
Acta Universitatis Carolinae. Mathematica et Physica

A. Švec
On certain groups of holomorphic maps

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 13 (1972), No. 2, 3--27

Persistent URL: http://dml.cz/dmlcz/142276

Terms of use:
© Univerzita Karlova v Praze, 1972

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to
digitized documents strictly for personal use. Each copy of any part of this document must
contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://project.dml.cz

http://dml.cz/dmlcz/142276
http://project.dml.cz


1972 ACTA U N I V E R S I T A T I S CAROLINAE M A T H E M A T I C A E T PHYSICA VOL. 13, NO . 2 

On Certain Groups of Holomorphic Maps 

A. SVEC 
Mathematical Institute, Charles University, Prague 

Received 15 December 1972 

O. Consider the space C 2 with the complex coordinates (x, y). By T8 denote the 
pseudogroup of local holomorphic diffeomorphisms of C 2 x = x(x,y), y = y(x, y) 
satisfying b\x, y)/d(x, y) == 1. We are going to prove the following 

Theorem. Let G• c Fa be a Lie group such that dim G' = 3 and the orbits of G 
are real hypersurfaces M3 <= R4 == C2 with non-trivial Levi form. Then G is locally 
rs-equivalent to one of the following groups'. 

a 1 
(I) x = x y — — iBa2 + c, y = y + aJb + ictBa; a,b,ce R; 

a 2 

(II) x = ax by + c, y = —oiBbx + ay + cul; a,b,c,d eR; a2 -r- Bb2 = 1; 
a 

(III) i = ( a X + b)(-l~bc~aCx)y2~a-2a*C 

(1 — bc — acx)2y2 + c/L2a2c2 

(1 — bc — acx)2y2 + 0L2a2c2 

; a, b, c eR; 
ay 

(IV) consider (III) with a e iR, b eC, c = b. 

Here, 0 + a e C and 0 4= B e R are parameters. The corresponding orbits M 3 are 
. 2 

(I') (ţ-j) + 4ІB(* - *) = r, 

(ir) ( £ - ! ) -**-~x)2=r> 
(III') (x — x)2y2y2 + (oLy + a/3/)2 + 4ryy = 0 

with reR. 

The groups (III) and (IV) will be studied elsewhere. 
In the second part of this paper, I solve the equivalence problem for hyper­

surfaces of C2 with respect to the pseudogroup of all local biholomorphic mappings. 



It is well known that two real hypersurfaces in C2 are not generally holomorphically 
equivalent. The problem of the construction of invariants of M3 <= C2 with respect 
to the pseudogroup of holomorphic mappings has been treated by E. Cartan (Annali 
di Mat., t. 11. 1932, 17-90); unfortunately, his treatment is very confused. 

Let V3 be a differentiable manifold together with a structure consisting of 
a choice of two tangent directions at each of its points. In what follows, I shall con­
struct (in the general case) an {e}- structure on V3 invariantly associated to the given 
structure; by means of this {^-structure, the equivalence problem of the structures 
of the just described type will be solved. Further, I will show that the construction 
of an invariant {^-structure on M3 c C2 is equivalent to the preceding construction. 
The special cases will be treated in a forthcoming paper. 

Parts of this paper have been written during my stays at the universities at 
Berlin (GDR) and Riga (USSR). 

1. Consider the space C ,̂ C being the complex numbers, with the complex 
coordinates x = xl + iy\ y = x2 + iy2. Its real form is the space R4 (R being 
reals) with the coordinates (x1>y1>x2>y2) together with the endomorphism I: 
R4 -> R4, /2 = -id, defined by (i = 1,2) 

d d d d 
r I = — . (1.1) dxi dy* ' By* dx* 

In general, on any complex vector space V> scalar multiplication by real numbers is, 
of course, defined. Relative to addition, and scalar multiplication by real numbers 
only, the elements of V clearly form a real vector space, which will be denoted by 
VQ and called the real vector space underlying the complex vector space V. If VQ is 
the underlying real vector space of a complex space V> then there is an automorphism 
IQ of VQ satisfying 1$ = — id> induced by the automorphism I of V given by 
I A = iA>A e V. Further, dintRVo = 2dimcV. Let V be a finite dimensional complex 
vector space and A\>...., An its basis, then A\> IoA\> ...., An> IoAn give a basis for Vo. 
Let WQ be a real vector space (of finite dimension). We say that a complex structure 
is given on WQ if there is given an endomorphism IQ of Wo satisfying II = —- id; 
this endomorphism is an automorphism, since IQ1 exists and is given by — IQ. 
Let WQ be a real vector space with a complex structure defined by IQ. Then: 
(i) There exists a basis for WQ of the form A\> IQA\> ...., An> IoAn; in particular, 
dintRWo is even; (ii) there exists a complex space W such that WQ is the underlying 
real vector space of W and 7o is induced by the complex structure of W. Let us prove 
this last proposition. Since dimRWo > 0, there exists a vector A\ #= 0 in Wo. 
Then A\ and IQA\ are independent. In fact, if there exist real numbers a> b such that 
aA\ + bhA\ = 0, then aIA\ — bA\ = 0 and (a2 + b2) A\ = 0. This implies 
a = b = 0. We proceed by induction, and assume that an independent set A\> 
IQA\> ...., Ajc> IQAIC of vectors in WQ has been found (k > 1). If dintRWo = 2k> there 
is nothing further to prove. If dintRWo >2k> then there is a non-zero vector 
Ak+\ e Wo which is independent of the vectors A\>...., /o-4*. The vectors A\> 



IoA\, > Ajt+\, hAk+\ form an independent set. In fact, if a\,...., ak+\, b\, > bk+\ 
are real numbers such that 

k+1 k+1 

2 M . + 2 * M = o, (i.2) 
=1 1=i 

then 
* + i * + i 

2 ajIoAj — 2 bjAj = 0. f = i У=i 

From these, we obtain 
* * + i 

2 (<*j<*k+i + bjbk+i) Aj + 2 (bjak+i — ajbk+\) IoAj + (a2

k+1 + b2

k+1) Ak+\ = 0. 
j=i 1=i 

All coefficients being zero, we have ak+\ = bk+\ = 0, and (1.2) implies a\ = 
= .... = ak = b\ = .... = b*; = 0. The complex vector space W is constructed from 
the elements of Wo by defining the operation of scalar multiplication by a complex 
number c = a + ib as cA = aA+ bloA. 

Let _T be the pseudogroup of all local holomorphic diffeomorphisms of C2. Each 
y eT induces a diffeomorphism of R4 denoted by y, too. The local diffeo-
morphism y of R4 given by 

x<=F(x',y*)> y^tKxW, i =.1,2; (1.3) 

is an element of r if and only if the functions /*, g* satisfy the Cauchy-Riemann 
equations 

dx* dyi ' dyi dx* 

Let rs cz r be the pseudogroup of diffeomorphisms x = x(x, y), j) = y(x, y) 
of the space C2 or R4 resp. satisfying 

dx_ 
dy 

ҺJ 1,2. (1.4) 

д(x,y) 

дx 

дx 

= ì . (1.5) 
dy dy 
dx dy 

It is easy to see that y e J1 is an element of r8 if and only if y preserves the 2-form 

0 = dx A dy; (1.6) 
indeed, 

%x,y) 
Define 

(p = dx1 /\ dx2 — dy1 A dy2, tp = dx1 A <6>2 + ^V1 A <**2, (1.7) 

obviously, 0 = <p + itp. Of course, we may write 

<p = \(dx [\ dy + dx [\ dy), tp = — i*(dx /\ dy — dx /\ dy). (1.8) 



