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1971 ACTA UNIVERSITATIS CAROLINAE MATHEMATICA ET PHYSICA VOL .12.NO . 2 

T-quasigroups 
Part I I . 

T. KEPKA and P. NfiMEC 

Department of Mathematics, Charles University, Prague 

Received 22 April 1971 

In this paper we continue the investigation of T - quasigroups. The definition 
and some basic properties of T - quasigroups can be found in our paper " T - quasi­
groups. Part I.", which appeared in [1]. All the notation is the same as in the paper 
mentioned above and we use it, as well as the results, without stating it explicitly. 
Thus we begin here from Theorem 19 and Lemma 17. 

4-Commutative, unipotent and idempotent T-quasigroups, 
a„, £n - quasigroups 

Lemma 17. A T - quasigroup Q is commutative if and only if for any (and then 
for each) of its T - forms (Q(+), q>, \p, g) is (p = \p. 
Proof: 1. Be (Q(+), <p,<p,g) a T - form of Q. Then for every x, y e Q, xy = 
= (p(x) + (p(y) + g = yx. Hence Q is commutative. 

2. Let Q be commutative and (Q(+), (p, \p,g) be an arbitrary T - form of Q. 
Then x • O = (p(x) + g = O x = \p(x) + g, so that (p(x) = \p(x) for every x eQ. 

Theorem 19. Let Q be a T - quasigroup and a eQ such that for every x eQ, 
ax = xa. Then Q is commutative. 
Proof: Be (Q(+), (p, y>, g) any T - form of Q. Then for every x eQ, 

xa = (p(x) + rp(a) + g = ax = (p(a) + \p(x) + g. 

If we put x = O, we get (p(a) = xp(a). Hence (p = \p. By Lemma 17, Q is commu­
tative. 

Lemma 18: A T - quasigroup Q is unipotent if and only if for any (and then for 
each) of its T - forms (Q(+), (p, \p, g) is q> = — \p. 
Proof: 1. Be (Q(+), - ^ y , ^ ) a T - form of Q. Then for every x,y eQ, 

xx = — \p(x) + \p(x) + g = g = yy. 

2. Let Q be unipotent and (Q(+), (p, \p, g) be one of its arbitrary T - forms. 
Then for every xeQ, xx = OO = g, so that (p(x) + \p(x) = O, and therefore 

<P = — V-
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Lemma 19: Let Q be a commutative and unipotent T - quasigroup and Q(+) 
be an arbitrary T - group of Q. Then every non - zero element of <2(+) has the 
order 2. 

Corollary: Every finite commutative and unipotent T - quasigroup has a 2 -
power order. 
Proof: Be (Q(+), <p, y>, g) an arbitrary T - form of Q. By Lemmas 17, 18 we have 
(p = ^p and <p = — y. Hence for every x eQ, ^p(x) = — ^p(x). But ^p is an automor­
phism of Q(+) . Thus x = — x. 

Definition 6: Let n be a positive integer, n > 2. A quasigroup 2 -s called yw -
quasigroup if Q is simultaneously an a» and /Sw - quasigroup. 

Definition 7: A quasigroup Q is called K - quasigroup if there exists a commu­
tative quasigroup C and a unipotent quasigroup U such that Q is isomorphic to 
C x U. 

Theorem 20: Every commutative T - quasigroup is a yn - quasigroup for every 
integer n > 2. Every unipotent T - quasigroup is a yn - quasigroup for every even 
« > 2. 

Corollary: Every K - T - quasigroup is a yn - quasigroup for every even 
n > 2. 
Proof: The theorem follows from Lemmas 17, 18 and from Theorems 10, 11. 

Lemma 20: Let Q be a /5n - quasigroup, n > 2. Then Q is a /?*» - quasigroup 
for every k = 1,2,.. . If, moreover, Q is an aw - quasigroup for some m > 2, Q 
is aw+*;W - quasigroup for every k = 1, 2 . . . . 
Proof: Be (Q(+),<p, ^p,g) an arbitrary T - form of Q. Then cpn = ^pn. Hence 
(pnk = yjnk for every k = 1, 2, . . ., and hence, Q is a (ink - quasigroup. If Q is an 
0Lm - quasigroup, ^m~l = ^p<pm-1. Hence cpym+nk-i = ^m+nk-i^ Thus Q is an 
*m+nk - quasigroup. 

Theorem 21: Every 72 - quasigroup is a yn - quasigroup for every even 
n> 2. 
Proof: This theorem follows directly from Lemma 20. 

Lemma 21: Let Q be a T - quasigroup and let there be a number n > 2 such 
that at least one of the following conditions holds: 

(i) Q is a fin and fin+i - quasigroup. 
(ii) Q is an an and an+i - quasigroup. 
(iii) Q is an &n+\ and /3n - quasigroup. 

Then Q is commutative. 
Proof: Be (Q(+), 9?, ^p, g) any T - form of Q. If (i) holds, then (pn = y>n and 
cpn+i _ y;»+i. Hence <p = y and Q is commutative. If (ii) holds, <pyn_1 = yxpn~l and 
<pyj» == yxpn. Therefore (pyn = (py71-1^ = ^p^pn-1^p = ^p^pn = ^p(pn-1(p. Hence 9? = ^p. 
Finally, if (iii) holds, (pn = ^pn and ^ n = ^p<pn. Hence <p = ^p. 

Theorem 22: Let Q be a /J2 - quasigroup and let there be an odd number 
n > 2 such that Q is an aw or /3W - quasigroup. Then Q is commutative. 
Proof: The theorem follows from Lemmas 20, 21. 
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Lemma 22: Let Q(+) be an Abelian group and <p, y> two its automorphisms 
such that the mapping x -> x + x is a permutation of the set Q, <py> = yxp and 
<p2 = ^2# Then there exist two subgroups C ( + ) and £/(+) of Q(+) such that 
g? | c = y;| C is an automorphism of C(+) , <p\ U = — y> | fI is an automorphism of 
£/(+) and Q(+) = C (+) + £/(+). 
Proof: Be C the set of all JC e Q such that <p(x) = y>(x) and £7 the set of all 
y eQ such that <p(y) = — y>(y). It is easy to show that C and U are subgroups of 
Q(+). Since Q(+) has no non - zero element of the order 2, U(+) f] C(+) = O. 
Bey e Q(+) an arbitrary element. As the mapping 29? is a permutation of the set Q, 
there is x e Q such that y = <p(x) + <p(x). Put a = <p(x) + y>(x), b = <p(x) — y>(x). 
Evidently, y = a + b. But 

<p(a) = <p(<p(x) + y>(x)) = <p2(x) + <py>(x) = 
= y>2(x) + yxp(x) = y>(<p(x) + y>(x)) = y>(a), 

<p(b) = <p(<p(x) — y>(x)) = <p2(x) — <py>(x) = 
= y?(x) — y><p(x) = y>(<p(x) — <p(x)) = — y>(b). 

