xT;yl =b(f(x,, 1), &(x, ¥, 1)),
f(x!y’ 0) = X, g(x,y) 0) =Y. (43)
We have Gy < I's if and only if
da(x, y) ob(x,y)
o + 3y = 0. (4.49)

Indeed, let us write
D(x, y,1) = > — 5 ——>.
We have D(x, y, 0) = 1. From (4.3), we get
oD da ob
=5 . ) D,
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and the result follows easily. Denote by L; the Lie algebra of holomorphic vector
fields (4.1) on C2 satisfying (4.4).

Let wn, we € Ly, w1 #+ 0 % wa, [w1, ws] = 0; then there are (locally) I's-co-
ordinates (u, v) such that

] 0 ]
W=, Wy = a—a—‘v~(0 + 2 €C) or we = a('v)Wresp. 4.5)

Here, the I's-coordinates (u, v) are defined (locally) as holomorphic coordinates
u = u(x, y), v = v(x, y) satisfying d(u, v)/d(x, y) = 1. Indeed, we may choose (at
least locally) I's-coordinates r = r(x, y), § = s(x,y) such that w; = 9/dr. Let

0 0 ob oc
w2=b(r,s)—5;——{—c(r,s)-—a?, —é7+—a—;=0
From [wi, we] = 0, we get
B _ o g
or O ar

Thus & = b(s),c = « € C. Now, consider the I's-coordinates u = u(r, 5), v = (7, 5).
Then

_Ou @ ov @

T 9r u ' or v’

wz:b(s)(au a+av a)+“(au a+av a)'

w1

or ou ' or ov ds ou ' @s v
We have
ou ov v
b =0 wmd =1
ie,u=r—+g(s), v=s+p, 0€C, and
. dg\ 0 ad
"’2—(”*”“7;)%“'5;'

If « # 0, let us choose g(s) such that
dg(s) _ _ o)

ds o

5. Let L be a Lie algebra of the type (3.14), suppose L < L,;. Then

C
[vz — —B— 1, '03] = 0,

and we may choose (locally) I's-coordinates (u, v) such that

0 C ad
'1)3——5;, vz—fm:a-a?, 0+aaeC; .1
or
0 C 0
vg= oo, V2 p 1 = a(v) N (5.2)
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resp. Suppose (5.1) and

0 d ob )
v1=b(u,«y)—a~t—‘——%—c(u,v)—$, 714_+7:)_=0'
From (3.142), we get

ie.,
b= — Bu+ f(v), ¢= AB2wu + Bv + yo; o €C.

From (3.14y),
] ] b 2 o 9 d
— = ——_— = =
ov dv du dv dv  ou’
i.e., dc/0v = B = 0. Thus we should have (5.2) because of B # 0. Let further L
be of the type (3.15) and L < Ls. Then there are (locally) I's-coordinates (u, v) such
that

C
[w, —51)1 + «

d 0
2)3:_6—;;, 1)2——&.*’6“0-, 04"&6(:, (53)
or
ad 0
vy = _au , V2 = a('o) *—au (54)

resp. Suppose (5.3) and let us write

0 0 ob dc
=) g D G T e =0
From (3.15;,2),
ob oc ob oc
T 7 8'0_0’ 8u_WB’ = A

Because of B + 0, we have (5.4).

Now, let M3 < C2 = R4 be the orbit of the group G < I's such that its Lie
algebra g is of the type (3.14) or (3.15) resp. Then we have shown that g contains
(in suitable I's-coordinates) the vector fields 9/dx, a(y)d/0x, and the vector fields

F) F) b .
Fl ai(x?, y?) P as(x?, y?) el a(y) = ai(x?, y?) + tax(x?, y%);

are tangent to M3 < R?%. The plane 7., is thus spanned by the vectors 9/dx, d/dy!,
and the field ty, is integrable. The groups G < I's satisfying the suppositions of the
Theorem and possessing the Lie algebra of the type (3.14) or (3.15) do not exist.