We have 

<p(v, w) = —<p(Iv, Iw), y)(v, w) = —<p(v, Iw) for v, w e R4. 0-9) 

Indeed, let 

*=ali + blw + a2i + b2w> 

^cli+dlw+c2i+d2w- ( u o ) 

Then 

Iv = — b1 —— + a1 — b2 h a2—— 
дx1^ дy1 Ә*2 ^ дy2 

__ + cl__._d2jL + ć ľ 2 _ _ _ 
Эx1 ^ Әy1 Әлг2 ^ Әy2 * = -*Ш + *TU-"IІ*+* 

and 

9>(s>, w) — a l c 2 ~~ a 2 c l ~ °1(^2 + °2^ — ~ <p(Iv> -to), 

y ( v , «,) = ald2 — b2.1 + b1,2 — a2^1 = — <p(v, Iw). (1.11) 

In C2, this may be rewritten as follows. Introduce the well known vector fields 

___ 

~dx ~ 2 

Then 

1 ЃJL. _ • ___) JL = 1 í___ + • __Â 
2 \Э*- * дy1) ' дx 2 l.Эx1 +% дy1 j ' 

-~ * ~эT' ә ӯ - Ҷ ә x Эx/' "' 9*1 3x 3x 9y 

and the vectors v, w may be written as 

„ = - „ ! » + „ . * + " f l » + Z 2 ^ , 
djc dy a* a_y 

„ = C1-f + C2-f + C1^-+C2-|-
dx dy dx* dj; 

with 
A* = a* + *«, Ci = ci + id1', i = 1,2. 

It is easy to check that 

iv=iA14-+iA-2 4- - iAi4=-- iAi4- > 
ox oy ox oy 

iw=i&4-+ic2 4- - i c i -4- - *C24-
ox oy ox oy 

and 
<p(v, w) = ±(AlC2 - AW1 + Z C 2 - A2&) = - <p(Iv, Iw), 
y>(v, w)=- \i(A^C2 - A2Cl - AKO2 + A2&) = - <p (v, Iw). 



Let X = X(x, y), Y = Y(x, y) be a local holomorphic diffeomorphism of C2. 
Then 

dXA dY + dXA dY=^££-dx A dy + ^ ^ - d x A dy. 

Thus: Let y be a local diffeomorphism of R4 defined on U <= R4. Then y eT8 if and 
only if 

(dya.I)(va) = (I.dya)(va\ (1.12) 

<p(va> wa) = q>(dya(va)y dya(wa)) 

for each aeU; va, wa e Ta(R4) = R4. 

From now on, consider the following situation: In R4 with the coordinates 
(xx>yx> x2,y2) be given a complex structure I (1.1) and the form (1.7i); let r8 be the 
pseudogroup of local diffeomorphisms of R4 satisfying (1.12). 

Now, let Af3 c R4 be a hypersurface. At each point m e M3, consider the 
space 

rm = Tm(M*) 0 ITm(M*). (1.13) 

Obviously, dim rm = 2 and I(rm) = rm. The pseudogroup r8 induces on Af3 the 
following structure: at each point m e M 3 , we have a tangent plane rm and its 
endomorphism Im : rm-+ rm satisfying I„ = — id; further, there is given a 2-form 
y* (the restriction of q>) on M3 such that 

<P*(vm> Wm) = — <p*(ImVm> ImWm) for Vm> Wm 6 Tm. 

Of course, <p* ̂  0. 

2. Let us suppose that the field of planes rm is non-integrable. Let us investigate 
this supposition more carefully. Define a partial complex structure on a manifold X> 
dim X = p, as an assignment of a tangent space rx <= TX(X) and an endomorphism 
Ix ' TX —> rx, Px = — zd, to each point x e X; let dim rx = 2q. Consider a fixed 
point xo eX and its neighbourhood U such that there are tangent vector fields 
vi> . . , Vqy wi, ...., Wq, u±,...., up -2q in U satisfying Vi(x), wt(x) erx and Ixvt(x) = 
= Wi(x) in U; write i,j, .... = 1, ...., q; a, />,.... = 1, ....,/> — 2^. Then 

N , Vj] = akjVfc + b%Wk + c%uay (2.1) 
[vi, Wj] = d%Vk + e%Wk +fijUa, 
\wu wj] = g%Vk + hkjWk + k%ua. 

Let Vo e rx% be a fixed vector. On £7, consider an arbitrary vector field V such 
that V(xo) = Vo and F(*) e rx for each x e U. Then there are functions />*, 
4* (on £7) such that 

V = p*Vi — qlWi. (2.2) 

At each point x e U, consider the vector IV; of course, 

IV = qivi + p*Wi. (2.3) 



We have 
[Vy IV] = [p{Vi — qiwiy qhj + p*Wj] = (2.4) 

= (pl. vtqk — qi. wtqk — q1. Vipk — pl. Wipk + afypiq* + 
+ d%pip* + dfaiql - g%p*qi) vk + (pi. vtp

k - qi . Wipk + 
+ qi . vtq

k + pi. wtq
k + btyqi + e%pipi + efytfqi -

— h%qipl) wk + (c%piq* +friP
iP3 +f?iq-q1 - ktyqi) ua. 

Let nx : TX(X) -> Tx(X)\rx be the natural projection. We see from (2.4) that 

LX.(V0) = 7T*0([^ IV](x0)) e TXt(X)/rXo (2.5) 

does not depend on the choice of the field V extending the vector Vo. Thus we get 
a well defined map 

Lx :rx->Tx(X)/rx (2.6) 

which is called the Levi map of the given partial complex structure (at the point 
x e X). If Viy Wiy ua e TX(X) as above and ua = n(ua) e Tx(X)\rXy then 

LX(V) = Lx(p% - qiwi) = (2.7) 
= (fifiW +f?1P

iPJ + / W - *?//>¥) Ua. 

From this and (2.1), we see that the field {T^} is integrable if and only if Lx( V) = 0 
for each xeXand each V erx. 

To compare our notion of the Levi map with the well established notion of the 
Levi map used in the literature, let us calculate the Levi map of a real hypersurface 
X*n-i c Cn. Suppose that X211'1 is given by the equation 

F(z\....yznyz\....yzn) = 0 (2.8) 

in the neighbourhood of the point z1 = 0,...., zn = 0. Of course, 

F(z\ ...., zny z\ ...., zn) = F(z\ ...., zn, z\ ...., zn)y (2.9) 

F(zly zf) being a real function. In a suitable small neighbourhood of the origin of C», 
consider the one-paramateric set of hypersurfaces 

F(z\ ...., zny z\ ...., zn) = oiy a e(-ey e). (2.10) 

Let v be a real vector field around the origin of Cn. Then 

d , - , d 
A* -

and the vector field Iv is given by 

At--ï + Ail>-*> < 2 Л 1 > 

(2.12) Iv = iA*^r-r — iA* 
дz* 

д 
дz* ' 

l, write Z* = X ' -f iy*, and (as usual) 

д 
дz* ~ 

1 / Ә . д \ д 
2\~~* гЪy*)>~~*~ 2 \дx* + i —) 

дy*J 
8 



Then 

and 

Then 

---___ + 
Э*< Эг< ^ Әž< 

__ J_ _ . /___ 9_\ 
ž< ' ay - * \ a~< ~ai<7 

_ = / i -

_______ _ э _ _ э_ 

Элг* ~ Әy< ' Ә y — Әx< 

Э . „ Ә Ә Э 

9xf dy* dz* dzl 

_i{at + ibi)A--i{ai_ibi)A[. 

