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T-quasigroups
Part II.

T. KEPKA and P. NEMEC
Department of Mathematics, Charles University, Prague

Received 22 April 1971

In this paper we continue the investigation of T — quasigroups. The definition
and some basic properties of T — quasigroups can be found in our paper “T - quasi-
groups. Part I.”’, which appeared in [1]. All the notation is the same as in the paper
mentioned above and we use it, as well as the results, without stating it explicitly.
Thus we begin here from Theorem 19 and Lemma 17.

4°-Commutative, unipotent and idempotent T-quasigroups,
an, Bn — quasigroups

Lemma 17. A T - quasigroup Q is commutative if and only if for any (and then
for each) of its T — forms (Q(+), @, ¥, g) is @ = .
Proof: 1. Be (Q(+), ¢, 9, 8) a T — form of Q. Then for every x,y €Q, xy =
= @(x) + ¢(¥) + g = yx. Hence Q is commutative.

2. Let Q be commutative and (Q(+), @, %, g) be an arbitrary T - form of Q.
Then x - O = @(x) + g = O - x = y(x) + g, so that ¢(x) = y(x) for every x € Q.

Theorem 19. Let Q be a T - quasigroup and a € Q such that for every x € Q,
ax = xa. Then Q is commutative. ‘
Proof: Be (O(+4), ¢, v, g) any T — form of Q. Then for every x € Q,

xa = @(x) + y(a) + g = ax = ¢(a) + p(x) + g.

If we put x = O, we get ¢(a) = y(a). Hence ¢ = y. By Lemma 17, Q is commu-
tative.
Lemma 18: A T - quasigroup Q is unipotent if and only if for any (and then for

each) of its T — forms (Q(+), @, ¥, &) is ¢ = — .
Proof: 1. Be (O(+), — v, v, g) a T — form of Q. Then for every x, y € O,
xx =—y(x) + yp(x) + £ =g = .

2. Let Q be unipotent and (Q(+), @, ¥, g) be one of its arbitrary T — forms.
Then for every x € Q, xx = OO =g, so that ¢(x) + w(x) = O, and therefore
=—19p.
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Lemma 19: Let Q be a commutative and unipotent T — quasigroup and Q(+)
be an arbitrary T — group of Q. Then every non — zero element of Q(4) has the
order 2.

Corollary: Every finite commutative and unipotent T — quasigroup has a 2 -
power order.

Proof: Be (O(+), @, ¥, g) an arbitrary T - form of Q. By Lemmas 17, 18 we have
¢ = pand ¢ = — . Hence for every x € Q, y(x) = — y(x). But p is an automor-
phism of Q(+). Thus x = — x.

Definition 6: Let # be a positive integer, n > 2. A quasigroup Q is called y, -
quasigroup if Q is simultaneously an «, and 8, — quasigroup.

Definition 7: A quasigroup Q is called K - quasigroup if there exists a commu-
tative quasigroup C and a unipotent quasigroup U such that Q is isomorphic to
CxU.

Theorem 20: Every commutative T — quasigroup is a y, — quasigroup for every
integer n > 2. Every unipotent T — quasigroup is a y» — quasigroup for every even
n>2.

Corollary: Every K- T - quasigroup is a y, — quasigroup for every even
n> 2,

Proof: The theorem follows from Lemmas 17, 18 and from Theorems 10, 11.

Lemma 20: Let Q be a #, — quasigroup, # > 2. Then Q is a fxs ~ quasigroup

for every & = 1,2, ... If, moreover, Q is an a, — quasigroup for some m > 2, Q
iS am+kn — quasigroup for every k =1,2....
Proof: Be (Q(+), ¢, w,g) an arbitrary T — form of Q. Then ¢» = y». Hence
pnk = ynk for every 2 = 1, 2, . . ., and hence, Q is a f,x — quasigroup. If Q is an
am — quasigroup, gym-1 = ypm-1, Hence @ym+nk-1 = yom+ak-1 Thus Q is an
m+nk — quasigroup.

Theorem 21: Every y» — quasigroup is a y, — quasigroup for every even
n> 2.

Proof: This theorem follows directly from Lemma 20.

Lemma 21: Let Q be a T — quasigroup and let there be a number n > 2 such
that at least one of the following conditions holds:

(i) Qisa B, and fr+1 — quasigroup.

(ii) Q is an ay and ay41 — quasigroup.

(iii) Q is an ay+1 and By — quasigroup.

Then Q is commutative.

Proof: Be (Q(+), @, ¥, g) any T — form of Q. If (i) holds, then ¢p» = yp» and
@n+l = yn+l Hence ¢ = yand Q is commutative. If (ii) holds, py”»-! = ypen-1 and
@y = yo™. Therefore py® = pyn-ly = yen-ly = yp" = yp"-lp. Hence p = y.
Finally, if (iii) holds, ¢ = y” and ¢y = ye®. Hence ¢ = .

Theorem 22: Let Q be a 2 — quasigroup and let there be an odd number
n > 2 such that Q is an a, or 8, — quasigroup. Then Q is commutative.

Proof: The theorem follows from Lemmas 20, 21.

32



Lemma 22: Let Q(+4) be an Abelian group and ¢, ¢ two its automorphisms

such that the mapping x — x + x is a permutation of the set Q, ¢y = o and
¢2 = y2. Then there exist two subgroups C(+) and U(+) of Q(+) such that
@ | C = y| C is an automorphism of C(+), ¢ | U = — o | U is an automorphism of
U(+) and Q(+) = C (+) + U(+).
Proof: Be C the set of all x € Q such that ¢(x) = p(x) and U the set of all
y € Q such that ¢(y) = — y(y). It is easy to show that C and U are subgroups of
QO(+). Since Q(+) has no non - zero element of the order 2, U(+) () C(+) = O.
Be y € Q(+) an arbitrary element. As the mapping 2¢ is a permutation of the set Q,
there is x € Q such that y = @(x) + @(x). Put a = ¢(x) + p(x), b = @(x) — p(x).
Evidently, y = a + b. But

p(a) = p(p(x) + p(x)) = ¢*(x) + pp(x) =
= 93(x) + yo(x) = p(p(x) + p(x)) = y(a),
9(b) = p(p(x) — y(x)) = ¢*(x) — py(x) =
= y¥(x) — pp(x) = p(p(x) — @(x)) = — p(b).
Hence a € C(+), b € U(+). Therefore @(+) = C(+) + U(+). Evidently ¢ | C =
=y|C and ¢ | U=— 9| U. Let, further, x € C(+). Then ¢%(x) = py(x) =
= pp(x) and pp-1(x) = @p-ly(x) = pp-1(x). Hence ¢(x), p~1(x) € C(+). Similarly, if
x € UH+), ¢(x), p~1(x) € U(+). Thus ¢ | C is an automorphism of C(+) and ¢ | U
is an automorphism of U(+).

Theorem 23: Let Q be a y2 — quasigroup and Q(+) its arbitrary T - group.
Let the mapping x — x + x be a permutation of the set Q. Then Q is a K - qua-
sigroup.

Corollary: Every finite y2 — quasigroup of odd order is a K — quasigroup.