6. Let us investigate the case L < L;, L being of the type (3.16). Suppose
dim[L, L] =1, i.e.,

[v1, v2] = w3, [v1,v3] =0, [ve,v3] = 0. 6.1

17



We may suppose the existence of I's-coordinates (u, v) such that
0

vg=aa—v, 1’3:3{4—; 0+aeC.

Let
v1=b(u,'u)-;;+c(u,v)-%, %+%:0'

From (6.11,2), we get

ob ob 1 dc _ 0c

u 0 w o« ou oo
ie.,

v
b:—; +8, c=y; B,yeC;

we have y + 0 because of the non-integrability of the field 7,,. Consider the I's-co-
ordinates x = u, y= v — aff. Then

) o - v @ F)
Vg =0—5—, V3= 53—, UV =——
oy

ox

and the general element of L is

v 0 ] ] 0
U—R(—;‘W—"YW)—{"SM—BT—}—TE, R,S, TER. (6.2)
The associated local group Gy is given by (4.3), i.e.,
R dg
ST —;—g—{—T, 3 = Ry + So.
It is easy to see that its finite equations are
R 1 1y
f=x—Ty—ERSt2—5;—R2t2+Tt, g:y—}—th—i—ocSt.
Write Rt =a, St=0b, Tr=c; we get
a 1 1y
f:x—&—y——fab——izaz—}-c, g=27y+ ya+ ab. (6.3)
Thus
- _a_ 1 . 1y, - -
f=x Ti—y 2ab fia +c¢ g=y -+ ya-+ ab,
i.e.,
f—?:x—x—a(l—¥)~ia2 (2——]_1),
o o e x€L
5__,&;21_3_“(1_;),
o o o o [« [+
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the elimination of a yields

(2-2) 42 (2-1) (x~;>=(§—§).2+z(%-%) =D,

o o

and we get the type (I).

Let us investigate the case L < L,, L being of the type (3.16) with dim[L, L] = 2.
Then A% + BC = 0. First of all, suppose 4 = B = 0, the case A = C = 0 being

symmetric. The algebra L is of the type
[v, v2] = v3, [vi,vs] = Bvs, [v2,v3]=0; B #O0.
In C2, there are I's-coordinates (u, ) such that
0 b}

vgzoca—v, vs=m; o+ 0.
Let .
b7 " d ob dc
vl:b(u’v)?u—+c(u’v)_a—v—’ W—*_%:O'
From (6.41,2), we get
ob 1 oc ob dc
S0 % w % T =B

P 0
vlz(_§+bo)a—u+(—a3u+co)-—a;; bo, co € C.

Consider the I's-coordinates x = u — coa"1B-1, y = v — abo. Then

R W U S
= ™ achay, vz—ocay, vg—ax.
The general element v € L is
v:R(_é‘ii-ani)+sai+ 72, RS TeR;
o Ox oy oy Ox
and the local group Gy is given by
of R do
7———7g+T, Tt—-'—R“Bf‘i‘Sd.

Consider the group
f:ax—%by—f—c, g= — aBbx + ay + ad ;
a,byc,deR, a%2— Bb2=1.

(6.4)

(6.5)

(6.6)

We get its identity for a = 1, b = ¢ = 0. Let a(z), b(z), c(z), d(r) be its one-para-

metric subgroup Gi, let z = 0 correspond to its identity. Then

R da Bb db 0, da(0) _
de

dr dr 0.
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The vector field

_( 1 db(0)
“\ o de

dc(O)) 0 db(0)
dt ) ox de *+

being associated to Gy, we see that (6.6) corresponds to (6.5). We have

, 44(0) ) K3

y+ +<—aB i ) 5

f:a:’c———al?bjr—}—c, 7 — — aBb% + ay + d,

f—Ff=alx—% —b (l—%), ag — ag = — axBb(x — x) + a(ay — )

B(f—F)? — (%-%)2 — Blx— %2 — (l—i)z :

o o

Thus we have obtained the type (II).
Now, let L be of the type (3.16) with 42 + BC = 0, AB + 0, i.e.,