We are looking now for the vector fields v (2.11) which are tangent to the hyper-
surfaces (2.10), the vector fields Iv (2.12) having the same property. This yields 

gp — dF dF — dF At-w + At-w-°> iAt-w-iAt-w-°> 
I.Є., 

dF — dF 
Aiw-°> Aiw~°- (213) 

Because of F = F, we have 
________ 
3i< ~ a~< ; 

indeed, write F{zl, £<) — /(*-, . . . , xn,yl,...,yn), then 

____(__ _ __\ _ _ _ _ / _ _ , _ _ \ 
â < - 2 I 3x< ' 9y< / ' 3*< ~~ 2 \a*<" + ' By*) : 

Thus the system (2.13) is equivalent to 

_ < i _ l - 0 . (2.14) 

It is easy to see that the coordinates zl in Cn may be chosen in such a way (by a 
linear change) that 

F(z\ ..., **, z\ ..., *") = zn + zn + G(z\ ..., zn~\ ~z\ ..., zn~\ zn — zn); 
G(0,...,0) = 0; (2.15) 

9G(0,...,0) = 9G(0,...,0) 9G(0,...,0) 
-* __ /TT ' _ / _ _ _ * l \ 

дza дza д(žn — zn) 
for a = 1, ..., n -- 1 



The geometrical meaning is very simple: The tangent hyperplane To(X2n - 1 ) at the 
origin is given by zn + zn = 0, i.e., xn = 0. 

Of course, dF(zi
>zi)ldzn =t= 0 in a neighbourhood of the origin, and (2.14) may 

be written as 

A a ^ + A n ^ = ° ( « . / » . - = ».•••."-»). (2-16) 

Its general solution is given by 
dF dF 

A*=Ba-—, An=-Ba 
dzn ' dza ' 

H1, ..., Bn _ 1 being arbitrary complex-valued functions, and we get 

__, dF d n dF d , — dF d - dF d „ ^ 
v = Ba~-r~~7~ Ba~-r-~~~ + Ba~^~r7~~~-Ba-s~7--z > ( 2 - 1 7 ) dzn dza dza dzn dzn dza dza dzn 

Ua S F d T>8 d F d DB 3 F 3 . DB 3 F 3 

Iv = iBa — —— •— iBP —————— tB8-——-^— + iBB-—r, dzn dz8 dz8 dzn dzn dz8 dz8 dzn 

At the origin of O , we have 

8F(0,...,0) _ 3_F(0,...,0) _ _F(0,...,0) _ 3F(0,...,0) _ 
dzn ~ ' dzn ~ ' dza ~ ' dza ~ ' 

and the vectors (2.17i) are given by 

v=Ba-^- + Ba-^L- . (2.18) 
dza dza 

Thus the space To ~ To(X2n - 1) is spanned by the vectors 

+ -__7T> l ~~T ~l-~~ > a = ! , . . . , « — 1. 9s a dza y dza dza ' 
From (2.17), we get 

2 ___./»_3 ___.-w 2 ___./? ' __!____/»3 _.R ___.T.'»i l ^ — y . d^ds" dz8 ' dzadz8 dzn ' ' dzadzn dz3 

- B * . i B 0 - ^ * - B a . i B e ^ * + B a . t B < > - d 2 m d 

_3 n3___./? _j-_-.fi. j /_ J _ _» ___._./? ' 3*a3s* 3*" ' dzadzn dz8 ' džadz3 ďkn 

- iB0Ba »WL - i - + i»_- -*--«-- -A- - ii*S- Í - M . ____ + 

+ iB**™®-—- + Í W J ™ _ - - ÍB*B'*™-— + 

dz^dz" dza dzadz<> dzn 

10 



— Ъ*Р(0) Ъ — Ъ2Р(0) ъ 

ивавв "а:> —-— ив»ва к' dz^dzn dza dz&dzn dza 

-2fBaBt^m*+2iBaB<>d*m d 

+ 

Of course, 

dzadz& dzn dzadz& dzn 

i (Baée mm. _ B0Fa jvcon t_a_ _a_\ 
\ džtdz* dzOdzn)\dza^ dza)^ 

\ dzPdz" ^ dz^dzn) \dza dža) 

-XBa&WWLÍ-í— J-). 
dzadzP \ dzn dznJ 

d_ _ . /_3 a_\ 
\fn~ \ dzn dznJ dy* 

Consider once again the natural projection TZ0 : To -> ^(X271'1)/^, and write 

then 

Lo(Ba * +~Ba *) = -2Ba&^Lu. 
\ dza dza J dzadzt 

This is the classical formula for the Levi map. It is easy to. prove that Lx = 0 at 
each point xeX2*1-1 is equivalent to the condition that X2n~l is locally holo-
morphically equivalent to a hyperplane of Cn. 

3. Let us consider a manifold _M3 with the structure described at the end of 
No 1. At each point m e Af3, let us choose a frame (v±, ̂  3̂)5 v% e Tm(M3), such 
that rm is spanned by v±, V2 and Imv\ = V2. Each other frame of the same type 
is given by 

W\ = OLV\ — f$V2, W2 = $V\ + 0LV2, (3.1) 
W3 = yv\ + dv2 + <pvs; (a2 + /32) q> =# 0. 

Let v, v' e Tm(M% 

v = av\ + bv2 + CV3, v' = a'v\ + b'z>2 + c'v3. (3.2) 
Then 

<p*(v9 v') = A(ab' - a'b) + B(ac' - a'c) + C(bc' - b'c), (3.3) 

where A, B, C are reals. For v, v' e rw, we have c = c' = 0 and 

<p*(v9 v') = A(ab' - a'b), cp*(Iv, Iv') = A(ab' - a'b). 

From the condition cp*(vm, wm) = — (p*(Imvm, ImWm), we get A = 0. Let 

z> = aari + bw2 + CW2, v' = a'wt + b'w2 + cfW3, 

11 



w\, W2, W3 being given by (3A). Write 

<p*(v, v') = B(a2' - a'c) + C(b~c' - b'c). 
Then 

a = aa + fib, b = — 0a + OJJ, c = <p~c 
and 

B = <P(OLB - PC), C = <p($B + OLC). (3.4) 

The case B = C = 0 being excluded (otherwise 9?* = 0), there exist frames 
(wi, W2, W3) with 5 = 1, C = 0, and we have the following result: On M3, the con­
sidered structure induces a G-structure BG(M3) such that (v\, V2, V3)m e BG(M3) if 
and only if v\, V2 e rm, Im,v\ = V2 and (p*(v, v') = ac' — a'c, v and z;' being given 
by (3.2); if {w\, w2, W3}m e BG(M3), then 

w\ = OLV\, W2 = 0LV2, W3 = yv\ + 6v2 + a-1*^; a + 0. (3.5) 

The last assertion follows easily from (3.4); indeed, we should have 1 = OL<P, 0 = f}<px. 
Consider a G-structure BG(M3) of this type, i.e., G is the group of the matrices 

/ a 0 0 \ 
( 0 a 0 J 9 a + o. (3.6) 
\y 6 OL-IJ 

In a domain V <=- M3, choose a section (v\, V2, V3) of BG(M3); then 

[v\, v2] = aw\ + a2v2 + 03*% (3.7) 
[V\, V3] = b\V\ + b2V2 + b3V3, 

[V2, V3] = C\V\ + C2V2 + C3V3, 

a\, ..., C3 being functions on V. In what follows, let us restrict ourselves to manifolds 
with non-integrable field of planes rm; thus a3 4= 0 on V. From the Jacobi identity 

[V\,[V2, V3]] + [ z^N, V\]] + [V3,[V\, v2]] = 0, 
we get 

v\c\ — V2bi + V3a\ + a\C2 + b\C3 — b3C\ — a2C\ = 0, (3.8) 
V\C2 — #2b2 + V302 + b2^3 + #2bl — b3^2 — <*lb2 = 0, 
V\C3 — 2̂63 + 3̂̂ 3 + #3̂ 2 + #3bl — 1̂̂ 3 — 02̂ 3 = 0. 