Proof: Let (Q(+), @, ¥, g be the corresponding T - form to the T - group
Q(+). By Theorems 10, 11, ¢ = 2, oy = yp. Hence, by Lemma 21, there exist
two subgroups C(4-) and U(+4) of Q(+) such that ¢|C = y|C and ¢|U = —y|U
are automorphisms of C(+4) and U(+) respectively and Q(+) = C(+) + U(+).
Define the mapping o, ¢ : Q -~ C x U, as follows: o(x) = (¢, u), where c € G,
u € U such that x = ¢ + ». The mapping o is an isomorphism of Q(-}) onto
C(+) x U(+4). Denote p|C = @1, p|U = gzandputn = ¢1 X @2,0 = g1 X (—p2).
Then op(x) = op(c + u) = o(@(6) + Pw)) = (P1(e), Po(w)) = ncsw) = no(),
oy(x) = eo(x).
Let C(o) be the T - quasigroup of the T - form (C(+4), @1, ¢1,&1) and U(.) the
T - quasigroup of the T - form (U(4), @2, — @2, g2), where o(g) = (g1, £2).
Evidently C(o) is a commutative quasigroup and U(.) is a unipotent quasigroup.
Further, for every x, y € Q, a(x) = (a, b), o(y) = (v,2), we have

o(xy) = o(p(x) + v(y) + &) = op(x) + oyp(y) + o(g) =
no(x) + eo(y) + a(g) = n(ab) + 0(v,2) + (g1, &2) =
(91(a), p2(b)) + (91(v), — @2(2)) + (81, 82) =

= (pu(a) + @1(v) + g1, P2(b) — @2(2) + g2) = (aov, b.2).

I
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Hence ¢ is an isomorphism of Q onto C(o) x U(+)and hence, Q is a K — quasigroup.
Theorem 24: Let n > 2 be a positive integer and Q be a y, — quasigroup.
Let at least one of the following condition hold:
(i) The mapping x — xx is one — to — one.
(ii) The mapping x — xx is onto Q.
(iii) For every x € Q, e(x) = f(x).
(iv) For every x € Q there are u, v € Q such that uv = vu = «x.
Then Q is commutative.
Corollary: Every idempotent y, — quasigroup is commutative.
Proof: Be (Q(+), ¢, v, g) a T — form of Q. We have ¢p7 = &, pyn-1 = pon-1,
Hence
(pn-lwn—l — (pn—l(p,pn—l — ,pn,pn—l — wnwn—l o
— wn-lwn — w"-lqzﬂ — wn—lwn—l.
Therefore pn-1y = yn-lg. Evidently (ii) implies (iv) and (iii) implies (iv). Let (iv)
hold and x € Q be an arbitrary element. There are », v € Q such that v = vu =
= x + g. That is, p(u) + y(v) = ¢p(v) + p(u) = x.
Further,
ni(x) = " Ug(v) + p(w) = e™() + ¢ 1p(u) =
= ™) + v o) = p* Y p() + ) = p*~x).

We have proved that ¢#-1 = y»-1, Hence ¢ = u and Q is commutative. Finally, let
(i) hold. Since x — xx is one - to - one, the mapping & = ¢ + pis one - to - one.
Let x € Q be an arbitrary element. Put a = ¢#-1(x) — p*-1(x).
We have

&(a) = ¢™(x) — @y L(x) + pprI(x) — y" (x) =
As £(0) = O, a = O. Hence ¢™-1(x) = ypn-1(x). We have proved that gn-1 = ypn-1,
Hence Q is commutative.

Definition 8: A quasigroup Q is called anticommutative if for every x, y €0
xy = yx implies x = y.

Lemma 23: A T - quasigroup Q is anticommutative if and only if for any (and
then for each) of its T - forms (Q(+4), , ¥, g) and for every x € Q, x # O, is
P(x) # y(x).

Proof: 1. Let Q have such a T - form (Q(+), ¢, ¥, g). Let x,y € Q and
xy = yx. Thatis, p(x) + p(y) + & = y(x) + ¢(») + & Hence p(x — y) = p(x—y)
and hence ¥ = y.

2. Let O be anticommutative and (Q(+), , ¥, g) be an arbitrary T — form
of Q. Let x € Q be an arbitrary element such that ¢(x) = y(x). Then O - x'=
= p(x) + g = p(x) + g = x - O. Hence x = O.

Theorem 25: Let » > 2 be a positive integer and Q be an anticommutative ys —
quasigroup. Then Q is unipotent.

Proof: Be (O(+), 9, v,g) any T - form of Q. Then ¢ = y=, pyn-1 = ppr-1,
Further,
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O - (pn-1(x) + p*(x)) = pp"Yx) 4 p™(x) + g =
= py"(x) + ¢™(x) + g = p(y*Ux) + ¢ Ux)) + g =
(p*-1x) + y*1(x)) - O.

Hence O = ¢»-1(x) + y»~1(x) and hence, ¢ = — y. Thus, by Lemma 18, Q is
unipotent.
Lemma 24: A T - quasigroup Q is idempotent if and only if for every its
T - form (Q(+), @, ¥, g), g is the zero in Q(+). In thiscase p + p = 1.
Proof: 1. Be QO idempotent and (Q(+), ¢, v, g) be any T - form of Q. Then
O =0 -0 =gand x = xx = ¢(x) + y(x) for every x € Q.
2. Let a be an arbitrary element of Q. There is a T — form (Q(o), %, 0, &) of Q
such that a is the zero in Q(o0). Then a = h = aa. Hence Q is idempotent.
Theorem 25: Every idempotent T — quasigroup is Abelian.
Proof: Be Q an idempotent T - quasigroup and (Q(+),, y,g) its T — form. Then,
by Lemma 22, ¢ + y = 1. Therefore

ey = ¢(1 —p) = p—¢? = (1 — p)p = yo.
By Theorem 12, Q is Abelian.

Theorem 26: Every idempotent 2 — quasigroup is commutative.

Proof: Be Q such a quasigroup. Then for every x, y € Q,
Xy =Xy Xy =yy Xx = yx.

Theorem 27: Let Q be a T - quasigroup. Then the following conditions are
equivalent:

(i) The mapping x — xx is an endomorphism of Q.

(ii) The mapping x — e(x) is an endomorphism of Q.

(iii) The mapping x — f(x) is an endomorphism of Q.

(iv) Q is Abelian.
Proof: Evidently (iv) implies (i), (ii) and (iii). Now we*prove that (i) implies (iv).
Be (O(4+), ¢, ¥, &) any T — form of Q. Then

xy - xy = @¥(x) + ep(¥) + yox) + v3(y) + p@) + g + w(g) = xx - yy =
= ¢%(x) + py(x) + () + v¥(¥) + ¢(g) + »(g) + &.