2
[v1, v2] = v3, [v1, v3] = Avi 4 Boz, [v2, v3] = — AT v — Ave.  (6.7)

Then [Av1 + Bvs, v3] = 0, and there are I's-coordinates (u, v) such that

A’Dx—I-B'vz:ac——a—- 0 +a€0), vgza—i,

v
d 0 ob oc
vlfb(u,v)w+c(u,v)%—, —a7+—a—‘v—=0.
We have
A 0 1 0
n=-pltau tEe- Al
from (6.71,2)
ob B oc ob ac
o w w” wW T w
ie.,
B 0 0
vl—(—7v+bo)7u—+(—au+60)%, bo, co€C.
In the I's-coordinates
x———u——{io—, -—v—ﬁB,
® «
we get
0 0 B 0 0
Avl—l—sz—ot—a;, vazﬁ, 'vlz——a—y Ix ax 3
The general element v € L being
SPYEIRNCANE A O PR N |
-v—R(oc 8x+Bx3y +Socay+Tax,R,S,TeR, (6.8)
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we do not obtain now groups-compare (6.8) with (6.5).
7. Above we have considered all possibilities for L < L, with dim[L, L] < 3.
Now, there are exactly two Lie algebras (over R) with dim L = dim[L, L] = 3:

[w1, we] = ws, [w1, ws] = — w2, [we, ws] = w1 (7.1)
and

[w1, wa) = wa, [w1, wa] = wa,  [we, ws] = w1, (7.2)

First of all, let us consider the Lie algebra L (7.2). The change v = ws, v2 =
= ws — w1, v3 = w2 + w; of its basis yields

[v1, v3] = e, [v1, 03] = — vs, [v2, v3] = — 201 (7.3

In C2, there are I's-coordinates (7, s) such that

d Oa ob
'02—7;, a(r,s)a +b(r,s) > FJFTS:O
From (7.31),
da ob
w- b =0

and there exist a function «(s) and by € C such that

0 0
v = (— r + «(s)) s + (s + bo) -
Let us choose the I's-coordinates

u=r—(s+bo) [a(s)ds, v=1s+ bo.
Then
0 0 0
RE g T T H T
Let

7] 0
05 = efty ¥) e+ J(t60) s e

v
From (7.33), we obtain

Oe of
M By

and there exists a function ¢(v) and fy € C such that

= — 20,

01 = (2 + §(0) g+ (— 200 +fo) -
From (7.32),
0 20 | oo )=0,

and we obtain the existence of ¢o € C such that

v3 = (u2 "”") (= 2w +fo)—
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Finally, introduce the /'s-coordinates

fo :
x=utg-, ¥y=1;
we have
0 0 7] «?) @ 0
—_— x — _— = 2 — = ) —
7 x ax+yay’ Vg 3’ U3 (x y2) 3% 2xy 3y (1.4)

Now, it is easy to check that (7.4) are the infinitesimal transformations of (III).

Let the vector fields i, ws, w3 on C2 generate the algebra (7.1). Then the vector
fields sun, iwe, sw3 generate the algebra (7.2), and the vector fields v; = iws, v2 =
= wg — 1wy, v3 = wa -+ 1w satisfy (7.3). Thus we obtain the existence of I's-co-
ordinates (x, y) such that

0

. 2 - 0 aZ) 0 d
—_— e x—— — — oy = o — 42 2
w3 x F +y 3 we — W) Frl ws -+ 1wy (x y2)

W -2 Xy "@ .
Our result is as follows: Let the vector fields w1, we, w3 satisfy (7.1), then there are
(local) I's-coordinates (x, y) such that