Hence a e C(+), b e U(+). Therefore Q(+) = C(+) -j- U(+). Evidently <p \ C = 
= y>\C and <p\U = — y> \ U. Let, further, x e C(+). Then <pz(x) = <py>(x) = 
= yxp(x) and yxp~l(x) = <p~ly>(x) = qxp-^x). Hence <p(x), <p~x(x) e C(+). Similarly, if 
x e U(+), <p(x), <p~x(x) e U(+). Thus <p \ C is an automorphism of C(+) and <p \ U 
is an automorphism of U(+). 

Theorem 23: Let Q be a y2 - quasigroup and Q(+) its arbitrary T - group. 
Let the mapping x -> x + x be a permutation of the set Q. Then Q is a K - qua­
sigroup. 

Corollary: Every finite y2 - quasigroup of odd order is a K - quasigroup. 
Proof: Let (Q(+), <p, y>, g) be the corresponding T - form to the T - group 
Q(+). By Theorems 10, 11, <p2 = y>2, <py> = yxp. Hence, by Lemma 21, there exist 
two subgroups C(+) and U(+) of Q(+) such that <p\C = y>\C and <p\U = —y>\U 
are automorphisms of C(+) and U(+) respectively and Q(+) = C ( + ) -j- U(+). 
Define the mapping a, a : Q -> C X U, as follows: a(x) = (c, u), where c eC, 
u eU such that x = c + u. The mapping a is an isomorphism of Q(+) onto 
C(+) x U(+). Denote <p\C = <pi, <p\ U = <p2 and put rj = <pi x <p2, Q = <pi X (—<p2). 
Then a<p(x) = a<p(c + u) = a(<p(c) + <p(u)) = (<pi(c), <p2(u)) = rj(c,u) = rja(x), 
ay>(x) = Qa(x). 
Let C(o) be the T - quasigroup of the T - form (C(+) , <pi, <pi,gi) and U(*) the 
T - quasigroup of the T - form (U(+), <p2, — <p2,g2\ where a(g) =-(gl,g2). 
Evidently C(o) is a commutative quasigroup and £/(•) is a unipotent quasigroup. 
Further, for every x, y e Q, a(x) = (a, b), a(y) = (v,z), we have 

a(xy) = a(<p(x) + y>(y) + g) = a<p(x) + ay>(y) + a(g) = 
= rja(x) + Qa(y) + a(g) = rj(a,b) + Q(V,Z) + (gi, g2) = 
= (n(<*\ n(*>)) + fate), — <p2(z)) + (gi, g2) = 
= (<Pi(a) + <Pi(~>) + gi> <P2(b) — <P2(z) + g2) = (aov, b.z). 

33 



Hence a is an isomorphism of Q onto C(o) x £/(•) and hence, Q is a K - quasigroup. 
Theorem 24: Let w > 2 be a positive integer and Q be a yn - quasigroup. 

Let at least one of the following condition hold: 
(i) The mapping x -> xx is one - to - one. 
(ii) The mapping x -> JCX is onto Q. 
(iii) For every x e Q , £(x) =f(x). 
(iv) For every . v e Q there are u,veQ such that uv = vu = x. 

Then Q is commutative. 
Corollary: Every idempotent yn - quasigroup is commutative. 

Proof: Be (Q(+), <p, y>, g) a T - form of Q. We have <pn = y>n, (pip**-1 = yxp11-1. 
Hence 

(pn-lyxpn-l — (pn-lfpyjn-l — (pnyjn-1 — ^n^n-l -----

= \pn-l\pn = yjn-lfpn _ y^n-lg^n-l 

Therefore y?*-1^ = y;"-1^. Evidently (ii) implies (iv) and (iii) implies (iv). Let (iv) 
hold and x e Q be an arbitrary element. There are u, v e Q such that uv = vu = 
= x + g. That is, <p(u) + y>(v) = <p(v) + y>(u) = x. 
Further, 

9?n-1(^) = q>n-1((p(v) + y>(u)) = <pn(v) + 99n-1^(w) = 
= y>n(v) + yn _ 1^(«) = v'w~1(y(^) + <P(U)) = y>n~Kx)-

We have proved that <pn-x = y>n~1. Hence (p = y> and Q is commutative. Finally, let 
(i) hold. Since x -> xx is one - to - one, the mapping | = <p + y> is one - to - one. 
Let x e Q be an arbitrary element. Put a — 99n_1(*) — v,n_1(JC)-
We have 

f(a) == (pn(x) — (ptp^Kx) + yxp^Kx) — y>n (x) = O. 

As f(0) = 0,a = O. Hence (pn-\x) = xp^Kx). We have proved that (pn^ = y«~i. 
Hence Q is commutative. 

Definition 8: A quasigroup Q is called anticommutative if for every x, y e Q> 
xy = yx implies x = y. 

Lemma 23: A T - quasigroup Q is anticommutative if and only if for any (and 
then for each) of its T - forms (Q(+), <p, y>,g) and for every x e Q, x -7-- O, is 

<P(X) ¥" v(*)-
Proof: 1. Let Q have such a T - form (Q(+), <p, y>, g). Let x,y e Q and 
xy = yx. That is, <p(x) + y>(y) + g = y>(x) + <p(y) + g. Hence <p(x — y) = y>(x—y) 
and hence x = y. 

2. Let Q be anticommutative and (£)(+), 99, y>, g) be an arbitrary T - form 
of Q. Let x e Q be an arbitrary element such that <p(x) = y>(x). Then O • x = 
= y>(x) + g = <p(x) + g = x • O. Hence x = O. 

Theorem 25: Let n > 2 be a positive integer and Q be an anticommutative yn -
quasigroup. Then Q is unipotent. 
Proof: Be (Q(+), <p, y>,g) any T - form of Q. Then <pn = ^^tp^1 = yxp11-1. 
Further, 
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O • (<pn'\x) + y>n-\x)) = yxpn~l(x) + y>n(x) + g = 
= (py>n~\x) + cpn(x) + g = <Kvn_1v*) + <Pn~Kx)) + g = 
= (<pn-Kx) + y>n~\x)) • O. 

Hence O = q>n~l(x) + y>n~l(x) and hence, <p = — y>. Thus, by Lemma 18, Q is 
unipotent. 

Lemma 24: A T - quasigroup Q is idempotent if and only if for every its 
T - form (Q(+), <p, y>, g), g is the zero in Q(+). In this case <p + y> = 1. 
Proof: 1. Be Q idempotent and (Q(+), <p, y>, g) be any T - form of Q. Then 
O = O • O = g and x = xx = q>(x) + y>(x) for every x e Q. 

2. Let a be an arbitrary element of Q. There is a T - form (Q(o), ??, Q, h) of Q 
such that a is the zero in Q(o). Then a = h = aa. Hence Q is idempotent. 

Theorem 25: Every idempotent T - quasigroup is Abelian. 
Proof: Be Q an idempotent T - quasigroup and (Q(+),q>, y>,g) its T - form. Then, 
by Lemma 22, <p + y> = 1. Therefore 

<py> = <p(l — < p ) = <p— <p2 = ( 1 — <p)<p = yxp. 