Let (w\, W2, W3) be another section of BG(M3), let us have (3.5) with a, y, 6 
real-valued functions on V. Then 

[w\, w2] = A\w\ + A2W2 + A3W3, (3.9) 
[w\, W3] = B\w\ + B2W2 + B3W3, 
[W2, W3] = C\W\ + C2W2 + C3W3. 

We have 
[w\, W2] = [az;i, 0LV2] = a . aia . V2 — a . V20L. v\ + a2(aiz;i + a2V2 + a3v£) = 

= A\0LV\ + A2V.V2 + A3(yV\ + bv2 + OL'XV3), 
i.e. 

— a . V20L + 0L2a\ = OLA\ + 7^3, a . z;ia -4- a2a2 = 0LA2 + &A3, a2a3 = a~M3. (3.10) 

12 



Thus there exists a section (w\, u>2, wz) satisfying A^ = 1> A \ = A2 = 0 , and we 
have the following result: There exists (locally) exactly one section (vu V2, vz) of 
BG(M3) satisfying 

[vi,v2] = *>3> (3.11) 
[vi, vz] = hvi + b2V2 + bzvz, 
[V2, Vz] = CiVl + C2V2 + CZVZ. 

T h e integrability conditions (3.8) reduce to 

via — V2bi + bicz — bzci = 0 , (3.12) 
V\C2 — V2h + 62^3 — hC2 = 0 , 

1̂̂ 3 — V2H + C2 + bi = 0. 

N o w , let BG(M3) be transitive. T h e n bu .. •> C3 are constants, and the equations 
(3.12) reduce to 

b\cz — bzci = 0 , &2C3 — bzC2 = 0 , C2 + b\ = 0. (3 A 3) 

Le t &3C3 4= 0. Then there are real numbers A , By C such that 

[vx, v2]= vzy (3A4) 
[vi, vz] = ABCvi — ABh)2 + Bv3, 
[V2, vs] = ACh)\ — ABCv2 + Cv9; BC 4= 0. 

Let is + 0, C3 = 0. Then a = C2 = fa = 0 and (3.11) are of the form 

[VU V2]= v^> (3.15) 
[v\, vz] = Av2 + Bvz, 
[V2, v3] = 0; B * 0; 

the case b^ = 0yC^ + 0 is symmetric. For H = C3 = 0, we get 

[t>l>*>2]= *>3> (3.16) 
[vi, vz] = Av\ + £t>2> 
[V2, vj\ = Cv 1 — Av*. 

The following result follows: The Lie algebra of G (see the Theorem) is of the 
type (3.14) or (3.15) or (3.16) resp. 

Finally, let us prove the existence of the transitive G-structures of the types 
(3.14)- (3.16). A simple check shows that the vector fields 

id = 1 ( 1 + 2y - 3 * 2 ) A + l ( 2 x + z - 3xy)~ + j ( y - xz)-^ , 

K2 = 1 ( 1 - 2 ^ + 3 * 2 ) ^ + 1 ( 2 * ^ ^ 

д д д 
" • " ^ - f e + ^ ђ Г + ^ ã Г 

(3.17) 

on R3 satisfy 
[Иl, И2] = ИЗ, [Иl, Из] = И2, [И2, Из] = Иl. (3.18) 
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In a suitable neighbourhood of the point (\n, 0, 0) e R3, consider the vector fields 

. , , x 3 , cos x d s in* d 
an = sin (3/ + z) - r - -f -^ cos (3/ + , ) cos (y + z) - r - , 

5A: sin* 3y cos x dz 

3 cosx . 3 sinx . . . . 3 

, D » s = - | - + i s r J <3-19> 
the direct check proves 

[w\, W2] = 2w3, [w\, W3] = — 2w2, [W2, W3] = 2w\. (3.20) 

Now, consider the G-stnicture (3.14). Obviously, [Cv\ — Bv2, V3] = 0. On a 
neighbourhood of a point mo e M3, consider local coordinates (x, y, z) such that 

Cv\ — i? __ = -=—, v3 = ---— , 
oy ox 

this being always possible. Let 

v* = *i+e-w+Yi' ie' Cvi = B«i + w + »-%-+Bri-
From (3.14i,2), we get 

— -C- — - 0 3 r - o a * - - C - _ - _ ^ C 3 y - o 
- r O , —: U, - r— U, —— O , — /I O , ~r— U. 
dy dy c[y ox ox ox 

Consider the particular solution a = C(y — x), ft = — _ C # , y = \. Then 

i* = B(j, - *) A + (C-- - _ x ) - | - + BC-i -A-, (3.21) 

^ = c ^ - * ) ^ - ^ c * - | - + -A, 

a 
V3 = -dx-; 

this vectors being linearly independent and satisfying (3.14), they generate a G-struc-
ture of the type (3.14) on R3. Similarly, the vector fields 

ps pj ps pi pi 

Vl = -(Bx + y)-^-Ax-w + ^ , »2 = - - - , v3 = ~ (3.22) 

generate a G-structure of the type (3.15) on R3. The type (3.16) is a little more com­
plicated. First of all, suppose A — _ — 0; the G-structure of this type on R3 is 
generated by the vector fields 

a _ a a a a 
«*----- . ^ = - c ^ ^ - + ^ ^ r + ^ ' va = iy-- ( 3 - 2 3 ) 
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Similarly, the G-structure of the type (3.16) with A = C = 0 is generated by the 
vector fields 

d d d d a 
Vl==-By-dx--X-W + ^ > V2==-dx~> V3 = -W' (3-24) 

Now, consider the case A2 + BC = 0, AB =j= 0, i.e., 

A2 

[Vl, V2] = V3, [Vl, Vs] = Av\ + BV2, [V2, V*] = — V\ — Av2. B 
We see that [Avi + Bv2, vs] = 0, and the vector fields 

- * _ _ 1 ^ _ _£ + _£, (3.25) 

V2 = ABy-^+(l+Ax)^-A-^, 

d 
V3=-dx-

generate the G-structure of this type on R3. If A2 + BC #= 0 then the Lie algebra 
(3.16) L satisfies [L, L] = L and it contains a basis (u±, U2, us) satisfying (3.18) or a 
basis (wu W2, W3) satisfying (3.20). 

4. Consider the space C2 and the pseudogroup r. The relation between the 
1-parametric local subgroups of F and the holomorphic vector fields on C2 is well 
known. Let 

r) ri 
V = "(*' y)^x~ + KX'y) ~dj {AA) 

be a (locally defined) holomorphic vector field; the corresponding local group Gv 

consists of the maps 

(pt: x = / (*, y, t\ y = g(x, y,t), te(— e, e) (4.2) 
given by 

__gfi_ _ a(f(X} yy ,), g(x, y> ,)), M|^_L _ b(j(x>y, t), g(x, y> ,)), 

f(x,y,0) = x, g(x,y,0)=y. (4.3) 

We have Gv <=• rs if and only if 

da{x'y) + db(x'y) = 0. (4.4) 
ox dy 

Indeed, let us write 

_ . ( w ) _ _ _ j _ ______ 
dx dy dy dx 

We have D(x, y, 0) = 1. From (4.3), we get 

dD (WЬ dt \dx dy, 
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and the result follows easily. Denote by Ls the Lie algebra of holomorphic vector 

fields (4.1) on C 2 satisfying (4.4). 