1 a2 0 d
. 9 .
W) = 5 ) (1 — x +—y2)——ax +zxy——ay y

1 a2 0 0
9 — — 2 —_— — —_—— —
w2 == (1 +x yz) Yoy (7.5
B .2
ws = ix 1y e

8. Consider the space R? and its decomposition R == R} @ R}. Denote by H
the group {y € GL(R%); »(R}) = R, y(R%) = R}}, and let I" be the pseudogroup
of local diffeomorphisms ¢ : U < R4 — R? satisfying (dg)> € H for each x € U.
We wish to study hypersurfaces M3 < R% with respect to I". Let m € M3, Tp(M3)
the tangent space of M3 at m; denote by S%(m); i = 1,2; the plane for which
m € S¥(m) and S¥(m) () R? = @. In what follows, let us restrict ourselves to the
study of hypersurfaces M3 < R? satisfying the following conditions: (i) M3 is
analytic; (ii)zi(m) = Tm(M3) () S¥(m) is one-dimensional for each m € M3 and

= 1,2; (iii) Tm < Twm(M3) being the plane spanned by £1(m) and t3(m), the field
Tm is non-integrable. By means of the theory of systems of partial differential
equations in involution (see, p.ex., K. Kuranishi, Lectures on involutive systems of
partial differential equations; Publ. da Soc. Mat. de Sao Paulo, 1967), it is not difficult
to prove

Theorem. Let M3 < R* be a hypersurface and @ : M3 — R* an analync
mapping such that both M3 and M3 = D(MB3) are hypersurfaces satisfying the con-
ditions mentioned above. Let (dD)m(ti(m)) = ?i(m) for each me M3 and i = 1,2;
let mo € M3 be a fixed point. Then there is a neighbourhood U < M3 of mo and a
diffeomorphism @ € I' such that ¢ is defined on.U and ¢|v = D.
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To each hypersurface M3 < R4, we associate a G-structure Bg(M3) as follows.

Let (o1, v2, vs) be a frame in Tp(M3). Then (21, ve, v3) € Be(M3) if and only if »;

spans ry(m) for i = 1,2. (w1, we, wa) € Be(M3) being another frame at m € M3,
we have

w, = ov1, we = fv2, w3 = yv + dvs + @uv3; afly + 0. 8.1

In a neighbourhood U of m € M3, let us choose an analytic section (21, v2, v3)
of Ba(M3); (w1, ws, w3) being another section of Bg(M3), we have (8.1) with
a, ..., @ real-valued functions on U. The vector fields 21, vs, [v1, v2] being R-linearly
independent, we may write

[v1, [v1, v2]] = a1v1 + a2v2 + as[v1, v2), (8.2)
[v2, [v1, v2]] = b1o1 + bavz + ba[v1, 2]
and
[w1, [w1, wa]] = A1 4 Asws + As[wr, wa, (8.3)
[w2, [w1, we]] = Biwi + Bswz + Bs[wi, we].
From the Jacobi identity
[v1, [v2, [v1, v2]]] + [v2, [[21, v2), ©1]] = O,
we get
viby — vea1 + a1bs — asbhy = 0, (8.4)
v1bg — v2az 4 agbs — azbz = 0,
v1b3 — v2az + b2 + a1 =10

and analoguous equations for Aj, ..., Bs. Introduce the functions

p=(afD'3, g = (2p)/3 (8.5)
over U so that the equations (8.11,2) become

w == pliq%v1, ws = p2qlv,. (8.6)
Then )
(w1, we] = [p1q201, p2q~lvs] = 8.7
=(q.v2p — 2p . v2q) 11 + (29 . v1p — p . v1q) V2 + pglv1, V3],
(201, [01, we]] = () v1 4 (1) v2 + (g%a3 4 3p~1¢% . v1p) [v1, ve2] =
= () o1 + () vz + pgds[v, 22,
(w2, [w1, wo]] = () v1 + () v2 + (P33 + 3p3¢ ) . v2g) [v1, v2] =
= () o1 + () v2 + pgBs[v1, v2],

and we have
pig¥as + 3pt.vip) = As, p2q-bs + 3q~! . vag) = Bs. (8.8)