Thus py(x) + we(y) = eyp(y) + ye(x). Hence py = ypp. Similarly we can prove
that (ii) implies (iv) and (iii) implies (iv).
Theorem 28: Be Q a T — quasigroup and x € Q. Then the following conditions
are equivalent:
(i) Lz is an automorphism of Q.
(ii) R is an automorphism of Q.
(iii) x is idempotent and L;R; = R,L,.
(iv) Q is Abelian and x is idempotent.
Proof: (i) implies (iii). We have Ly(xx) = x(xx) = L(x) - Lz(x) = xx - xx. Hence
x = xx. Further, LzRz(y) = x - yx = Ly(yx) = L(y) - Ls(x) = RzLi(y).
Similarly we can prove that (ii) implies (iii).
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(iii) implies (iv). Be (Q(+), @, ¥, g)a T — form of Q such that x is the zero in Q(+).
By Lemma 5,9 = Re(z), ¥ = Ls(a) -
Since x is idempotent, e(x) = f(x) = x. But LzR; = RzL.. Hence gy = yep.
(iv) implies (i) and (ii). For every y, 2 € Q we have L,(y2) = x - yz2 = xx - yz =
= xy - x2 = La(y) - Lz(2), Rz(y2) = yz - x = yz - xx = Rx(y) - Rz(2).
Thus L;, R, are automorphisms of Q.

Theorem 29: Be Q a T - quasigroup. Then the following conditions are
equivalent:
(i) The mapping x — xx is an antiendomorphism of Q.
(ii) Q is a Bz — quasigroup.
Proof: The proof is similar to that of Theorem 27.

Lemma 25: A T ~ quasigroup Q has at least one idempotent element if and
only if there is a T — form (Q(+), @, ¥, g) of Q such thatg = O.
Proof: Be a € Q an idempotent element. There is a T — form (Q(+), @, y, g) of
QO such that a = O0.Butg = O - O = a - a = a = O. On the contrary, if (Q(+),
@ v, 0)isaT-formof Qthen O - O = O.

Lemma 26: Let Q be a T - quasigroup and Q(+4) its T — group. Let the
group Q(+) be cyclic. Then Q is Abelian.
Proof: Be (Q(+), ¢, v, g) a T-form of Q. Since the group Q(+) is cyclic, there
are numbers n, m such that g(x) = nx, p(x) = mx for every x € Q. From this
follows gy = ye.

Theorem 30: Every finite T - quasigroup of prime order is Abelian and
commutative or anticommutative.
Proof: Be Q a T — quasigroup of prime order p and (Q(+), ¢, ¥, g) be any of its
T - forms. The group Q(+) is, evidently, cyclic. Hence, by Lemma 26, Q is
Abelian. Let Q not be anticommutative. Then, by Lemma 23, there is x € Q(+)
such that x # O and ¢(x) = y(x). There are numbers #, m such that ¢(y) = ny and
y(y) = my for every y € O(+). Hence (n— m)x = O. But x has the order p.
Therefore n = m (modp). Hence ¢ = y and Q is commutative.

Example 1: Let Q(+) be an Abelian group having four elements 0,1,2,3 and let
each of them have the order 2. The permutations °

0123 0123 0123
"’=(0132)””=(0213) andn=(0321)

are automorphisms of the group Q(+). Moreover, ¢2 = y2 = 1, py # g, 2 7 1.
Let Q(o) be the T ~ quasigroup of the T - form (Q(+4), , ¥, O) and Q(+) be the
T - quasigroup of the T - form (Q(+), %, 1, O). Then Q(o) is a Bz — quasigroup
and is not an Abelian quasigroup and Q(+) is an Abelian quasigroup and is not
a i — quasigroup.

Example 2: Be Q(+) the cyclic group of the order 8. Put ¢(x) = 7x and p(x) =
= 3x for every x € Q. Then ¢, y are automorphisms of Q(+). Be Q(+) the T — qua-
sigroup of the T - form (Q(+), @, ¥, O). Since ¢?(x) = 49x = 9x = p%(x) and
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ep(x) = pe(x), O(+) is a y2 — quasigroup. But ¢ 7# y, ¢ 7= — y.and the group
Q(+) is directly indecomposable. Hence O(+) is not a K — quasigroup.
Example 3: Let G,(—}—) = {g}* be cyclic groups of the order 2, for 1= 1,2,3,4,

and Q(+4) = Z Gi(+). Be ¢, p two automorphlsms of the group Q(+) such that

P(g1) = g2 <P(gz) = g3, P(gs) = g4, P(g4) = g1 and y(g1)'= g2, ¥(ga) = 81, Y(gs) =43,
y(gs) = ga. Let Q(+) be the T - quasigroup having the T - form (Q(+), @, ¥, O).
Then, for every n > 2, Q(+) is not an a, — quasigroup. Moreover, Q(+) is finite.
Example 4: Let Gi(+) = {gi}+, ¢ = 1, 2, 3, 4, be cyclic groups of the order 3.
4

Put O(+) = 2 Gi(+). Be @, y two automorphisms of the group Q(+) such that
=

P(g1) = 81, p(g2) = 83, p(gs) = g4, P(ge) = g2 and y(g1) = g3, Y(g2) = g1, Y(ga)=
= g2, Y(g1) = ga. Then @3 = y3 and py? = yg?. Let Q(+) be the T - quasigroup
having the T - form (Q(4), @, w, O). Then Q(.) is a y3 — quasigroup. Since
@ # , O(+) is not commutative, and hence, Q(-) is not aK- quasxgroup Mo-
reover, Q(+) has an odd order.

5°~The characteristic group and the multiplicative group

Lemma 27: Let O1, Q2 be two T - quasigroups and (Qi(+), @1, ¥4, &)1 = 1,2,
their arbitrary T - forms censecutively. Be 7 : Q1 — Q2 a homomorphism. Put for
every x € Q1, &(x) = n(x) — n(0). Then & : Qi(+) — Q2(+) is.a group homo-
morphism and &p1 = @2&, &y = ye&. Moreover, & is one - to — one (onto Qs) if
and only if # is one - to — one (onto Qs).

Proof: Since 7 : Q1 — Q2 is a homomorphism, we have for every a, b e

n(g1(a) + wi(b) + g1) = gan(a) + yan(d) + g2. (15)
For b = yil(— g1) we get
ne1(a) = @2n (a) + panyii(— g1) + g2 = gan(a) + g3, (16)
where gs = yenyii(— g1) + g2 '
Similarly,
nyp1(d) = wen(b) + @engi! (— g1) + g2 = yan(b) + g4, 17

where g4 = @angi(— g1) + g2
If a = @11 (— g1), b = ;1 (—g1) then from (15) follows

n(—g1) = gs + g1— ga. v (18)
From (15), (16), (17) and (18) follows
n(a + b) = 1 (@pi’(a) + y1yi! (b —g1) + g1) =n(a) + n(b— g1)— 1 (— g). (19)

Hence 7(b— g1) = n(b) + 7 (— 2g1) — 7 (— &)
After substituting into (19) we get

n(a + b) = n(a) + n(b) + 1 (— 2g1) — 29(— g1). (20)
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Define the mapping & : Q1 — Q: as follows:

&(a) = n(a) + n(—2g1) — 25 (—g1) for every a € Ou.
In view of (20), the mapping £ is a group homomorphism of Qi(+) into Q2(+). Now
substitute ¢ = O, b = g into (20). Then

n(—g1) = 7(0) + n(— g1) + n(— 2g1) — 2n(— g1),

hence 7(0) = 279 (— g1) — n(— 2g1).
Thus &(a) = n(a) — n(O) for every a € Q.
Further, according to (16),

épr(a) = nei(a) — n(0) = pan(a) + gz — n(0).
But ¢27(0) = 9(0O) — g3 and therefore
épi(a) = gan(a) — g21(0) = ga(n(a) — 7(0)) = p2£(a).