By Theorem 12, Q is Abelian. 
Theorem 26: Every idempotent /fe — quasigroup is commutative. 

Proof: Be Q such a quasigroup. Then for every x, y e Q, 
xy = xy • xy = yy • xx = yx. 

Theorem 27: Let Q be a T - quasigroup. Then the following conditions are 
equivalent: 

(i) The mapping x -*• xx is an endomorphism of Q. 
(ii) The mapping x -> e(x) is an endomorphism of Q. 
(iii) The mapping x -• f(x) is an endomorphism of Q. 
(iv) 2 is Abelian. 

Proof: Evidently (iv) implies (i), (ii) and (iii). Now we*prove that (i) implies (iv). 
B e (Q(+)> <P> V' g) anY T ~ form °f *2- Then 

jy . jy =: <p2(X) _|_ (pyj^y) + ^ ( x ) _|_ ^ ( y ) _|_ ^(g) + g+ y)(g) = XX . yy = 

= (p2(x) + <py>(x) + yxp(y) + y>2(y) + cp(g) + y>(g) + g. 

Thus <py>(x) + yxp(y) = <py>(y) + yxp(x). Hence (py> = yxp. Similarly we can prove 
that (ii) implies (iv) and (iii) implies (iv). 

Theorem 28: Be Q a T - quasigroup and x eQ. Then the following conditions 
are equivalent: 
(i) Lx is an automorphism of Q. 
(ii) Rx is an automorphism of Q. 
(iii) x is idempotent and LXRX = RXLX. 
(iv) Q is Abelian and x is idempotent. 
Proof: (i) implies (iii). We have Lx(xx) = x(xx) = Lx(x) • Lx(x) = xx • xx. Hence 
x = xx. Further, LxRx(y) = x • yx = Lx(yx) = Lx(y) • Lx(x) = RxLx(y). 
Similarly we can prove that (ii) implies (iii). 
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(iii) implies (iv). Be (Q(+), <p, y>, g)a T — form of Q such that x is the zero in Q(+). 
By Lemma 5, <p = R€(X), y> = Lf(X). 
Since x is idempotent, e(x) = f(x) = x. But LXRX = RXLX. Hence <py) = yxp. 
(iv) implies (i) and (ii). For every y ^ e Q w e have Lx(yz) = x • yz = xx • yz = 
= xy • xz = Lx(y) • Lx(z)y Rx(yz) = yz • x = yz • xx = Rx(y) • Rx(z). 
Thus LXy Rx are automorphisms of Q. 

Theorem 29: Be Q a T - quasigroup. Then the following conditions are 
equivalent: 
(i) The mapping x -* xx is an antiendomorphism of Q. 
(ii) Q is a /fe - quasigroup. 
Proof: The proof is similar to that of Theorem 27. 

Lemma 25: A T - quasigroup Q has at least one idempotent element if and 
only if there is a T - form (Q(+)y <py y>y g) of Q such that g = O. 
Proof: Be a e Q a n idempotent element. There is a T - form (Q(+)y q>y y>y g) of 
Q such that a = O. Butg = O • O = a • a = a = O. On the contrary, if (Q(+), 
<py y>y O) is a T - form of Q then O • O = O. 

Lemma 26: Let Q be a T - quasigroup and Q(+) its T - group. Let the 
group Q(+) be cyclic. Then Q is Abelian. 
Proof: Be (Q(+)y <py y>yg) a T - f o r m of Q. Since the group Q(+) is cyclic, there 
are numbers n, m such that cp(x) = nxy y)(x) = mx for every x eQ. From this 
follows <ptp = yxp. 

Theorem 30: Every finite T - quasigroup of prime order is Abelian and 
commutative or anticommutative. 
Proof: B e Q a T — quasigroup of prime order p and (Q(+), <p, y>, g) be any of its 
T - forms. The group Q(+) is, evidently, cyclic. Hence, by Lemma 26, Q is 
Abelian. Let Q not be anticommutative. Then, by Lemma 23, there is x e Q(+) 
such that x -?-- O and <p(x) = y>(x). There are numbers ny m such that <p(y) = ny and 
y>(y) = my for every y eQ(+). Hence (n — m)x = O. But x has the order p. 
Therefore n = m (modp). Hence <p = y> and Q is commutative. 

Example 1: Let Q(+) be an Abelian group having four elements 0,1,2,3 and let 
each of them have the order 2. The permutations 

/0 12 3\ /0 12 3\ J /0 12 3\ 

^ = l 0 1 3 2 J ^ = l 0 2 1 3 J a n d ^ = \ 0 3 2 l j 
are automorphisms of the group Q(+) . Moreover, <p2 = y>2 = 1, <py> -^ yxpy r}2 -?-- 1. 
Let <2(o) be the T - quasigroup of the T - form (Q(+)y <py y>y O) and Q(*) be the 
T - quasigroup of the F- form (Q(+)y r\y 1, O). Then Q(6) is a /fe - quasigroup 
and is not an Abelian quasigroup and Q(*) is an Abelian quasigroup and is not 
a fe — quasigroup. 

Example 2: Be Q(+) the cyclic group of the order 8. Put <p(x) = Ix and y>(x) = 
= 3x for every x eQ. Then <py y> are automorphisms of Q(+). Be Q(») the T - qua­
sigroup of the T - form (Q(+)y <py y>y O). Since <jf?(x) = 49* = 9x = y>2(x) and 
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<py>(x) = yxp(x\ Q(*) is a y2 - quasigroup. But <p -?-, y),<p ^=— y> and the group 
Q(+) is directly indecomposable;. Hence Q(») is not a K - quasigroup. 

Example 3: Let G<(+) = {gi}+ be cyclic groups of the order 2, for i = 1,2,3,4, 
4 

and Q(+) = 2 G<(+). Be 9?, ^ two automorphisms of the group Q(+) such that 

<p(gi) = £2, <K#0 = #3, <p(gs) = g*9 <K#-) = gi and y>(gi) = g29 y>(g2) = gi9 y>(gz) = £3, 
y>(g4) = gA- Let Q(») be the T - quasigroup having the T - form (Q(+)9 <p9 y>9 O). 
Then, for every n > 2, Q(») is not an <xw - quasigroup. Moreover, Q(*) is finite. 

Example 4: Let CJ<(+) = {g<}+, i = I, 2, 3, 4, be cyclic groups of the order 3. 
4 

Pu tQ(+) = 2 G<(+). Be <p, YYtwo automorphisms of the group Q(+) such that 
1 = 1 

<p(gi) = £i> <K#.) = £3, yfea) = #4, ̂ 4 ) = g2 and y<£i) = *to K # 0 = £1, v ( # 0 = 
= g*y V>(g4) = gA- Then <pz = yP and gpyr2 = yxp2. Let £)(•) be the T - quasigroup 
having the T - form (Q(+)9 <p9 y>9 O). Then Q(*) is a 73 - quasigroup. Since 
<p z£ y>} Q(m) is not commutative, and hence, Q(») is not a K - quasigroup. Mo­
reover, Q(*) has an odd order. 