The section (v1, v2, v3) of Be(M3) being given, there exists (possibly in a small
neighbourhood U; = U of m € M3) a section (w1, wz, w3) of Be(M3) satisfying (8.3)
with 43 = B3 = 0; indeed, it is sufficient to take the section (8.6) where p, g are
any solutions of the system

‘UIP = — %pas, V2q = — -}qbg]. . T (8-9)
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In what follows, let us restrict ourselves to the sections (v1, v2, v3), (w1, W, ws) of
Bg(M3) satisfying

a3=bs=0 or A3=B3=0 resp; - (8.10)
we have (8.6) + (8.13) with
v1p=0, wv2q=0. (8.11)
Now,
[wi, w2) = q . v2p . v1 — p . v1q . v2 + pglov1, v2), (8.12)
[zo1, [201, wa]] = (2p71¢3 . vivep + 2¢2 . vavig — 2p71q2 . vop . v1q + (8.13)

+ @) v1 + (— ¢% . g + ¢%az) ve = plg2A1v1 + p2q1A2vs,
[, [w1, we]] = (p2 . vavep + p3b1) v1 + (— 2p% . vivep — 2p3¢~L. vovng +
+ 2p2g71 . vap . v1q + p3b2) v2 = p~1¢2B1v1 + p2q1Bav2,

i.e.,
— ¢® . niviq + ¢tas = p2A,, (8.14)
3. vavep + ph = ¢2By,
2q . vivep + 2p . vav1iq — 202p . V1q + pgar = A,
— 2q . vvzp — 2p . vavnqg + 2v3p . v1q + pgb2 = Ba. (8.15)
The equations (8.4) reduce to
uby —vea1 =0, vbs —veazs =0, by +a1 =0 (8.16)
and analoguous equations for A, ..., B2; thus, (8.15) is a consequence of (8.143) and
(8.163).
Let us consider the system (8.11) + (8.14). From (8.11) and (8.141.2), we get
nup = 0, vv2q = 0, (8.17)
vav1p = 0, vav2q = O,
vavep = p-3¢2B; — pby, v1v1g = gaz — p2q342
and
' V10101p = 20101p = V10201p = v2v2v1p = O, (8.18)

v1v202p = 2p~3¢B) . viq + p3¢%2 . viB1— p . v1b1,

vovavep = — 3p~4¢2B1 . vep — b1 . vep + p3¢%. vaB1 — p . veb1,
V101029 = V201029 = V1U202g = V2v2v2q = 0,

V191919 = ag . v1q + 3p2q~2Az . v1q + q . viaz — p2q3. 1143,
2201019 = — 2pq~3Asz . vap + q . veas — p2q 3. v2ds.

The equations (8.2) may be rewritten as

V10102 — 2010201 + V2191 — a1v1 — agve = 0, (8.19)
2090102 — V2V201 — V1V2v2 — b1v1 + a1vz = 0.

Applying them to the functions p, g, we get

V1V102Pp = az . v2p, (8.20)
vav1V2p = p3gB1.v1g — Y ar. vep + 1 p3¢% . viB1 — 1 p . vaby,
vavgv1g = — b1 . v1g,

010201 = — pq3As . vop — a1 . vig — 1 p2¢73 . v2ds + g . veaa.
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Applying v; and s to (8.143), we get
2q . viv1vep + 2p . v1v2v1q — 2v2p . V119 + pai . v1q + pq . viar = v1dy,
2q . v2v1v2p + 2p . v2v2v1q — 2014 . V2vsp + qa1 . vep + Pq . vea1 = vedi,
ie.,
g3(v1a1 + veas) = p1g? . v1d1 + p2q7) . v2ds = w141 + wed2,
p3('02a1 — 'D1b1) = pzq'l .veA1 — p-1q2 . ‘lel = szl _— w131
by means of (8.20). These equations being satisfied because of (8.16), we see that all
the differential consequences of (8.143) are consequences of the system (8.11) 4