Similarly we can prove £y1 = y2&. The last part of the proof is evident.

Lemma 28: Let Q;, Q2 be two T — quasigroups and (Qi(+), 1, 91, 1) be an

arbitrary T - form of Qi. Be # : Q1 — Q2 a homomorphism. Then there exists
a T — form (Qa(+), @2, ¥2, g2) of the quasigroup Q2 such that 5 : Qi(+) — Qa(+)
is a group homomorphism, 71 = @27, ny1 = yan and n(gL) = ga.
Proof: There exists a T - form (Qa(+), 2, ¥2, g2) of Qs such that the element
7(O) is the zero in Qs(+). The mapping &, &(x) = n(x) — n(0), is, by Lemma 27,
a group.:homomorphism of Qi(+) into Q(+4) and &p1 = @&, &y = yeé. But
£(x) = n(x) —n(0) = n(x). Hence &=7. Finally, 7(g1) = n(O - 0) = n(O) -
-n(0) =0 -0 =gs.

Lemma 29: Let Q1, Qs be two T — quasigroups and (Qa(+), 2, ¥2, g2) be an
arbitrary T - form of Q.. Be 7 : Q1 — Q2 a homomorphism onto Q:. Then there
exists a T — form (Qi(+), @15 %1, g1) of the quasigroup Q; such that  : Qy(+) —
— Q2(+) is a group homomorphism, 51 = @25, ny1 = ey and 7n(g1) = go.
Proof: There is an element a in Q) such that n(a) = O. Select a T - form
(Q1(+), @1, w1, g1) such that the element a is the zero in Q;(+). Now we shall use
Lemma 27.

Lemma 30: Let Q;, 7 = 1,2, be two T - quasigroups and (Q«(+), @1, ¥1, &1)
their arbitrary T — forms. Be 9 : Q1 — Q2 a homomorphism. Then 7 is simultane-
ously a group homomorphism of Qi(+) into Qs(+) if and only if %(0O) = O.
In this case ng1 = @zn, ny1 = yen and n(g1) = g
Proof: The lemma is an easy consequence of Lemma 27.

Theorem 31: Let Q be a T — quasigroup and (Q(+), ¢, ¥, &), (Q(0), o, 7, h) be
two of its T — forms. Then there is an isomorphism & : Q(+) — Q(o) such that
§p = &, &y = &

Proof: By Lemma 27, the mapping &, &(x) = x + O, is such an isomorphism.

Definition 9: Let Q be a T - quasigroup and T = (Q(+), @, v, g) be its arbi-
trary T — form. Denote A(Q, T) (or only A(Q)), the group generated by the elements

38



@, v in the group Sgq (that is the same as in the group Aut Q(+4)). The group
A(Q, T) is called characteristic group of the quasigroup Q (corresponding to the
T - form T). : '

Theorem 32: Let QO be a T — quasigroup, T = (Q(4+), ¢, #,€) and S =
= (Q(o), g, T, h) be two arbitrary T — forms of Q. Then there is an isomorphism a,
a: A(Q,T) - A(Q, S) such that a(p) = g, a(y) = 7. Moreover, ais a restriction of
an inner automorphism of the group Sq.
Proof: According to Theorem 31, there is a permutation & of the set Q such
that &p = p§, &y = t&. Put 1(0) = &gé&-1 for every o € Sq. Then r is an inner
automorphism of the group Sg. Since ¥(¢) = ¢ and (y) =7, it is (4(Q,T)) =
= A(Q,S). Now it is sufficient to define a = t|4(Q,T).

Theorem 33: Let Q, Pbe two T — quasigroups and 9 : Q — P an epimorphism.
Be further T = (Q(+), ¢, ¥, &) any T - form of Q and § = (P(+), ¢1 %1, 81)
a T ~ form of P corresponding to 7 in the sense of Lemma 28. Then there exists an
epimorphism a : A(Q,T) — A(P,S) such that na(a) = a(a)n(a) for every o € A(Q,T)
and @ € Q. If 7 is one ~ to — one, a is one — to — one.
Proof: By Lemma 28,  : Q(+) — P(4) is an epimorphism and %np = ¢u7,
ny = y1n. Be a, b € Q. If n(a) = n (b) then g1n(a) = g17(b), and hence, yp(a) =
= ne(b). If, on the contrary, np(a) = ne(b) then grn(a) = ¢17(b), therefore n(a) =
= n(b). Similarly we can prove that 7(a) = %(b) if and only if ny(a) = ny(b). From
this it follows easily that for every « € A(Q,T) and for every a, b € Q is 5(a) = n(b) if
and only if na(a) = na(b). Now we can define a mapping a, a : A(Q,T) — Sp as
follows:
For every a € A(Q,T), a(e) is a permutation of the set P such that for every p € P,
a(a)(p) = na(a), where a € Q such that n(a) = p. Evidently, a is a homomorphism
and a(p) = ¢1, a(y) = y1. Therefore a is an epimorphism of 4(Q, T) onto A(P, S).
Let further a not be one — to—one. Then there are «, § € A(Q,T) such that « #
and a(e) = a(B). Hence there is a € Q such that a(a) # f(a) and a(x)n(a) = a(B)n(a).
Thus na(a) = np(a) and hence, 7 is not one — to — one.

Theorem 34: Be P a subquasigroup of a T — quasigroup @ and T = (Q(+),
@, ¥, g) a P— canonic T - form of Q. Than there is an epimorphism a : A(Q,T)—
— A(P,T).
Proof: It is sufficient to define a(a) = «|P for every a € A(Q,T).

Theorem 35: Let H be a group having two generators. Then there is
a T — quasigroup Q such that A(Q) =~ H and Q has one element generator set.

Proof: Put Q(+) = > Ha(+), where Hu(+) = {an}* is an infinite cyclic Abe-
heH

lian group. Be g, & two generators of the group H and ¢, y two automorphisms
of the group Q(4) such that ¢(an) = agn, yw(ar) = axs for every h € H. Be Q() the
T - quasigroup of the T - form (Q(+), @, v, a;), wherej is the unit of the group H.
Define the mapping a : H — Aur Q(+) as follows: For every d € H, a(d) is the
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automorphism of the group Q(+) such that a(d)(anr) = aqn for every k € H. Since
a(g) = @, a(R) = p and a(h)(a;) = ap for every h € H, a is an isomorphism of H
onto A(Q). Be P(.) the subquasigroup in Q(+) generated by the element O. By
Lemma 11, the T - form (Q(+4), @, ¥, a;) is P — canonic. Hence P(+4) is a sub-
group in Q(+) and for every a € A(Q(+)) the element a(a;) is in P(+). Be A € H an
arbitrary element. Then a(h)(a;) € P(+). But a(h)(a;) = an. Hence ap € P(+) for
every h € H, and hence, P(+) = Q(+). Therefore P(s) = Q(+).