5°-The characteristic group and the multiplicative group 

Lemma 27: Let Qi, Q% be two T - quasigroups and (Q<(+), <pu V>u gi)> i = 1>2, 
their arbitrary T - forms censecutively. Be rj : Q1 -> Q2 a homomorphism. Put for 
every xeQl9 £(x) = rj(x) — rj(0). Then | : Qi(+) -> Q2(+) is a group homo­
morphism and £921 = <p2i9 f y>i = V f̂- Moreover, f is one - to - one (onto Q2) if 
and only if rj is one - to - one (onto Q2). 
Proof: Since rj : <2i --> Q2 is a homomorphism, we have for every a9b eQi 

ytyifa) + Wi(h) + gi) = <P2V(a) + y>2rj(b) + g2. (15) 

For b = y)lx(—g{) we get 

wiW = <m (°) + wmwiK—gi) + g2 = nv(a) + #*, (16) 
where £3 = VfcWiK—gi) + £2. 
Similarly, 

rjy>i(b) = y>2rj(b) + <p2rj<p\x (~gi) + g2 = w(&) + g*> (17) 

where g4 = ^aWiK— gi) + £2. 
If a = 9I1 (—gi), 6 = yl 1 (—gi) then from (15) follows 

n(— gl) = gS + gA — g2- (18) 

From (15), (16), (17) and (18) follows 

rj(a + b) = rj (cpmK") + Wi1 (b — gi) + g{) =rj(a) + rj(b —gl) — rj(—gl). (19) 

Hence rj(b — *i) = rj(b) + rj (— 2gx) — rj(— gl). 
After substituting into (19) we get 

rj(a +b) = rj(a) + rj(b) + rj(— 2gl) — 2rj(— gl). (20) 
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Define the mapping f : Qi -> Q2 as follows : 

£(a) = rj(a) + rj(—2gi) — 2rj (—gi) for every a e Qi. 

In view of (20), the mapping £ is a group homomorphism of Qi(+) into Q2(+). Now 
substitute a = O, b = gi into (20). Then 

V(— gi) = *?(0) + *?(—£i) + rj(— 2gi) — 2rj(—gi), 

hence rj(0) = 2*7 (— gi) — rj(— 2gi). 
Thus £(a) = rj(a) — rj(0) for every a e Q L 
Further, according to (16), 

£<pi(a) = rj<pi(a) — rj(G) = <p2rj(a) + gz — rj(0). 

But <p2rj(0) = rj(0) — £3 and therefore 

£<pi(a) = <p2rj(a) — <p2rj(0) = <p2(rj(a) — rj(0)) = <p2f (0). 

Similarly we can prove | ^ i = ^ l - The last part of the proof is evident. 
Lemma 28: Let Qi, Q2 be two T - quasigroups and (Qi(+), <pu y>u gi) be an 

arbitrary T - form of Qi. Be rj : Qi -> Q2 a homomorphism. Then there exists 
a T - form (Q2(+), <p2, y>2, g2) of the quasigroup Q2 such that rj : Qi(+) -> Q2(+) 
is a group homomorphism, rj<pi = <p2rj, rjipi = 2̂*7 and rj(gi) = g2. 
Proof: There exists a T - form (Q2(+), <P2, ^2, g2) of Q2 such that the element 
rj(0) is the zero in Q2(+). The mapping f, %(x) = rj(x) — rj(0), is, by Lemma 27, 
a group homomorphism of Qi(+) into Q2(+) and ij<pi = (^f- fv>i = V2&- But 
f(x) = ?y(jc) — rj(0) = ij(x). Hence f = 17. Finally, iK£i) = i?(0 • O) = ij(O) • 
• 17(0) = O • O = g2. 

Lemma 29: Let Qi, Q2 be two T - quasigroups and (Q2(+), <p2, tp2, g2) be an 
arbitrary T - form of Q2. Be rj : Qi -> Q2 a homomorphism onto Q2. Then there 
exists a T - form (Qi(+), <pi, y>i>gi) of the quasigroup Qi such that rj : Qi(+) -> 
—> Q2(+) is a group homomorphism, rj<pi = <p2*7> W i = V>2*7 a n d *?(£i) = gz-
Proof: There is an element a in Qi such that rj(a) = O. Select a T - form 
( Q I ( + ) J <Pi> Vi> £-) s u c h th*1 t^ ie element a is the zero in Qi(+). Now we shall use 
Lemma 27. 

Lemma 30: Let Qi, i = 1,2, be two T - quasigroups and (Qi(+)> <pu y>u gi) 
their arbitrary T - forms. Be rj : Qi -> Q2 a homomorphism. Then 17 is simultane­
ously a group homomorphism of Qi(+) into Q2(+) if and only if rj(0) = O. 
In this case rj<pi = <p2rj, rjtpi = 2̂*7 and 77(̂ 1) = g2. 
Proof: The lemma is an easy consequence of Lemma 27. 

Theorem 31: Let Q be a T - quasigroup and (Q(+), <p, y>, g), (Q(o), Q, T, h) be 
two of its T - forms. Then there is an isomorphism £ : Q(+) -> 2(°) such that 
€<p = Q'5, £y> = *£. 

Proof: By Lemma 27, the mapping f, fj(x) = x * O, is such an isomorphism. 
Definition 9: Let Q be a T - quasigroup and T = (Q(+), 9?, y>, #) be its arbi­

trary T - form. Denote A(Q, T) (or only A(Q)), the group generated by the elements 
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<p, tp in the group SQ (that is the same as in the group Aut Q(+)). The group 
A(Q, T) is called characteristic group of the quasigroup Q (corresponding to the 
T - form T). 

Theorem 32: Let Q be a T - quasigroup, T = (Q(+)> <p> ip>g) and S = 
= (Q(°)> Q> r> h) be two arbitrary T - forms of Q. Then there is an isomorphism a, 
a : A(Q,T) -> A(Q, S) such that a(cp) = Q, a(yi) = r. Moreover, a is a restriction of 
an inner automorphism of the group SQ. 
Proof: According to Theorem 31, there is a permutation £ of the set Q such 
that £<p = Q€, £y) = T£ . Put x(a) = ^crf-1 for every a e SQ. Then r is an inner 
automorphism of the group SQ. Since x(<p) = Q and x(tp) = r, it is x(A(Q,T)) = 
= A(Q,S). Now it is sufficient to define a = x\A(Q,T). 

Theorem 33: Let Q, P be two T - quasigroups and rj : Q -> P an epimorphism. 
Be further T = (Q(+), <p, y>,g) any T - form of Q and S = (P(+),<pi y>i,gi) 
a T - form of P corresponding to rj in the sense of Lemma 28. Then there exists an 
epimorphism a : A(Q,T) -> A(P,S) such that rjcn(a) = a(a.)rj(a) for every <x £ A(Q,T) 
and a e Q. If rj is one - to - one, a is one - to - one. 