Let ttri, W2 6 L8, w\ 4= 0 4= o>2> [«_> W2] = 0; then there are (locally) rs-co-

ordtnates (u, v) such that 

?i 7i 7) 
w\ = -5—, W2 = a——- (0 =f= a e C) or W2 = afa) -5— res/>. (4.5) 

dw (to dw 
Here, the /Vcoord inates (u, v) are defined (locally) as ho lomorphic coordinates 

u = u(x,y), v = v(x,y) satisfying d(u, v)jd(x,y) = 1. Indeed, we may choose (at 

least locally) .^-coord inates r = r(x, y), s = s(x, y) such that w± = djdr. Let 

w N 3 . / \ 3 db , dc 
W2 = b(r,s)w + c(r,s)-2i, _ + _ = (). 

From [wu W2] = 0, we get 

І-.-.0 -----0 

Thus b = b(s),c = a e C. Now, consider the /^-coordinates u = u(ry s), v = v(r,s). 

Then 

_ 3w 3 3v d 

dr du dr dv ' 

_ / 3« d dv 3 \ / 3w 3 3_» 3 \ 

\ 3r 3w dr dv J \ ds du ds dv / 
We have 

du dv dv 
- — = = = 1 , — = = 0 awd - г - = 1 , 

dr дr ds 

i.e., « = r + #(s), ^ = s + Q, Q e C, and 

If a 4= 0, let us choose g(s) such that 

dg(s) b(s) 

W 2-,fc + a^,..A. + a.jL. 

ds a 

5. Let L be a Lie algebra of the type (3.14), suppose L c: _,. Then 

\V2 -g- z>i> *>3 = 0 , 

and we may choose (locally) /Vcoordinates (uy v) such that 

Pi C 7) 

->s = -—, - _ _ - _ « _ . 0 + « G C ; (5.1) 

or 
Я C Ћ 
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resp. Suppose (5.1) and 

vi •• 

From (3. H2), we get 

õ , , ч д дb , дc 
Ví = Ku,v)^ + c{u,v)^, _ - + - g - г = - 0 . 

ou ou 

i.e., 

b = - Hu + P(v), c = ,4£2au + Bv + y0; y0 e C. 

From (3.14i), 

C d 1 db d dc d d 

r] — 
i.e., 3cr/3v = H = 0. Thus we should have (5.2) because of B =f= 0. Let further L 
be of the type (3.15) and L cz L5. Then there are (locally) J^-coordinates (u, v) such 
that 

a a 
^3 = -̂ — - ^2 = a-~-r-; 0 # a e C ; (5.3) 

»3u az; 
or 

" 3 = = Ì Í Г ' ï 2 = a ( p ) ^ ( 5 - 4 ) 

resp. Suppose (5.3) and let us write 

From(3A5i}2)5 

д õ дb дc 

^ = Ь(tt, „ ) _ + , ( „ , „ ) _ . _ + — = 0. 

ab . dc . db dc 
a — - = — 1, —— = 0, -3— = — H, -3— = — -4a. 

#£> cto C7u au 

Because of B =j= 0, we have (5.4). 
Now, let Af3 cz C2 == R4 be the orbit of the group G <=^ Fs such that its Lie 

algebra g is of the type (3.14) or (3.15) resp. Then we have shown that g contains 
(in suitable /^-coordinates) the vector fields d/dx, a(y)dldx3 and the vector fields 

r\ r) ri 

y y > 0iO2> y2) y r ; + <* 2(*2, y2) y y ; a(y) = ai(x2, y2) + /a2(x2, 3>2); 

are tangent to _M3 <= R4. The plane rm is thus spanned by the vectors d/dx1, d/dy1, 
and the field rm is integrable. The groups G <= Ts satisfying the suppositions of the 

Theorem and possessing the Lie algebra of the type (3.14) or (3.15) do not exist. 

6. Let us investigate the case L <= Ls, L being of the type (3.16). Suppose 
dim[L, L] = 1, i.e., 

[VU ^2] = Vz, [VU V3] = 0 , [V2, V3] = 0 . (6.1) 
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We may suppose the existence of /^-coordinates (u, v) such that 

Let 

д д 
V2 = a -=— . £'з = --г- j 0 ф a є C. 

дv ou 

,/ л д , / ч д дb дc 

Vl = b(u,v)-^ + c(щv)-^, _ + _ _ _ 0 . 
F r o m (6A1.2), we get 

ì.e., 

____-0 — - 1 ____-___L-o 
Әu дv OL

 У дu дv 

b=——+ß, c = y; ß,yєC; 
a 

we have y #= 0 because of the non-integrability of the field rm. Consider the /^-co­
ordinates x = w, 3;= a — a/J. Then 

d d v d d 

and the general element of L is 

/ v d d \ d d 
* = * ( - a 1 * + ^ ) + ^ + r i * ; *,S,TeR. 

The associated local group Gv is given by (4.3), i.e., 

_ _ - _ _ ^ + r , _ _ _ / ? 7 + 5 a . 

It is easy to see that its finite equations are 

/ = x - — y - l / ? S t 2 - i - - - - - t - + Tt, g = y + yRt + as t . 
a 2 2 a 

Write Rt = a, St = b, Tt = c; we get 

Thus 

I.Є., 

(6.2) 

/ = * У— ~~ab— т — я 2 + c, g = y + ya + ab. (6.3) 
a z z a 

— _ a _ l l y 
f= x — -=-y — — ab— — _- a2 + c, £ =_ j , + ya + a b , 

a z z a 

/ - 7 _ , - i - a ( _ l - > ) - » . ( z _ 2 ) , 
\ a a / 2 \ a a / 

_ . _ Í _ _ _ Ž + fl(___Ž), 
a a a a \ a a / 
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the elimination of a yields 

(z_z)2

 + 2(z_i)(,_,) = (_._i)2

 + 2(z_z)(/_7 )5 
\a a/ \a a/v \a a/ \a a/ 

and we get the type (I). 
Let us investigate the case L <= L8,L being of the type (3 A 6) with dim[L, L] = 2. 

Then A2 + 23 C = 0. First of all, suppose A = B = 0* the case __! = C = 0 being 
symmetric. The algebra L is of the type 

[_>, _»2] = ^35 N , ^3] = Bv2y [V2, vs] = 0; B 4= 0. (6.4) 

In C2, there are JVcoordinates («, v) such that 

Let 

3 д 

V2 = a -=--, _»з = -=г- ; a +• 0. 

„/ >. 3 1 / \ " 3 db dc 

Vl = b(u,v)^ + c(u,v)-^, ---- + - - -

I.Є., 

ül 

(6.5) 

From (6.4i,2), we get 

— - - 1 — — 0 — - 0 — - - B 
dv a y Bv du du 

( h bo ) -~— + (— a23i/ + c0) ---— ; bo, c0 e C. 