Theorem 36: Be Q a T — quasigroup. Then 4(Q) is Abelian if and only if Q is
Abelian.
Proof: This theorem follows directly from Theorem 12.

Lemma 31: Let Q be a T - quasigroup and (Q(+), ¢, ¥, g) its arbitrary
T - form. Then for every a,x € Q,

Lo(x) = @(a) + g + 9(x); Ra(x) = y(a) + g + @(x), 21
L3(x) = — yig(a) — p~(g) + v (x), RiM(x) =
=—¢ly(a) —97(e) + ¢! ().

Proof: The lemma is obvious.

Theorem 37: Be Q a T - quasigroup and (Q(+), ¢, y,g) its arbitrary T - form.

Then the multiplicative group Ggq of Q is generated in S¢ by all translations of Q(+)
and by permutations ¢, y. Moreover, the multiplicative group Gq+) of Q(+) is
a normal subgroup in Gq and G¢/Ge+) =~ A(Q).
Proof: Denote H the group generated in Sq¢ by all translations of Q(+) and by
®, v . The group Gg is generated by all permutations Rz, Ly, x,y € Q. In view of
Lemma 31, Ry = R, +¢®> Ly = L) 1e¥- Thus Rz, Ly € H and Go = H. By
Lemma 5, ¢ = Re(0), ¥ = Ly(0), S0 that ¢, € Gqg. Be a € Q arbitrary. Put b =
=@ l(a—g). Then Ly = Lf; .9 = LFy. But Lyy € Gg. Hence L} € G¢ and
hence, H = Gq. Be « € Gg(+) an arbitrary element. Since Q(+) is an Abelian group,
there is a € Q such that « = L}. Further, since ¢,  are automorphisms of Q(+),
papt = Lol = L, oot = L), y « v~ = Lj,). Hence the group Go+ is
a normal subgroup in Ggq. Since Gq+) () 4(Q) = 1, Go/Gew = A(Q).

Theorem 38: Let Q be a T — quasigroup. Then the group Gy is solvable if and
only if the group A(Q) is solvable.

Corollary: The multiplicative group of every Abelian quasigroup is solvable.
Proof: The theorem and its corollary follow from Theorems 36, 37.

Lemma 32: Let Q be a T — quasigroup, (O(+), @, ¥, g) its arbitrary T — form
and a € Q. Then the group I, of all inner permutations corresponding to a is
generated by permutations Re(a), Ly(a)s T where T%(x) = yp-1p(x — a) + a for every
x € Q. If Q is commutative, the group I, is generated by permutation Ly, thus
being a cyclic group.

Proof: The group I, is generated by permutations
LL Ly RAR:R 4, L;1R,, where x,y € Q and
u = R;\(y - xa), v = L;! (ay - x), 2 = R;1Lq(x).
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In view of (21) we have
RNy - xa) = y + ¢ lyp(x) + ¢7'y%(a) — ¢ 19(a) + ¢ y(e).
Hence for every ¢t € Q,
LALyLo(t) = p(t—a) + a = Lya)(2).
Similarly, R;1RzRy = Re(q) and
LAR,(t) = ylp (t—a) + a. If Qis commutative, ¢ = p and Ly@ = Re(a).

Lemma 33: Let Q be a T - quasigroup and (Q(4), ¢, ¥, g) its T - form.
Denote the left (right) inverse quasigroup of the quasigroup Q by Q(o) (Q(+)). Then
Q(0), O(-) are T - quasigroups and (Q(+), ¢-L,— g1y, —g-Xg)), (Q(+),
— yplg, -1, — y-1(g)) are their T - forms respectively.

Proof: Be x,y€Q, z=xoy. Then zy = x, hence ¢(2) + w(y) + g = x.
Therefore z = ¢~1(x) — ¢~19(y) — ¢~X(g). Thus (Q(+), 971, —<P“'P — @) is
a T - form of Q(o). For the other case similarly.

Theorem 39: Let Q be a T - quasigroup. Then all parastrophic quasigroups
of Q are T — quasigroups.

Proof: The theorem follows from Lemma 33.

Theorem 40: All parastrophic quasigroups of every Abelian quasigroup are
Abelian quasigroups.

Proof: By Lemma 33 and Theorem 12.

6°-Congruences of T -~ quasigroups

Theorem 41: Let Q be a T - quasigroup and (Q(+), ¢, , g) its T - form.
Be 7 a normal congruence of the quasigroup Q. Then 7 is a congruence of the group
o(+).
Proof: Be ab € Q, anb. Then a - yi(—g)yb - p-1(— g), so that @(a)np(b).
Similarly, y(a)yy(b). Further, a = ¢~X(a) - y1(—g), b = ¢~X(b) - y~'(— g). Since
anb and 7 is normal, we have ¢-1(a)ne-1(b). If ¢ € Q is arbitrary, then
oY a) - y Y c—g) np-1(b) - yY(c—g), so that a+ cn b+ c. Thus 7 is a con-
gruence on Q(+).

Theorem 42: Be Q a T - quasigroup and (Q(+), ¢, ¥, g) its T — form. Be
a congruence of the group Q(+). Then 7 is a congruence on the quasigroup Q if and
only if ¢|Ker 7, y|Ker n are endomorphisms of the group Ker 7. Further, 7 is a nor-
mal congruence on Q if and only if ¢|Ker 17, y|Ker n are automorphisms of the
group Ker 7).
Proof: 1. Let 1 be a congruence on Q. IfanOthena - p-1(—g)n O - y~1(—g), so
that ¢(a) n O. Similarly, y(a)yO.

2. Let ¢|Ker n, y|Ker n be endomorphisms of Ker . Be a,b € Q, anb. Then
(@a—b) n O, hence p(a—b) n O, so that ¢(a) n (b). Similarly, y(a)n w(b). Be
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further ¢,d € Q, cnd. Then y(c)ny(d), hence (p(a) + y(c) + &) 1 (p(b) + y(d) + &)
Thus ac 7 bd.

3. Let  be a normal congruence on Q and a € Ker 7. Then, according to 1),
@(a), y(a) € Ker 5. Since O = O - y}(—g) and 7 is normal, b O, where a =
=b - pl(—g). Itis p(b) = a, so that b = p~1(a) € Ker 7. Similarly, y~1(a) € Ker 7,
hence ¢|Ker 1 and y|Ker n are automorphisms of Ker 7.

4. Let ¢|Ker n, y|Ker n be automorphisms of Ker 7. In view of 2), 7 is a con-
gruence on Q. Be ab 7 cd, a n c. Then (p(a) + p(b) + g) n (p(c) + w(d) + g), hence
y(b) n y(d). Therefore y(b—d) n O, and hence p-1y(b—d) 5 O. Thus b7 d. The
other part is quite similar.

Theorem 43: Be P a subquasigroup of a T — quasigroup Q. Then P is a normal

subquasigroup in Q.
Proof: Let (Q(+), ¢, v, g) be a P — canonic T - form of Q. Then P(+) is
a subgroup in Q(+). Be n congruence on Q(+4) such that Ker n = P(4). Since
@|P, y|P are automorphisms of P(+), 7 is, by Theorem 42, a normal congruence
on Q. But one class of 7 is just the subquasigroup P.