Proof: By Lemma 28, rj : Q(+) -> P(+) is an epimorphism and rj<p = <pirj, 
rj\p = xpirj. Be a, b e Q. If rj(a) = rj (b) then <pirj(a) = <pirj(b), and hence, rj<p(a) = 
= rj<p(b). If, on the contrary, rj<p(a) = rj<p(b) then <pirj(a) = <pirj(b), therefore r/(a) = 
= rj(b). Similarly we can prove that rj(a) = rj(b) if and only if rj\p(a) = rjtp(b). From 
this it follows easily that for every a e A(Q,T) and for every a, b e Q is rj(a) = rj(b) if 
and only if rjoi(a) = rjx(b). Now we can define a mapping a, a : A(Q,T) -> Sp as 
follows: 
For every a e A(Q,T), a(a) is a permutation of the set P such that for every p eP, 
a(*)(p) = rj*>(a)> where a e Q such that rj(a) = p. Evidently, a is a homomorphism 
and a(<p) = <p\, a(\p) = y>i. Therefore a is an epimorphism of A(Q, T) onto A(P, S). 
Let further a not be one — to—one. Then there are a, ft e A(Q,T) such that a -?-- fi 
and a(a) = a(/?). Hence there is a e Q such that a(a) -^ /3(a) and a(a)^(a) = a(/S)^(a)» 
Thus rjoL(a) = rjf}(a) and hence, rj is not one - to - one. 

Theorem 34: Be P a subquasigroup of a T - quasigroup Q and T = (Q(+\ 
<p, \p,g)2iP- canonic T - form of Q. Than there is an epimorphism a : A(Q,T) -> 
-> A(P,T). 
Proof: It is sufficient to define a(a) = a |P for every a e A(Q,T). 

Theorem 35: Let H be a group having two generators. Then there is 

a T - quasigroup Q such that A(Q) = H and Q has one element generator set. 

Proof: Put Q(+) = 2 Hh(+), where Hh(+) = {«A}+ is an infinite cyclic Abe-
heH 

lian group. Be g, k two generators of the group H and <p, \p two automorphisms 
of the group Q(+) such that <p(ah) = agh, y>(ah) = akh for every heH.Be Q(*) the 
T - quasigroup of the T - form (Q(+), <p, tp, aj), wheref is the unit of the group H. 
Define the mapping a : J/-> Aut Q(+) as follows: For every deH, a(d) is the 
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automorphism of the group Q(+) such that a(d)(ah) = aan for every heH. Since 
a(g) — <P> a(k) — y> and <x(h)(aj) = an for every heH, a is an isomorphism of H 
onto A(Q). Be P(») the subquasigroup in Q(*) generated by the element O. By 
Lemma 11, the T - form (Q(+)y <py y>y aj) is P - canonic. Hence P(+) is a sub­
group in Q(+) and for every a e A(Q(*)) the element a(ay) is in P(»). Be h e H an 
arbitrary element. Then <x(h)(aj) eP(*). But <x(h)(aj) = a/*. Hence aA e P ( + ) for 
every heHy and hence, P(+) = Q(+). Therefore P( . ) = Q(.). 

Theorem 36: Be Q a T - quasigroup. Then -4(Q) is Abelian if and only if Q is 
Abelian. 
Proof: This theorem follows directly from Theorem 12. 

Lemma 31: Let Q be a T - quasigroup and (Q(+), <py y>yg) its arbitrary 
T - form. Then for every ayx e Qy 

La(x) = <p(a) + g+ y>(x)y Ra(x) = y>(a) + g + <p(x), (21) 
LlKx) = - y-V(a) - V'Hg) + W~\x)y R?(x) = 

= — <p-lV>(<*) — <P~l(g) + V-1 (*)• 
Proof: The lemma is obvious. 

Theorem 37: Be Q a T - quasigroup and (Q(+)y<py y>yg) its arbitrary T - form. 
Then the multiplicative group GQ of Q is generated in SQ by all translations of Q(+) 
and by permutations <py y>. Moreover, the multiplicative group GQ(+) of Q(+) is 
a normal subgroup in GQ and GQIGQ(+) ^ A(Q). 
Proof: Denote H the group generated in SQ by all translations of Q(+) and by 
<py y>. The groitp GQ is generated by all permutations Rx, Ly, x,y e Q. In view of 
Lemma 31, Rx = R£{x)+g<py Ly = L+(y)+gy>. Thus Rx, Ly eH and GQ C H. By 
Lemma 5, <p =-=- -Re(0), y = -̂ /(©)» s o ^ ^ -̂-V e OQ. Be a e Q arbitrary. Put b = 
= <p-1(a — g). Then L& = L+(b)+gy> = L+y>. But Li,y> EGQ. Hence Li EGQ and 
hence, H ^ GQ. Be a e GQ(+) an arbitrary element. Since Q(+) is an Abelian group, 
there is a e Q such that a = L+. Further, since <py y> are automorphisms of Q(+)y 

(pay-1 = (pL+cp-1 = L+{a) <p<p~l = L+(a), y> a y~l = L+(a). Hence the group GQ(+) is 
a normal subgroup in GQ. Since GQ(+) f] A(Q) = 1, GQ/GQ(+) ^ -4(Q). 

Theorem 38: Let Q be a T - quasigroup. Then the group GQ is solvable if and 
only if the group A(Q) is solvable. 

Corollary: The multiplicative group of every Abelian quasigroup is solvable. 
Proof: The theorem and its corollary follow from Theorems 36, 37. 

Lemma 32: Let Q be a T - quasigroup, (Q(+)y <py y>y g) its arbitrary T - form 
and a eQ. Then the group la of all inner permutations corresponding to a is 
generated by permutations Re(a)y L/(a)> Ta, where Ta(x) = y>~x<p(x — a) + a for every 
x e Q. If Q is commutative, the group la is generated by permutation L/(a), thus 
being a cyclic group. 
Proof: The group I a is generated by permutations 

LzxLyLx, Itp-RxRyyL^Rx, where x,y eQ and 
u = R~a

l(y • xa), v = L"1 (ay • x), z = Ra
lLa(x). 
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In view of (21) we have 

R-!(y • xa) =y + r 1 ^ ) + <p~^(a) — <p~ly)(a) + <p~ly)(g). 

Hence for every t e Q, 

L'lLyLx(t) = y)(t — a) + a = L/«z)(0-

Similarly, R~lRxRy = Re(a) and 

L'lRxty = y)~x<p (t—a) + a. If Q is commutative, <p = %p and L/<a) = Re(a)-

Lemma 33: Let Q be a T - quasigroup and (Q(+), <p, y), g) its T - form. 
Denote the left (right) inverse quasigroup of the quasigroup Q by Q(o) (Q(»)). Then 
Q(o)>Q(*) are T - quasigroups and (Q(+) , (p-1, — y^y), — <p~Kg))y (Q(+)> 
— y>~1(P> W~xy — V'Kg)) a r e their T - forms respectively. 
Proof: Be x,y eQ, z = xoy. Then zy = x, hence <p(z) + y)(y) + g = x. 
Therefore z = <p-\x)— <p~xy)(y) — <P~Kg)- Thus (Q(+),<p~x, — <p-xy), — <P'Kg)) is 
a T - form of Q(o). For the other case similarly. 