Consider the JVcoordinates x = u — coa"1.-?-1, y = v — abo. Then 

v 9 „ 3 d d 
vi= = aHx-3—, ^2 = a-=—, ^3 = --5— . 

a 0:*: qy oy ox 

The general element v e L is 

/ v 3 3 \ 3 9 
v = -R I - - ^ - = - - 0 2 3 * - = - + Sa--— + r - = - ; i _ , S , T e R ; 

\ a ox dy / fly tto 
and the local group Gv is given by 

1—4,+-,£—**+* 
Consider the group 

f = ax by + c, # = — tf23bjc + ay + ad ; (6.6) 
a 

a, b, c , d e R , a2— 2362 = 1 . 
We get its identity for a = 1, b = c = 0. Let a(f), b(r), c(r), d(t) be its one-para­
metric subgroup Gi, let t = 0 correspond to its identity. Then 

da dft da(0) 
a _7- B 6 _7 = 0 ' -d7- = 0-
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The vector field 

~KT>+W+(--T*+'T)£ 
being associated to Gi, we see that (6.6) corresponds to (6.5). We have 

/ = ax — -=- by + c, g = — ckBbx + ay + ad, 
a 

/ — / = a(x — x) — b I: ^-J , aig — xg = -* aa_b(x — x) + a(v.y — a-y) 

and 

5 ( / - 7 ) 2 - ( f - | ) 2 = B ( , - ^ - ( ^ - | ) 2 . 

Thus we have obtained the type (II). 
Now, let L be of the type (3.16) with A2 + BC = 0, AB 4= 0, i.e., 

A2 

[vi, v2] = v3, Oi, v3] = Avi + Bv2y [v2, v3] = — vi — Av2 . (6.7) 

Then [.<4̂ i + _z>2, ̂ 3] = 0, and there are TV-coordinates («, v) such that 

Avi + Bv2 = « — (0 4= a G C), v3 = — , 

We have 

from (6.7i,2) 

ix ч Э , . N Э дb , дc 
ví = Ь(u,v)1^ + c(u,v)-^, _ + _ = 0. 

_ _ _ _ _ _ _£_ — 0 ә * — 0 _ _ — _ 
Эг> cк. У дv дu ' дu 

i.e., 

*>i 

In the /^-coordinates 

v + bo) -z—h (— OLU + co) y - ; Ъo,coeC 

CQ bo D X = u , V = V _ , 
a a 

we get 
, , r, 3 d B d 3 

Avi + Bv2 = a -3—, v3 = -JT- , vi = j ; -r ax -5— 
;̂y ĴC a ^x ay 

The general element v e L being 
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we do not obtain now groups-compare (6.8) with (6.5). 
7. Above we have considered all possibilities for L <-= L8 with dim [L, L] < 3. 

Now, there are exactly two Lie algebras (over R) with dim L = dim [L, L] = 3: 

[Wu W2] = W3> [wu W3] = — w2, [w2> W3] = wi (7.1) 
and 

[Wu W2] = W3> [wi, W3] = w2, [w2, W3] = wi. (7.2) 

First of all, let us consider the Lie algebra L (7.2). The change v\ = 0*3, v2 = 
= W2 — wu V3 = W2 + w± of its basis yields 

[V\> V2] = V2> [Vl, V3] = — V3> [V2> V3] = — 2v\. (7.3) 

In C2, there are /^-coordinates (r, s) such that 

í , 2 = _ , ^ = 4,, , ) _ + * - . , ) _ , _ + _ _ o . 

From(7.3i), 

- — = - 1 _ = 0 
ðr *' Әr " ' 

and there exist a function <x(s) and bo e C such that 

vi = (-r + a(5)) — + (* + b0) — . 

Let us choose the IVcoordinates 

u = r — (s + bo) J oc(s) d5, z; — 5 + bo. 
Then 

Let 

a 3 , 9 

"2 =fcT' n = --to+v-to' 

, \ 3 , „ . d de s df 
v^Ku,v)-^+f{u,v)^, _ + _ = 0. 

From (7.33), we obtain 

дe ., 3/ 

l i ľ= 2 м ' - Я - - 2 î ) ' 
and there exists a function (p(v) and/o e C such that 

From (7.32), 

vz = («2 + ?<в)) -^- + ( - 2uv + / 0 ) - ^ . 

v^L + 2ф) = 0, 

and we obtain the existence of <po e C such that 
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Finally, introduce the IVcoordinates 

, /o 
x ~ u ~^~~~~~' У = v> 

we have 

Now, it is easy to check that (7.4) are the infinitesimal transformations of (III). 

Let the vector fields w\, W2, ws on C 2 generate the algebra (7.1). Then the vector 

fields iw\, iw2, iwz generate the algebra (7.2), and the vector fields v\ = iwz, vz = 

= W2 — iw\, vz = W2 + iw\ satisfy (7.3). Thus we obtain the existence of /^-co­

ordinates (x, y) such that 

iws -x-te+yW -"--™-=-te> «• + *- = [x2--yz)~te-2xy-^-
Our result is as follows: Let the vector fields w\, W2, w$ satisfy (7.1), then there are 
(local) /^-coordinates (x, y) such that 

я* = т ť ( 1 -* 2 +£)-ž-+ ù э '-д_ 
дy 

гt>2 = T ( 1 + : ^ - ^ ) - ^ - x y - w ' (7-5) 

d . d 
W3 = tx -x iy -z— . 

8. Consider the space R 4 and its decomposition R 4 = Rf © R|. Denote by H 
the group {y e GL(R 4 ); y(Rf) = Rf, y(Rl) = Ri}, and let T be the pseudogroup 
of local diffeomorphisms (p : [/ c R4 _• R4 satisfying (d<p)x e H for each x eU. 
We wish to study hypersurfaces M3 <= R 4 with respect to r. Let m e M3, Tm(M3) 
the tangent space of M3 at w; denote by Sf(m); i= 1,2; the plane for which 
m e Si(m) and Sf(m) f) &1 =• ®- In what follows, let us restrict ourselves to the 
study of hypersurfaces M3 c: R4 satisfying the following conditions: (i) M3 is 
analytic; (u)ti(m) = T^Af3) f| ^ f( w ) *s one-dimensional for each meM3 and 

= 1,2; (iii) rm c T m (M 3 ) being the plane spanned by t\(m) and t2(m), the field 
r w is non-integrable. By means of the theory of systems of partial differential 
equations in involution (see, p.ex., K. Kuranishi, Lectures on involutive systems of 
partial differential equations; Publ. da Soc. Mat. de Sao Paulo, 1967), it is not difficult 
to prove 

Theorem. Let M3 <= R4 oe a hypersurface and 0 : M3 —> R 4 an analytic 
mapping such that both M3 and M3 = 0(M3) are hypersurfaces satisfying the con­
ditions mentioned above. Let (d0)m(ti(m)) = u(m) for each m e M3 and i = 1,2; 
let mo e M3 be a fixed point. Then there is a neighbourhood U ^ M3 of mo and a 
diffeomorphism cp e F such that (p is defined on, U and <pj u = 0-
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To each hypersurface M3 <= R4? we associate a G-structure BG(M3) as follows. 
Let (vi, v2, V3) be a frame in Tm(M3). Then (vi, v2, V3) e BG(M3) if and only if v% 
spans ti(m) for i= 1,2. (an, a;25 ^3) EBG(M3) being another frame at meM3, 
we have 

0>1 — OLVi, W2 = f$V2, W3 = yVl + dV2 + <fV3', v.py 4= 0. (8.1) 

In a neighbourhood U of m e M3, let us choose an analytic section (vi, V2, V3) 
of BG(M3); (WI,W2,W3) being another section of BG(M3), we have (8.1) with 
a,..., (p real-valued functions on U. The vector fields vi, v2, [vi, v2] being R-linearly 
independent, we may write 

[vi, [vi, v2]] = aivi + a2v2 + a3[vi, v2], (8.2) 
[v2, [vi, v2]] = hvi + b2V2 + b3[vi, V2] 

and 
[wi, [wi, w2]] = Aiwi + A2W2 + A3[wi, W2], (8.3) 
[W2, [wi, w2]] = Biwi + B2w2 + B3[wi, w2]. 