Example 5: From Theorem 42 follows that a congruence on a T - quasigroup
need not be normal, that is, a homomorphic image of a T — quasigroup into a
groupoid need not be a quasigroup. Be Q(-+) an Abelian group, P(-}+) its subgroup
and ¢, y two automorphisms of Q(+) such that ¢|P, p|P are endomorphisms but not
automorphisms of the group P(+). Be 7 the congruence on Q(+) such that Ker =
= P(+). Put O(+) =Q(+)@¥:. Then Q(+)is a T - quasigroup and # is a con-
gruence on Q(+) but % is not normal on Q(+). We can take for instance the additive
group of rational numbers like Q(+), the additive group of integer numbers like
P(+) and set ¢(x) = 2x = y(x) for every x € Q(+). The quasigroup Q(+) will be in
this case additionally commutative, hence Abelian.

Theorem 44: Be Q a T - quasigroup and (Q(+), @, ¥, g) its T — form. Let the

permutations ¢,  have a finite order in the group Sq. Then every congruence on the
quasigroup Q is normal.
Proof: Be 7 a congruence on Q and ¢”» = y™ = 1, n, m convenient positive in-
tegers. Let anbd. It is a- -y (—g)nb- - pi(—g), hence ¢(a)n @(). Thus
@*Y(a) n pn-1(b). But -1 = @-1, so that ¢-1(a) n ¢~1(b). Be ¢ € Q arbitrary. Then
e Ya) -y Uc—g)noe1(b) - pc—g), hence a+ cnb+ ¢c. Thus 7 is a con-
gruence on the group Q(+). By Theorem 42, ¢|Ker 7, y|Ker n are endomorphisms
of Ker 7. Since p* = ym = 1, p|Ker n and y|Ker 7 are automorphisms of Ker 7. By
Theorem 42, 7 is normal on Q.

Theorem 45: Be Q a T — quasigroup and K, H its subquasigroups. Let both
K, H have at least one idempotent and let there be a congruence 7 on the quasi-
group Q such that both K, H are classes of 7. Then there exists an automorphism o of
the quasigroup Q such that o(K) = H.

Proof: At first we shall prove that # is a normal congruence on Q. By Theorem 43,
K is a normal subquasigroup in Q. Hence, there is a normal congruence g such
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that K is one of its classes. Be @, b € Q, apb and ¢ € K arbitrary. There is x € Q such
that ¢cx = g and y € Q such that yx = b. Then cx ¢ yx, hence c p y, so that y € K.
Thus ¢  y and hence, cx 1 yx, which means a 7 b. Be, on the contrary, a n b. There
is x € Q such that xa € K. It is xa 5 xb, so that xb € K. Therefore xa ¢ xb,hence a g b.
Thus we have proved that n = o.
Be O an idempotent in H, ¢ an idempotent in K. Be (O(+), ¢, v, g) a H — canonic
and (Q(0), ¢1, ¥1, £1) a K — canonic T — form of Q such that O is the zero in
Q(+) and e is the zero in Q(o). Then O = g, e = g1. According to Lemma 27,
the mapping o, (x) = x — e for every x € Q, is an isomorphism of the group Q(o)
onto Q(+) and o = op1, po = oy1. But g(e) = e— e = O. Hence, o is an auto-
morphism of the quasigroup Q. By Theorem 41, 7 is a congruence on the group
QO(+). Hence, for every a,b€ Qis a 7 bif and only if o(a) 5 o(b). Therefore ¢(K) = H.
Theorem 46: Be Q a T - quasigroup and (Q(+4), ¢, v, g) its arbitrary T -
form. Let the group Q(+4) have a set of generators X, card X = «. Then there is
a set Y of generators of Q and a set Z of generators of the multiplicative group G¢
suchthatcard Y < a+ 1, card Z < o + 2.
Proof: Be X = (a;), i € I, a set of generators of the group Q(+), card I = «. Be P
a subquasigroup of Q generated by the set X and by the element O. In view of
Lemma 11, (Q(+), @, ¥, £) is a P — canonic T - form, so that P(+) is a subgroup
in Q(+). But X < P(+), hence Q(+) = P(+). Further, the set (L;t), iel, is a set
of generators of the group Gg(+). According to Theorem 37, the group Gg is gene-
rated by the permutations L}, i € I, and ¢, ».

7° - Direct products

Remark 1: Be Qy, 7 €I, asystem of quasigroups, each of them having at least one
idempotent element. Bee;, 2 € I, a collection of idempotent elements, e; € Q. Denote
Pj¢; the set of all (x;> € IT Q; such that only for a finite number of indices j € I is

iel

xj # e;. Then P7}; is a subquasigroup in 7 Q;. For & € I define a mapping ¢k : Ok —>
iel

— Py, pi(x) = {x;), where xx = x and x; = e; for every other j € I. Then g; is
a monomorphism. If g;, 7 € I, is any other collection of idempotents, g; € Q;, then

Pii; =~ P£4. We shall denote the subquasigroup P5}; by the symbol IT Of*.
iel

Definition 10: We shall say that a quasigroup Q is an inner direct product of
a system Qy, 7 € I, of its subquasigroups, if'

1. card1 > 2.
2. There is a € Q such that for every je L, Q; N { U Qi} = a.
3. {Lcjl Q) = Q. il

Remark 2: Let a T - quasigroup Q be an inner direct product of a system
Q:, 1€ 1, of its subquasigroups. Be a the corresponding glement. Evidently, a € Q; for
every i€ I and a is idempotent. For every 7 € I there is a T —form (Qi(0), @1, ¥1, @) of
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the quasigroup Q; such that a is the zero in Q;(o0). Be further (Q(+), ¢, y,a) a T -
form of Q such that a is the zero in Q(+4). By Lemma 11, (Q(4), ¢, v, @) is Qs -
canonic for every 7 € I. Thus (Qi«(+), ¢|Qi, ¥|Qs, @) is a T — form of Qy. But the
groups Qi(o) and Q¢(+) have the same zero. Hence, by Lemma 9, Q¢(o) = Qi(+),
@i = |06 ¥ = y|Qs.

Now it is easy to show thatQ(+4) = g O(+), ¢ = %(pt, p= 21: Yi.