Theorem 39: Let Q be a T - quasigroup. Then all parastrophic quasigroups 
of Q are T — quasigroups. 
Proof: The theorem follows from Lemma 33. 

Theorem 40: All parastrophic quasigroups of every Abelian quasigroup are 
Abelian quasigroups. 
Proof: By Lemma 33 and Theorem 12. 

6°-Congruences of T - quasigroups 

Theorem 41: Let Q be a T - quasigroup and (Q(+),<p, y),g) its T - form. 
Be rj a normal congruence of the quasigroup Q. Then rj is a congruence of the group 

2(+). 
Proof: Be a,b e Q, arjb. Then a • y)~x(—g)rjb • y)~x(— g), so that <p(a)rj<p(b). 
Similarly, y)(a)rjtp(b). Further, a = <p~x(a) • y)~x(—g), b = <p-\b) • y)~x(—g). Since 
arjb and rj is normal, we have vKafyy-^b). IfceQ is arbitrary, then 
<p-\a) • y)~x(c—g) rjy-^b) • y)~x(c — g), so that a + c rj b + c. Thus rj is a con­
gruence on Q(+). 

Theorem 42: Be Q a T - quasigroup and (Q(+), <p, y>, g) its T - form. Be rj 
a congruence of the group Q(+) . Then rj is a congruence on the quasigroup Q if and 
only if <p\Ker rj, y)\Ker rj are endomorphisms of the group Ker rj. Further, rj is a nor­
mal congruence on Q if and only if <p\Ker rj, \p\Ker rj are automorphisms of the 
group Ker rj. 
Proof: 1. Let rj be a congruence on Q. If arjO then a • y_1(—g) rj O • y)~\—g), so 
that <p(a) rj O. Similarly, y)(a)rjO. 

2. Let <p\Ker rj, \p\Ker rj be endomorphisms of Ker rj. Be a,b e Q, arjb. Then 
(a — b) rj O, hence <p(a — b) rj O, so that <p(a) rj <p(b). Similarly, y)(a) rj ip(b). Be 
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further c,d e Q, crjd. Then y(c)w(d), hence ((p(a) + ^p(c) + g) rj ((p(b) + y(d) + #). 
Thus ac rj bd. 

3. Let rj be a normal congruence on Q and a e Ker rj. Then, according to 1), 
(p(a)y y(a) e Ker rj. Since O = O • ^p-1(—g) and rj is normal, brjO, where a = 
= b • \p~\—g). It is (p(b) = a, so that b = <p_1(a) e Ker rj. Similarly, ^p-l(a) e Ker rj, 
hence <p\Ker rj and \p\Ker rj are automorphisms of Ker rj. 

4. Let <p\Ker rj, ̂ p\Ker rj be automorphisms of Ker rj. In view of 2), rj is a con­
gruence on Q. Be ab rj cd, arj c. Then (95(a) + ^(b) + g) rj (<p(c) + y>(d) + g), hence 
y>(b) ?7 y>(d). Therefore ^p(b—d) rj O, and hence ^p-1^p(b—d) rj O. Thus brjd. The 
other part is quite similar. 

Theorem 43: Be P a subquasigroup of a T - quasigroup Q. Then P is a normal 
subquasigroup in Q. 
Proof: Let (Q(+), <p, y>, g) be a P - canonic T - form of Q. Then P(+) is 
a subgroup in Q(+) . Be 77 congruence on Q(+) such that .Ker rj = P(+). Since 
9?|P, ^p\P are automorphisms of P(+), rj is, by Theorem 42, a normal congruence 
on Q. But one class of rj is just the subquasigroup P. 

Example 5: From Theorem 42 follows that a congruence on a T-quasigroup 
need not be normal, that is, a homomorphic image of a T - quasigroup into a 
groupoid need not be a quasigroup. Be Q(+) an Abelian group, P(+) its subgroup 
and 99, ^p two automorphisms of <2(+) such that <p|P, ^p\P are endomorphisms but not 
automorphisms of the group P(+). Be rj the congruence on Q(+) such that Ker rj = 
= P(+). Put Q(0 = Q(+)«*>>vM). Then Q(*) is a T - quasigroup and 17 is a con­
gruence on 2(*) but rj is not normal on Q(*). We can take for instance the additive 
group of rational numbers like Q(+) , the additive group of integer numbers like 
P(+) and set <p(x) = 2x = ^p(x) for every x e <2(+). The quasigroup Q(*) will be in 
this case additionally commutative, hence Abelian. 

Theorem 44: Be Q a T - quasigroup and (<2(+), <p, ^p, g) its T - form. Let the 
permutations <p, y have a finite order in the group SQ. Then every congruence on the 
quasigroup Q is normal. 
Proof: Be rj a congruence on Q and <pn = ^pm = \>n,m convenient positive in­
tegers. Let arjb. It is a • ^p-l(—g) rj b • ^p-l(—g), hence <p(a) rj <p(b). Thus 
<pn_1(a) rj q>n-\b). But (pn~x = 99-1, so that (p~\a) rj<p~l(b). BeceQarb i t ra ry .Then 
95~1(a) • ^p-1(c — g) rj (p~l(b) • ^p-1(c — g), hence a + c rj b + c. Thus rj is a con­
gruence on the group £)(+). By Theorem 42, (p\Ker rj, ^p\Ker rj are endomorphisms 
of Ker rj. Since (pn = ^m = \^ y\Ker rj and ^p\Ker rj are automorphisms of Ker rj. By 
Theorem 42, rj is normal on Q. 

Theorem 45: Be Q a T - quasigroup and K, H its subquasigroups. Let both 
K, H have at least one idempotent and let there be a congruence rj on the quasi­
group Q such that both K, H are classes of rj. Then there exists an automorphism a of 
the quasigroup Q such that a(K) = H. 
Proof: At first we shall prove that rj is a normal congruence on Q. By Theorem 43, 
K is a normal subquasigroup in Q. Hence, there is a normal congruence Q such 
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that K is one of its classes. Be a, b e Q, aQb and c e K arbitrary. There is x e Q such 
that ex = a and y e Q such that yx = b. Then ex Q yx, hence c Q y, so that y e K. 
Thus crjy and hence, ex rj yx, which means arjb. Be, on the contrary, arjb. There 
is x e Q such that xa e K. It is xa rj xb, so that xb e K. Therefore xa Q xb, hence a Q b. 
Thus we have proved that rj = Q. 
Be O an idempotent in H, e an idempotent in K. Be (Q(+), <p, ip, g) a H - canonic 
and (Q(o), <pi, y>i, gi) a _K - canonic T - form of Q such that O is the zero in 
Q(+) and £ is the zero in Q(o). Then O = g, e = g\. According to Lemma 27, 
the mapping a, a(x) = x — e for every x e Q, is an isomorphism of the group Q(o) 
onto Q(+) and <pa = a<p\, rpa = ay)±. But a(e) = e — e = O. Hence, a is an auto­
morphism of the quasigroup Q. By Theorem 41, rj is a congruence on the group 
Q(+) . Hence, for every a,b e Q is a rj b if and only if a(a) rj a(b). Therefore a(K) = H. 