From the Jacobi identity 

[vi, [v2, [vi, v2]]] + [v2, [[vi, v2], vi]] = 0, 
we get 

vibi — V2ai + aib3 — 3̂61 = 0, (8.4) 
vib2 — v2a2 + a2b3 — 2̂362 = 0, 
zrib3 — ^2a3 + b2 + ai = 0 

and analoguous equations for Ai, ..., B3. Introduce the functions 

p = (^2Y'3, q = (a2^)1/3 (8.5) 

over U so that the equations (8.11,2) become 

wi — p~xq2vi, W2 = p2q~1V2. (8.6) 
Then 

[o>i, w2] = [p-xq2vi, p2q~1v2] = (8.7) 
= (q . V2P — 2p . v2q) vi + (2q . vip — p . viq) v2 + pq[vi, v2], 

[wi, [wi, w2]] = (.) vi + (.) v2 + (q3a3 + 3p~1q3 . vip) [vi, v2] = 
= (•) vi + (.) V2 + pqA3[vi, v2], 

[w2, [wi, w2]] = (.) vi + (.) v2 + (/>3b3 + 3p3q~1 . v2q) [vi, v2] = 
= (.) vi + (.) v2 + pqB3[vi, v2], 

and we have 

p-lq2(a3 + 3/)"1 . V!p) = A3, P2q~l(b3 + 3q~i . v2q) = B3. (8.8) 

The section (vi, V2, V3) of BG(M3) being given, there exists (possibly in a small 
neighbourhood c7i c Uofme M3) a section (wi, w2, W3) of BG(M3) satisfying (8.3) 
with A3 = B3 = 0; indeed, it is sufficient to take the section (8.6) where p, q are 
any solutions of the system 

vip = — \pa3, v2q = — \ qb3. , » (8.9) 
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In what follows, let us restrict ourselves to the sections (vi, v2, v$)> (wi, w2, wz) of 
BG(M3) satisfying 

as = bs = 0 or A3 = B3 = 0 resp.'y N (8.10) 

we have (8.6) + (8.I3) with 
vip = 0, v2q = 0. (8.H) 

Now, 
[wi, w2] = q . v2p . vi — p . viq . v2 + pq[vu v2]> (8.12) 

[wi, [wu w2]] = (2p~xq3 . viv2p + 2q2 . v2viq — 2p~1q2 . v2p . viq + (8.13) 
+ q3ai) vi + (— q2 . viviq + q3a2) v2 = p~lq2Aivi + p2q~1A2v2, 

[w2y [wu w2]] = (p2 . v2v2p + p3bi) vi + (— 2p2 . viv2p — 2p3q~l. v2viq + 
+ 2p2q~1. v2p . viq + p3b2) v2 = p~1q2Biv\ + p2q~1B2v2y 

i.e., 
— q3 . viviq + qAa2 = p2A2, (8.14) 

p3 . V2V2P + p*fa = q2Bi9 

2q . V1V2P + 2p . z;2Z!î  — 2v2p . viq + pqai = Aiy 

— 2q . V1V2P — 2p . v2viq + 2v2p . viq + pqb2 = -B2. (8.15) 

The equations (8.4) reduce to 

z>ibi — V2ai = 0, zrib2 — V2a2 = 0, b2 + ai = 0 (8.16) 

and analoguous equations for Au ..., B2I thus, (8.15) is a consequence of (8.14s) and 
(8.I63). 

Let us consider the system (8.11) + (8.14). From (8.11) and (8.14i.2)- we get 

vivip = 0, z>iz;2# = 0, (8.17) 
V2V1P = 0, v2v2q = 0, 
v2v2p = p~3q2Bi — pbu viviq — qa2 — p2q~3A2 

and 
vivivip = v2vivip = viv2vip = v2v2vip = 0, (8.18) 
viv2v2p = 2p~3qBi . viq + p~3q2 . viBi — p . vibi, 
v2v2v2p = — 3p~*q2Bi. v2p — bi. v2p + p~3q2 . v2Bi — p . v2bi, 
viviv2q = v2viv2q = viv2v2q = v2v2v2q = 0, 
viviviq = a2 . z>i# + 3p2q~AA2 . zrî  + q . ẑ ia2 — P2q~3 • viA2, 
v2viviq = — 2pq~3A2 . v2p + q . v2a2 — p2q~3 . v2A2. 

The equations (8.2) may be rewritten as 

z;iz;iẑ 2 — 2z;iẑ 2zu + ẑ 2̂ iẑ i — aYz;i — a2^2 = 0, (8.19) 
2z>2ZrizJ2 — v2v2vi — viv2v2 — bivi + aiv2 = 0. 

Applying them to the functions />, q9 we get 

viviv2p = a2 . v2py (8.20) 
V2V1V2P = p~3qBi . viq — \ ai . v2p + \p~3q2 . ViBi — \p . z>i&i, 
v2v2viq = — bi . viq, 
viv2viq = — pq~3A2 . v2p — \ai . viq — \ p2q~3 . v2A2 + \ q . v2a2. 
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Applying vi and z>2 to (8.143), we get 

2a . viviv2p + 2/>. viv2viq — 2v2p. viviq + pai . viq + pq . viai = V1A1, 
2q . v2viv2p + 2/>. v2v2viq — 2viq . v2v2p + qai. v2p + pq . z>2ai = v2Aiy 

i.e., 
a3(z>iai + z>2a2) = p~-q2 . V1A1 + p2q~x . v2A2 = «ri./.ti + tt>2-^2> 
/>3(z>2ai — z>i&i) = p2q~- • z>2-4i — />_1a2 . zri-Bi = W2A1 — W1B1 

by means of (8.20). These equations being satisfied because of (8.16), we see that all 
the differential consequences of (8.H3) are consequences of the system (8.11) + 
+ (8.14ii2). 

From (8.2) + (8.10), we get 
[vu [vu [vi> V2]]] = z>iai. z;i + z>ia2 . v2 + as[i>i, V2], (8.21) 
[V2, [V2, [vu V2]]] = ^2bi. vi — v2ai. V2 — bi[vi> V2]y 

i.e., 
Li == zrizriz>iz>2 — 3z>izriz>2̂ i + 3z>iz;2Z>izri — zwi^i^i — viai . vi — z>ia2 . z>2 — 

— a2 . zriz!2 + a2 . zwi = 0, 
L2 == zrrzw2^2 — 3zwrzW2 + 3z;2z;2z;iz;2 — V2W2V1 — V2bi. vi + z?2ai. z>2 + 

+ bi. viv2 — bi. zwi = 0. (8.22) 
Now, 
viviv2viq = 3/>a~M2 . V2P . viq — pq~3 . V1A1. V2P — pq~3A2 . viv2p — \viai. viq — 

— \ qaia2 + \p2q~3aiA2 + f p2q~4 . v2A2 . zrig — \p2q~z • vyu2A2 + 
+ i z>2a2 .viq + ^q. viv2a2y 

viv2viviq = 6pq~4A2 . V2P. viq — 2pq~3. V1A2. z>2/> — 2pq~3A2 . V1V2P + 
+ z;2a2 • viq + q. viV2a2 + 3/>2a~4 . V2A2. viq — p2q~3. viV2A2> 