From this we can deduce that Q ~ IT Q7.
iel

8° - The T - quasigroups of some classes

Definition 11: A quasigroup Q is called S - special (T - special), if for every
a,b € Q the mapping Sa,p = L3'L; Lap (Tasp = R;IR;1Rap) is its automorphism.
A quasigroup Q is called special, if it is simultaneously S — and T - special.
Theorem 47: Let Q be a T — quasigroup. Then the following conditions are
equivalent:
(i) Qis S - special.
(ii) For every x € Q the element ¢(x) is idempotent and Q is Abelian.
(iii) There are an idempotent T — quasigroup K and a T - quasigroup P which is
a right loop, such that Q ~ K x P.
Proof: (i) implies (ii) and (iii). Bex € Q. Then Se(z)2 = L;(;)L;'Lz.ex) = L7, is
an automorphism of Q. Hence L. is an automorphism of Q, and hence, by
Theorem 28, ¢(x) is idempotent and Q is Abelian. Denote K the set of all e(x), x € Q
arbitrary. Be x, y € Q and u, v € Q such that ux = y and xv = y.
Since Q is Abelian, we have

xy - (e(x) - e(y)) = (x - e(x)) - (v - e(y) = xy,y - e(y) =
=y=2xv=(x"¢x) (v-e)) =xv-(ex) - e(v)) = y - (e(x) - &(v)).
Hence e(x) - e(y) = e(xy), e(x) - e(v) = e(y).
Similarly, e(x) - e(x) = e(y). Thus we have proved that K is a subquasigroup in Q,
obviously idempotent. Now let us choose a fixed element a € K. Be P the set of all
x € Q such that xa = x; Pis nonempty, since a = e(u) for any u € Q. Be x,y € P
arbitrary. Then
Xy -a=xy- aa = xa-ya = xy.
If further # € Q such that xu = y then
XU -a=Xxa-ua =x - -ua =ya =y.
Thus ua = u, so that u € P. Similarly, if x = y then v € P. Therefore P is a sub-
quasigroup in Q and P is a right loop with right unit a. If x€ K () Pthen x = xx =
= xa, hence K () P = a. Be x an arbitrary element of Q, # € Q such that au = ¢(x)
and y € Q such that yu = x. Then » € K and

yu-e(x) =x-elx) =x=yu-au = ya - uu = ya - u.
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Therefore ya =y and y€ P. As x = yu, it is xe {K ) P}. Thus {KJ P} = Q.
Now, according to Remark 2, we have Q ~ K x P.

(iii) implies (ii). This part of the proof is evident (by Theorems 15, 25).

(ii) implies (i). The quasigroup Q has at least one idempotent element, hence Q has
some T - form (Q(+): P P O)

Let a,b € Q. We have Sq,5(x) = p~1(x) 4 g, where g = yp-292(a) — p-2¢(a).
Hence Sa,0(xy) = p719(x) + ¥ + & Sasp(x) - Sasp(y) = @yp~Y(x) + ¥ + @(g) + p(8).
If we prove that g = ¢(g) + y(g), we prove that Sg,» is an automorphism of Q. But
for every u € Q the element e(u) = p-1(u¥ — @(u)) is idempotent. Hence

ey~ (u) — @Pyp~t(u) + u— @) = p~(w) — ey ().
Put ¥ = — @y-1(a). Hence we have

P>y a) — ¢*yp~%a) 4 ¢*yp~Y(a) — py~L(a) = P?p—a) — py¥a).

Therefore g = ¢(g) + y(o).
Theorem 48: Let Q be a T - quasigroup. Then the following conditions are
equivalent:
(i) Qis T - special.
(ii) For every x € Q the element f (x) is idempotent and Q is Abelian.
(iii) There are an idempotent T - quasigroup K and a T - quasigroup P, which is
a left loop, such that Q ~ K x P.
Proof: The proof is similar to that of Theorem 47. '
Theorem 49: Let Q be a T - quasigroup. Then the following conditions are
equivalent:
(i) Q is special.
(ii) Q is Abelian and for every x € Q the elements e(x), f(x) are idempotent.
(iii) There are an idempotent T — quasigroup K and an Abelian group P such that
Q=~KxP
Proof: (i) implies (ii) and (iii). According to Theorems 47, 48, Q is Abelian and
e(x), f(x) are idempotent for every x € Q. We have

x = x - (ex) - e(x)) = (f(x) - x) (e(x) - e(x)) =
=) - e(x)) (x - e(x)) = (f(x) - &(x)) . x = f(x) - x.

Hence f(x) - e(x) = f(x), so that e(x) = f(x).
Now we can proceed similarly as in the proof of Theorem 47, but P will be a loop,
hence, by Theorem 14, an Abelian group.
The other part of the proof is evident. »
Theorem 50: Let Q be a T - quasigroup. Then the following conditions are
equivalent:
(i) Q is Abelian and for every x € Q the element xx is idempotent.
(ii) There are an idempotent T - quasigroup K and a unipotent T — quasigroup
Psuchthat Q ~ K x P.
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Proof: (i) implies (ii). Be Q(+) the right inverse quasigroup of the quasigroup Q.
Then, by Theorem 40, O(+) is an Abelian quasigroup. Since xx - xx = xx, we have
Xx » xXx = xx,x » xx = x. In view of Theorem 47, there are an idempotent T - qua-
sigroup K(+) and a T — quasigroup P(+) being a right loop such that Q(s) =~ K(+) X
x P(+). Be K a right inverse quasigroup of K(+), P right inverse of P(-). Evidently,
K is idempotent, P is unipotentand Q ~ K x P.
(ii) implies (i). By Theorems 20, 25, Q is Abelian. The rest is evident.

Theorem 51: Let Q be a T — quasigroup. Then the following conditions are
equivalent:
(i) For every a, b, c € Q, Sasp = Sase.
(ii) For every a, b, c € Q, Tp,a = Tesa
(iii) Q is Abelian.
Proof: Let (O(+),9,v,g) be a T — form of Q and x,y € Q. We have Sz,4(2) =
= p7(2) + a(x, y), where a(x,y) = p~2¢%(x) — p2p(x) + Y2eyp(y) — p7lp(y) +
+ v2%p(g) — »(g)-
Let (i) be valid. Then «(a,b) = a(a,c) for every a, b, c € Q. Hence p-2¢y(d) =
= p-lg(d) for every d € Q. Therefore py(d) = yp(d), hence Q is Abelian. Con-
versely, let Q be Abelian. Then ¢y = g, henceforth we have

x(%,y) = p2%(x) — p2p(x) + y2p(g) — v (g)
Thus «(a, b) = «(a, c) for every a, b, c € Q. Similarly we can prove that (ii) implies
(iii) and (iii) implies (ii).

Theorem 52: Let Q be a T — quasigroup. Then Q is a left (right) IP - quasi-
group if and only if for any (and then for each) of its T - forms (Q(+), @, ¥, )
isy2=1(p?2=1).

Proof: Let Q be a left IP — quasigroup, (Q(+), @, s g) its arbitrary T - form.
There is a permutation « such that a(x) (xy) = y for every x, y € Q. Hence,

pa(x) + pp(x) + v3(y) + v(g) + & = .

From this we obtain y2 = 1.
Let (Q(+), ¢, wg) be such a T - form that g2 = 1. Put a(x) = — ¢-1pe(x) +
+ o7 (—g&— ()

Then
a(x) (xy) = — pp(x) — g — p(g) + vo(x) + v2(y) + v(g) + g = -

Thus Q is a left IP — quasigroup. Similarly for the other case.