Theorem 46: Be Q a T - quasigroup and (Q(+), <p, y>,g) its arbitrary T -
form. Let the group Q(+) have a set of generators X, card X = a. Then there is 
a set Y of generators of Q and a set Z of generators of the multiplicative group GQ 
such that card Y < a + 1, card Z < a + 2. 
Proof: B e X = <<**>, * e I, a set of generators of the group Q(+) , card I -= a. Be P 
a subquasigroup of Q generated by the set X and by the element O. In view of 
Lemma 11, (Q(+), <p, y>, g) is a P - canonic T - form, so that P(+) is a subgroup 
in Q(+) . But X £ P(+), hence Q(+) = P(+). Further, the set <L+>, I G I, is a set 
of generators of the group GQ(+). According to Theorem 37, the group GQ is gene­
rated by the permutations LJ~i5 i e I, and <p, tp. 

7° - Direct products 

Remark 1: Be Qi, i e I, a system of quasigroups, each of them having at least one 
idempotent element. Beet, i e I, a collection of idempotent elements, ei e Q{. Denote 
PUI the set of all <**> e II Qt such that only for a finite number of indices / e I is 

ieZ 

XJ ^ -?;/. Then P2/ is a subquasigroup in 77 Qi. For A G I define a mapping <pk : Qk -> 
iel 

-> - ^ j * 9?A;M = (XJ)9 where xjc = x and XJ = ej for every other j e I. Then (pk is 
a monomorphism. If gu i e I, is any other collection of idempotents, gt e Qi, then 

Pili ~ -P&. We shall denote the subquasigroup P& by the symbol 77 Q-*. 
iel 

Definition 10: We shall say that a quasigroup Q is an inner direct product of 
a system Qi, i e I, of its subquasigroups, if: 
1. card I > 2. 
2. There is a e Q such that for every j: e I, Qj f] { [j Qi} = a. 
3. WQi} = Q-

iel 

Remark 2: Let a T - quasigroup Q be an inner direct product of a system 
Qi, iel, of its subquasigroups. Be a the corresponding plement. Evidently, a e Qi for 
every iel and a is idempotent. For every iel there is a T- form (Q<(o), <pt, \pi, a) of 
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the quasigroup Qi such that a is the zero in Qi(o). Be further (Q(+), <p, y>, a) a T -
form of Q such that a is the zero in Q(+) . By Lemma 11, (Q(+), <p, y>, a) is Qi -
canonic for every i e I. Thus (Qi(+), <p\Qi, y>\Qu a) is a T - form of Qi. But the 
groups Qi(o) and Qi(+) have the same zero. Hence, by Lemma 9, Qi(o) = Qt(+), 
<pt = <p\Qu y>i = y>\Qi. 

Now it is easy to show thatQ(-f) = 2 Qi(+)> <P = ^<pu y> = 2 V*-
iel iel ia/ 

From this we can deduce that Q ^ IJ Q?. 
iel 

8° - The T - quasigroups of some classes 

Definition 11: A quasigroup Q is called S - special (T - special), if for every 
a,b e Q the mapping Sa,b = L^L^Lab (Ta,b = R^R^Rab) is its automorphism. 
A quasigroup Q is called special, if it is simultaneously S - and T - special. 

Theorem 47: Let Q be a T - quasigroup. Then the following conditions are 
equivalent: 
(i) Q is S - special. 
(ii) For every xe Q the element e(x) is idempotent and Q is Abelian. 
(iii) There are an idempotent T - quasigroup K and a T - quasigroup P which is 

a right loop, such that Q ^ K x P. 
Proof: (i) implies (ii) and (iii). Bex e Q. Then Se(X),x = L~\x)L~x

lLx.e(x) = L~\v) is 
an automorphism of Q. Hence Le(X) is an automorphism of Q, and hence, by 
Theorem 28, e(x) is idempotent and Q is Abelian. Denote K the set of all e(x), xe Q 
arbitrary. Be x,y e Q and u,v e Q such that ux = y and xv = y. 
Since Q is Abelian, we have 

xy • (e(x) • e(y)) = (x • e(x)) • (y • e(y)) = xy,y • e(y) = 
= y = xv = (x • e(x)) • (v • e(v)) = xv • (e(x) • e(v)) = y • (e(x) • e(v)). 

Hence e(x) • e(y) = e(xy), e(x) • e(v) = e(y). 
Similarly, e(u) • e(x) = e(y). Thus we have proved that K is a subquasigroup in Q, 
obviously idempotent. Now let us choose a fixed element a e K. Be P the set of all 
xe Q such that xa = x; Pis nonempty, since a = e(u) for any ueQ. Be x,y e P 
arbitrary. Then 

xy • a = xy • aa = xa • ya = xy. 

If further ueQ such that xu = y then 

xu • a = xa • ua = x • ua = ya = y. 
Thus ua = u, so that u e P. Similarly, if vx = y then v e P. Therefore P is a sub­
quasigroup in Q and P is a right loop with right unit a. If x e K f] P then x = xx = 
= xa, hence K f] P = a. Be x an arbitrary element of Q, u e Q such that au = e(x) 
andy e Q such thatyu = x. Then ueKand 

yu • e(x) = x • e(x) = x = yu • au = ya • uu = ya • u. 
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Therefore ya = y and y e P. As x = yu, it is x e {K (J P}. Thus {K(J P} = Q. 
Now, according to Remark 2, we have Q ^ K x P. 
(iii) implies (ii). This part of the proof is evident (by Theorems 15, 25). 
(ii) implies (i). The quasigroup Q has at least one idempotent element, hence Qhas 
some T - form (Q(+), <p, y>, O). 
Let a,b e Q. We have Sa,b(x) = y>~l(x) + g, where g = y>-2<f?(a) — tp-2<p(a). 
Hence Sa,b(xy) = rp-^x) + y + g, Sa,b(x) • Sa,b(y) = <py>~l(x) +y + q>(g) + y>(g)-
If we prove that g = <p(g) + y>(g), we prove that Sa,b is an automorphism of Q. But 

for every ueQ the element e(u) = y)-x(u — <p(u)) is idempotent. Hence 

(py>-\u) — 9?2Y>-1(t<) + u— <p(u) = y>~\u) — yip-1 (u). 

Put u = — 9?^_1(a). Hence we have 

qpy>-2(a) -— <p2tp~2(a) + <p2y)-x(a) — <py>~Ka) = <p2y>~2(a) — <py)~2(a). 