V2Viviviq = z>2a2 . viq + a2 . v2viq + 6pq~4A2 . v2p. viq + 3/>2a ~4 . ̂ 2-̂ 2 . viq + 
+ 3/>2^~M2 . zwitf + # • v2via2 — 2pq~3 . V1A2 . v2p — p2q~3. v2viA2y 

viv2v2v2p = — 6p~4qBi. z>2/>. z>i~ — 3/>~4a2 . z>i.0i. z>2/> — 3p~Aq2Bi. viv2p — 
— vibi. v2p — bi. viv2p + 2p~3q . v2Bi . viq + p~3q2 . z>iz>2-Bi — 
— p. ViV2bl, 

V2ViV2V2p = — 6p~AqBi. V2p. viq + 2p~3q . V2B1. viq + 2p~3qBi. V2Viq — 
— 3/>~4a2 . V1B1. V2p + />~3q2 . W1-B1 — z>ifti. V2p — p • v2vibiy 

v2v2viv2p = — 3p~4qBi. z>2/>. ̂ ia + p~3q. z>2-Bi. z>iq + 
+ p~3qBi. v2viq — % v2ai. v2p — %p~3q2aiBi + 
+ \paibi —\p~*q2 . viBi. v2p + \p~3q2 . ẑ 2ẑ i-9i — 
— i ^i^i • v2p — i/>. ẑ 2̂ î i. 

From Lig = 0, L2p = 0, we obtain 

3pq~4A2. V2p. ẑ ia — 3pq~3A2 . ̂ iẑ 2p — 3/>2a~M2 . Z?2Z;IJ + (8.23) 
+ f />20~4 • ^2-42. viq — />g~3 . V1A2 . 2̂/> + f q. ^iz;2a2 + f aaia2 — 

— \p2q~3aiA2 — §p2q~3 . viv2A2 — q. v2Via2 + />2a~3. v2viA2 = 0, 
3p~AqBi. z>2/>. ^ia — 3p~4q2Bi. viv2p — 3p~3qBi. z;2z>i~ + 

+ iP~4Q2 • ^I-BI • ^2p — p"3^. ̂ 2-Bi. ẑ ig + />~3a2. ẑ î 2.Bi — 
~ f />"3?2 • 2̂̂ 1-Bi — />. z;iz;2̂ i + f/>. z^i&i — f p~3q2aiBi + f paibi = 0. 
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Multiplying (8.143) by \pq~*Aг or \p~*qBi resp. and adding it to (8.23i) or(8.232) 

resp., we get 

\P~~ ~4 • V2A2 . viq — pq~s . viAг . vгp + \ q . vivгaг + | qaiaг — (8.24) 
— \p2q~s . V1V2A2 — q • vгviaг + p2q~s . V2V1A2 — \pq~4AiAг = 0, 

f/>~4a2 . ̂ iBi . Ü2/> — P~sq • ^2-ßi. ^ig + p~sq2 . viVгBi — 
— \p'sq2 . vгViBi — p . vivгbi + \p . vгvibi + f-paibг — \p~^qAiBi = 0. 

From (8.6), 

vгvi = q~2 • ^2p • wi + p~xq~x. wгwu vivг = ŕ~2 • vi~ • ^2 + P~lq~x • røitttø. (8.25) 

Finally, we get 

p-ìqҢЗviVгaг — 2г>2 îa2 + Зaiaг) = Зwiw^Aг — IwгwiAг + ЗA1A2, (8.26) 
/>5tf_1(3г>2^ibi — 2^i^2bi + Зaibi) = ЗwгWiBi — IwiWгBi + ЗЛ1Æ1 

from (8.6), (8.25) and (8.24). 
Let us write 

Һ = Зvivгaг — lvгviaг + Зaiaг, jг = Зvгvibi — lvivгbi + Зaibi, (8.27) 
Ji = ЗwiwгAг — IwгWiAг + ЗAiAг> Jг = ЗwгWiBi — IwiWгBi + ЗA1B1. 

Then 
**ßҺ = Ji> 0Lßsjг = Jг. (8.28) 

Suppose 

and write 

Then 

and 

hh * 0 (8.29) 

ki = Ih^M1'8, k2 = Ijijr3!1'8 (8.30) 

* i = | a | . . K i , k2=\p\.K2 (8.31) 

Kiwi = sgn a . &Yz;i, .rv2a!2 = sgn /? . ^2^2- (8.32) 

Theorem. On M 3 , be given a G-structure BG(MS) of the considered type. In a 
neighbourhood of mo e Af3, let us choose its section (vu V2, v$) in such a way that (8.2) 
and (8.10) are satisfied. Suppose that we have (8.29) for the functions juh defined by 
(8.27). Consider the vector fields 

V = kivu V2 = k2v2, (8.33) 

ki and k2 being defined by (8.30). These vector fields are invariant up to the sign, i.e., 
choosing another section (wu u>2, W3) satisfying (8.3) and (8.10), we have Wi = K1W1 = 
= ± Vi, W2 = K2W2 = ± V2. 

9. Consider the space C 2 , i.e., the space R 4 endowed with a fixed automorphism 
I : R 4 -• R 4 satisfying I2 = — id. Let H' <-= GL(R4) be the subgroup of elements 
y e GL(R4) satisfying yl = Iy. The local diffeomorphism cp : U <~ R 4 —> R 4 is 
called holomorphic if (d(p)x <~ H' for each x e U. Our task is to study hyper-
surfaces Ms <= R 4 with respect to the pseudogroup K' of all local holomorphic 
diffeomorphisms. 
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Let m eM3. Write rm = Tm(M3) f] ITm(M3); rm is always a plane. Let us 
restrict ourselves to hypersurfaces for which the field of planes rm is non-integrable. 
To M3

y we associate a (?'-structure B'G> (M3) as follows. The frame (u\y u2y us) of 
Tm(M3) belongs to B'G> (M3) if and only if u\ ermy u2 = Iu\. (u\y u2y m) being 
another frame of B'G> (M3) over my we have 

u\ = QU\ — au2y (9.\) 
u2 = au\ + Qu2y 

M3 = x\u\ + x2u2 + xus; (Q2 4- G2) x 4= 0. 

In a neighbourhood of w e M3
y let us choose a section (u\y u2y U3) of B'G> (M3). 

We may write 
[u\y [u\y u2]] = clyu\ + c2u2 + c3[wi, M2], (9.2) 
[«2, [«i, w2]] = di«i + d2u2 + d3[«i, W2]. 

Consider the complexification TC(M3) = T(M3) © *T(Af3) of the tangent bundle 
T(M3) and its vector fields 

v\ = u\ + zu2, 2̂ = wi — 2«2 or w\ = Si + ZM2, tt>2 = 5i — {£2 resp. (9.3) 
Then 

w\ = 0LV\y zv2 = fiv2y where OL = Q + iay ft = Q — ia. (9.4) 
Further, 

[v\y [v\y v2]] = {d\ — c2 — i(d2 + c\)} v\ + {di + c2 + i(d2 — c\)} v2 + (9.5) 
+ (c3 + frf3) [©!, z;2], 

[v2y [vly v2]] = {— di — c2 + *(d2 — ci)} 1̂ + {— di + c2 — i (<fe + c\)} v2 + 
+ (£3 —- ids) [v\y v2]. 

To obtain invariants of M3 d C2, we proceed formally in the same way as we have 
done in the preceding section. 
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