Theorem 53: Let O be a T — quasigroup. Then the following conditions are
equivalent:
(i) Qs a IP - quasigroup.
(i) Qis a left IP — quasigroup and a 2 — quasigroup.
(iii) Q is a right IP — quasigroup and a 2 — quasigroup.
Proof: The theorem follows from Theorem 52.
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9°-~The free T—-quasigroups
Construction of quasigroups F[x, Xo]

Let G be an arbitrary, but further on a fixed, free group freely generated by the
elements 7, 0. Be X an arbitrary non-empty set. Denote B(X) the set of all ordered
pairs («, x), where « € G, x € X. Be F(+) a free Abelian group freely generated by
the set B(X). Define two permutations ¢,  of the set B(X) as follows: Ifa € G, xe X
then ¢(a, x) = (na,x) and (e, x) = (oa, x). The permutations ¢, y can be uniquely
extended to automorphisms of the group F(+-); these automorphisms denote also
@, . Further, letj € G be the unit of the group G. Finally, select an element x, € X.
By the symbol F[X,x,] we shall denote the T — quasigroup having the T - form
T = (F(+), @, ¥, (J, x0)). The T - form T we shall call a principal T - form of the
T - quasigroup F[X, x,]. It is evident that if x;, xa € X are arbitrary then F[X, x] =~
o F[X, xe].

Lemma 34: Let X be an arbitrary non-empty set and x, € X an arbitrary
element. Be T = (F(+), @, ¥, (j> xo)) the principal T - form of the T — quasi-
group F[X, x,]. Then there exists an isomorphism t : G — A(F[X, x,], T) such
that 1(«) (8, x) = (B, x) for every o, B € G, x € X. Hence t(n) = ¢, t(0) = .
Proof: If « € G then there is just one automorphism x(x) of the group F(+)
such that t(«) (8, x) = (8, x,), all B € G, all x € X. It is evident that ris a mono-
morphism of G into Aur F(4-). Since t(n) = ¢ and () = p, it must be ¥(G) =
= A(F[X, x0), T).

Lemma 35: Let X be an arbitrary non-empty set and x, € X an arbitrary
element. Be T = (F(4), ¢, ¥, (4, Xo0)) the principal T —form of F[X, x,]. Be C(X)
the set consisting of all pairs (j, x), where x € X, x # x,, and of the element O (zero
in F(+)). Then the set C(X) is a set of generators of the quasigroup F[X, x,].
Proof: Denote P the subquasigroup in F[X, x,] that is generated by the set
C(X). Since O € P, the T — form T is P - canonic. Hence P(+) is a subgroup in
F(+4) and £ (p) € P for every &, p, £ € A(F[X, xo), T), p € P. Further the element
O - O = (J, x0) is also in P. Be «a € G and x € X arbitrary elements. By Lemma 34,
there is an isomorphism r : G - A(F[X, x,,] T) such that 1(«) (j, x) = (o, x) =
= (a, x). Since (j, x) € P, (a,x) € P. Hence B(X) < P. Therefore P(+) = F(+),
P = F[X, x,].

Theorem 54: Let X be an arbitrary non-empty set and x, € X an arbitrary

element. The quasigroup F[X, x,] is a free T — quasigroup freely generated by the
set C(X). Hence rank F[X, x,] = card X.
Proof: Be E a free T - quasigroup freely generated by the set C(X). Be
S = (E(+),, B, g)aT - form of E such that the element O € C(X) is zero in E(4).
Since E is freely generated by C(X), the identical mapping of the set C(X) onto
itself can be uniquely extended to a homomorphism ¢, ¢ : E — F[X, x,). In what
follows we shall prove that ¢ is an isomorphism.
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By Lemma 35, the set C(X) is a set of generators of F[X, x,]. Hence ¢ is an epi-
morphism. Be T = (F(+), @, ¥, (j, x0)) the principal T - form of F[X, x,). The
element O is zero in both groups F(+), E(+) and ¢(O) = O. Therefore, by Lemma
30, ¢ is an epimorphism of E(+) onto F(+), oax = @0, off = wo and a(g) = (J, Xo).
Further, according to Theorem 33, there is an epimorphism a,
a: A(E,S) - A(F[X, x,), T) such that a(y) (o(h)) = oy(h), where y € A(E, S) and
h € E are arbitrary. Hence a(a) = ¢, a(f) = y. By Lemma 35, the group A(F[X, x,),T)
is free and is freely generated by ¢, y. Hence there is an epimorphism
b : A(F[X, xo), T) — A(E, S) such that b(¢p) = « and b(y) = S. But from this we can
deduce that ba = 14&,s). Thus a is one — to — one, and hence, a is an isomorphism.
Be D < E the set consisting of all elements y(j, x) and y(g), all y € A(E, S), all
x € X, x 7 Xo. l 4
We have,

oy(j x) = a(y)o(j, x) = a(y) (j, x),

ay(g) = a(y)a(g) = a(¥) (J; xo).

By Lemma 34, there is an isomorphism t, r : G - A(F[X, x0), T) such that

(&) (J,y) = (&), y) forevery £ Gand y € X.
Hence

a(y) (4, x) = tr-ta () (4, x) = (xa(y) - j, x) = (xr-1a(y), x); a(y) (Js X0) = (r~1a(y), Xo).
Thus we have proved that o(D) < B(X). Be be B(X) arbitrary. Hence there is
& e G and x € X such that b = (¢, x). If x 7% x, then a-1¢(£) (j, x) € D and we have

o a1(§) (4, x) = «(&) (, x) = (& x) = b.

If x = x, then a-11(&) (g) € D and oa-11(£)(g) = (&, xo) = b. Therefore o(D) = B(X).
Now we shall prove that the restriction ¢|D is one - to — one. Let ¢, d € D be such
that o(c) = a(d). Such cases can arise:

(i) ¢ =90 x), d = 8(j,»), where y, 6 € A(E, S), x,ye X and x # x, # ¥.

(ii)) ¢ = y(j, x), d = 6(g), where y, 0 € A(E, S), x € X, x 7 xo.

(iii) ¢ = y(g), d = a(g), where y, 6 € A(E, S).

For (i): we have

oy(j> x) = a(¥) (s x) = (v71a(p), x) = 66(j, y) = (x71a(9), 3).
Hence x = y and r-la(y) = r~1a(d). But r-la is one - to - one, therefore y = 4.
Thus ¢ = d.
For (ii): we have
0y(j, x) = (x71a(p), x) = 0d(g) = (x~2a(8), xo).

Hence x = x4, a contradiction.

For (iii) similarly as for (i).

Thus we have proved that ¢ : D — B(X) is a biunique mapping. Hence there is
a mapping 7 : B(X) — D such that te¢ = 1p. Since F(+) is a free Abelian group
freely generated by the set B(X), there is a homomorphism yx : F(+) — E(+) such
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that u|B(X) = 1. Denote H(-) the subgroup in E(-+) that is generated by the set D.
Since for every he H(+), y € A(E, S)isy(h) € H(+) and g e H(+), H is a subqua-
sigroup in E. But C(X) € H. Hence H = E, H(+) = E(+). Thus u is an epi-
morphism and uo|D = 1p. Hence uo = 1g. Therefore ¢ is one - to - one. This
completes the proof.

Theorem 55: Be F an arbitrary free T - quasigroup, F(-}) its T -~ group and
A(F) its characteristic group. Then F(+}) is a free Abelian group and A(F) is a free
group.

Proof: The theorem follows from Theorem 54.
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