+ (8.141,2).
From (8.2) + (8.10), we get
o1, [v1, [v1, 22]]] = 141 . v1 4 1142 . V2 + az[v1, v2), (8.21)
) [v2, [v2; [v1, v2]]] = v2b1 . 1 — v2a1 . v2 — bi[vy, w2,
i.e.,
L) = viviv1ve — 3v1219201 + 301920191 — 02017101 — 141 . V1 — 0142 . V2 —
— az . 0172 + az . v201 = 0,
L = 11020202 — 302010202 + 303020102 — vav2v2v1 — v2b1 . V1 + vea1 . v2 +
+ b1 . v1v2 — b1 . vev1 = 0. (8.22)
Now,

V10102019 = 3pq‘4A2 .v2p . V19 — pq’3 .v141 . v2p — pq—aAz . V102p — i-'l)la1 . V19—
— Y qamaz + 3 p%q3a1dz2 + §p2q4 . v2 A2 . v1g — §p%¢73 . v1v2Ads +
+ Y veaz . v19 + % ¢ . v1v2as,
V19201019 = 6pq Az . v2p . v1q — 2pq3 . v1d2 . vap — 2pq3A2 . vivep +
+ veaz . v1q + q . viveas + 3p2q~4.veds . v1q — p2q3 . v1veAa,
Vav1V101g = V2az . V14 + az . vav1q + 6pq4As . ve2p . v1q + 3p2q 4. v2 A2 . v1q +
+ 3p2q4A2 . v2v1q + q . vavias — 2pq3 . v1Ads . v2p — p2q~3 . vav1 A9,
V1020202 = — 6p‘4qu V2D . V19 — 3p—4q2 .01B1 . V2p — 3p‘4q231 . V102D —
— v1b1 . vap — b1 . v1vep + 2p 3¢ . vaB;1 . v1q + p~3¢%. vV1v2e Bl —
— p . v1v2by,
vav1v2v2p = — 6p~4qB1.v2p . v1q + 2p3q . veB1.v1q + 2p~3¢B1 . v2v1q —
— 3p4q2 . v1B1 . vep + p~3¢2 . vav1B1 — v1b1 . v2p — P . vav1by,
vav2v1V2p = — 3p~4¢gB1.v2p . v1¢ + p~3q. veB1.v1g +
+ p~3¢B1 . vav1g — Y vea1. v2p — ¥ p~3¢%a1B1 +
+ 4 paibr —§ p4q%. v1B1 . vap + 3 p~3¢% . vav1B1 —
— % v1b1 . v2p — i-p . v2v1b1. »

From L;q = 0, Lsp = 0, we obtain

3pq—4As . v2p . v1qg — 3pq3Az . vivep — 3p2q~4As . vav1g + (8.23)
+ 392974 . v2Az2.v19 — pg 3. v1d2 . vep + § ¢ . v1veaz + 3 garas —
— $9%297%a142 — $p2q3 . v1veds — q. veviaz + P23 . vav1d2 = 0,
3p~4gB;.v2p.v1q — 3p~4¢2B1 . vivep — 3p3¢qB1 . vev1q +
+ 3p74¢% . v1B1.vep — p~3q.veB1.v1q + p~3¢% . v1veB1 —
— 3773¢% . vov1B1 — p . v1veby + §p . vov1b1 — § P 3¢%a1B1 + § parby = 0.
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Multiplying (8.143) by 3 pg~4A2 or 3 p~4¢B resp. and adding it to (8.231) or (8.232)
resp., we get
30%q7  vad2 . v1g — pq 3. v1ds . v2p + § q . V10202 + § garaz — (8.24)
— 2923 . 010242 — q.vev1as + p2q3 . vev1d2 — 3 pg2A142 =0,
3p4¢% . v1B1.v2p — p3q.v2B1.v1q + p3¢% . v192B1 —
— 3p73¢%. vov1B1 — p . v1v2b1 + 3 p . vav1b1 + §parbs — $p~4qA1B1 = 0.
From (8.6),
V201 = q'2 .U2p . W1 +p‘1q*1 . WowW1, V1V2 = p*z .19 . w2 + p‘lq‘l . Wiwe. (8.2.5)
Finally, we get
P71¢°(3v1v2as — 2020102 + 3aiaz) = Jwiwe A — 2wew1 A2 + 34142, (8.26)
P5q~1(3'02‘01b1 — 2v109b1 + 3a1b1) = 3wowi B — 2wiweB1 + 3A41B1
from (8.6), (8.25) and (8.24).
Let us write

J1 = 3v1veas — 2vaviaz + 3aias, 72 = 3vev1b1 — 2v1v2b1 + 3ai1b1, (8.27)
_71 3IU1ZUZA2 — 2w2w1A2 -I— 3A1A2, ]2 = 3w2w131 — 2w1wgB1 + 3A131
Then

B = F1, afz = Je. (8.28)
Suppose
Jijz £ 0 (8.29)
and write
ky = [j173%2[Y/8, ke =|j1j2 73|18 (8.30)
Then .
=la|. K1, ke=|f|.Ke (8.31)
and
Kyw; = sgn o . kiv1, Kows = sgn ﬂ . kavo. (8.32)

Theorem. On M3, be given a G-structure Bo(M?3) of the considered type. In a
neighbourhood of mo € M3, let us choose its section (v1, v2, v3) in such a way thar (8.2)
and (8.10) are satisfied. Suppose that we have (8.29) for the functions ji1,je defined by
(8.27). Consider the vector fields

V = Rkiv1. Ve = kove, (8.33)

k1 and kg being defined by (8.30). These vector fields are invariant up to the sign, i.e.,
choosing another section (w1, we, ws3) satisfying (8.3) and (8.10), we have W1 = Kiw1 =
=4 Vi, We= Kewz = 4 Va.

9. Consider the space C2, i.e., the space R4 endowed with a fixed automorphism
I : R* — R4 satisfying 12 = — id. Let H' < GL(R*) be the subgroup of elements
y € GL(RY) satisfying yI = Iy. The local diffeomorphism ¢ : U < R* — R? is
called holomorphic if (dp); € H for each x € U. Our task is to study hyper-
surfaces M3 < R* with respect to the pseudogroup [ of all local holomorphic
diffeomorphisms.
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Let m € M3. Write T = Ti(M3) (\ ITn(M3); tn is always a plane. Let us
restrict ourselves to hypersurfaces for which the field of planes 7 is non-integrable.
To M3, we associate a G'-structure Bg. (M3) as follows. The frame (u1, w2, u3) of
Twm(M3) belongs to Bg (M3) if and only if w1 €Tm, ug = Iur. (1, us, #3) being
another frame of Bg (M3) over m, we have

%1 = pu1 — Ous, 9.1)
Uz = ouy -+ Qus,
U3 = x1u1 + xouz + xus; (02 +02)x + 0.

In a neighbourhood of m € M3, let us choose a section (u1, u2, u3) of Bg (MB3).
We may write
(w1, [1, ua]] = cr,u1 + cauz + caluy, ue), 9.2)
[uz, [u1, u2]] = diur + dauz + ds[us, us).

Consider the complexification TC(M3) = T(M3) @ iT(M3) of the tangent bundle
T(MB3) and its vector fields

1 = U1 + iuz, V2 = U1 — iuz or w1 = 1-21 + iﬁz, Wy — 1-11 —_ iﬁz resp. (9.3)
Then

w1 = avy, wy = Pvg, where a =9 + 10, f =90 — i0. 9.49)
Further,
[v1, [v1, vao]] = {d1 — c2 — i(d2 + c1)} v1 4 {d1 + c2 +i(d2 — c1)} v2 + (9.5)
+ (03 + “13) [v1, v2),

[v2, [v1, v2]] = {— d1 — ¢z + {(d2 — c1)} v1 + {— d1 + c2 — i(d2 + c1)} v2 +
+ (c3 — ids) [v1, va)-
To obtain invariants of M3 < C2, we proceed formally in the same way as we have
done in the preceding section.
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