Therefore g = <p(g) + \p(g). 
Theorem 48: Let Q be a T - quasigroup. Then the following conditions are 

equivalent: 
(i) Q is T - special. 
(ii) For every xeQ the elementf(x) is idempotent and Q is Abelian. 
(iii) There are an idempotent T - quasigroup K and a T - quasigroup P, which is 
a left loop, such that Q ^ K x P. 
Proof: The proof is similar to that of Theorem 47. 

Theorem 49: Let Q be a T - quasigroup. Then the following conditions are 
equivalent: 
(i) Q is special. 
(ii) Q is Abelian and for every xe Q the elements e(x),f(x) are idempotent. 
(iii) There are an idempotent T - quasigroup K and an Abelian group P such that 

Q Q& K x P. 
Proof: (i) implies (ii) and (iii). According to Theorems 47, 48, Q is Abelian and 
e(x),f(x) are idempotent for every xe Q. We have 

x = x • (*(*) • *(*)) = (f(x) . x) (e(x) • e(x)) = 
= (f(x) • *(*)) (* • e(x)) = (f(x) • *(*)) . * = / ( * ) . * . 

Hence/(x) • e(x) =f(x), so that e(x) =f(x). 
Now we can proceed similarly as in the proof of Theorem 47, but P will be a loop, 
hence, by Theorem 14, an Abelian group. 
The other part of the proof is evident. 

Theorem 50: Let Q be a T - quasigroup. Then the following conditions are 
equivalent: 
(i) Q is Abelian and for every xe Q the element xx is idempotent. 
(ii) There are an idempotent T - quasigroup K and a unipotent T - quasigroup 

P such that Q ^ K x P. 
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Proof: (i) implies (ii). Be Q(*) the right inverse quasigroup of the quasigroup Q. 
Then, by Theorem 40, Q(*) is an Abelian quasigroup. Since xx • xx = xx, we have 
xx * xx = xx, x * xx = x. In view of Theorem 47, there are an idempotent T - qua­
sigroup K(*) and a T - quasigroup P(*) being a right loop such that Q(*) ^ K(*) x 
X P(*)- Be K a right inverse quasigroup of K(*), P right inverse of P(*). Evidently, 
K is idempotent, P is unipotent and Q -* K x P. 
(ii) implies (i). By Theorems 20, 25, Q is Abelian. The rest is evident. 

Theorem 51: Let Q be a T - quasigroup. Then the following conditions are 
equivalent : 
(i) For every a, b, c e Q, 5a,& = SayC. 
(ii) For every a, b, c e Q, T&,a = Fca 
(iii) <2 is Abelian. 
Proof: Let (Q(+),<p>y>>g) be a T - form of Q and x,yeQ. We have SXtV(z) = 
= ^ -1(#) + *(*> j0> where oi(x,y) = y;-2992(.x) — y>~2<p(x) + y)2<py)(y) — ^"VCv) + 
+ v>-2<p(g) — v>-l(g)> 
Let (i) be valid. Then a(a, b) = a(a, c) for every a, b, c e Q. Hence y>-2<py)(d) = 
= ^_19?(d) for every de Q. Therefore <pv>(̂ ) = w ( 4 hence Q is Abelian. Con­
versely, let Q be Abelian. Then <py) = yxp, henceforth we have 

«(*>>) = y>~2(p*(x) — y>~2<p(x) + y>~2<p(g) — y>~Kg)-

Thus a(a, b) = a(a, c) for every a,b9ce Q. Similarly we can prove that (ii) implies 
(iii) and (iii) implies (ii). 

Theorem 52: Let Q be a T - quasigroup. Then Q is a left (right) IP - quasi­
group if and only if for any (and then for each) of its T - forms (Q(+), <p, y>, g) 
is xp2 = 1 (<p2 = 1). 

Proof: Let Q be a left IP — quasigroup, (£>(+), <p, y>, g) its arbitrary T - form. 
There is a permutation a such that a(#) (xy) = y for every x,yeQ. Hence, 

<py.(x) + yxp(x) + y)2(y) + yj(g) + g = y. 

From this we obtain y>2 = 1. 
L e t (Q(+)> <P> y>g) be such a T - form that ^p2 = \. Put OL(X) = —<p~1yxp(x) + 

+ <p-1(—g—v>(g))' 
Then 

<*(*) (*y) = — w(x)—g—v>(g) + w W + v>2(y) + v>(g) + g = y-

Thus Q is a left IP - quasigroup. Similarly for the other case. 

Theorem 53: Let Q be a T - quasigroup. Then the following conditions are 
equivalent: 
(i) Q is a IP - quasigroup. 
(ii) Q is a left IP - quasigroup and a fe - quasigroup. 
(iii) Q is a right IP - quasigroup and a /?2 - quasigroup. 
Proof: The theorem follows from Theorem 52. 
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9°-ThefreeT-quasigroups 

Construction of quasigroups F[x, xo] 

Let G be an arbitrary, but further on a fixed, free group freely generated by the 
elements rj, Q. Be X an arbitrary non-empty set. Denote B(X) the set of all ordered 
pairs (a, x), where a e G, x e X. Be F(+) a free Abelian group freely generated by 
the set B(X). Define two permutations <p, \p of the set B(X) as follows: If a e G, x e X 
then q>(ai,x) = (r)<x,x) and xp(oi,x) = (QOL, x). The permutations <p, \p can be uniquely 
extended to automorphisms of the group F(+); these automorphisms denote also 
q>, \p. Further, letf e G be the unit of the group G. Finally, select an element x0 e X. 
By the sjfpibol F[X,x0] we shall denote the T - quasigroup having the T - form 
T = (F(+), cp, ip, (j, x0)). The T - form T we shall call a principal T - form of the 
T - quasigroup F[X, x0]. It is evident that if x\, x%eX are arbitrary then F[X, x±] = 

~ F[X, X2]. 

Lemma 34: Let X be an arbitrary non-empty set and x0e X an arbitrary 
element. Be T = (F(+), (p, xp, (j, x0)) the principal T - form of the T - quasi­
group F[X, x0]. Then there exists an isomorphism r : G -> A(F[X, x0], T) such 
that r(a) (ft, x) = (a/?, x) for every <x.,fieG,xeX. Hence r(^) = cp, X(Q) = \p. 
Proof: If a e G t h e n there is just one automorphism r(a) of the group F(+) 
such that r(a) (/?, x) = (a/?, JC,), all /S e G, all x e X. It is evident that r is a mono-
morphism of G into Aut F(+). Since x(r\) = tp and X(Q) = \p, it must be r(G) = 
= A(F[X, x0], T). 

Lemma 35: Let X be an arbitrary non-empty set and x0 e X an arbitrary 
element. Be T = (F(+), <p, xp, (j, x0)) the principal T - f o r m of F[X, x0]. Be C(X) 
the set consisting of all pairs (/, x), where x e X, x ^ x0, and of the element O (zero 
in F(+)). Then the set C(X) is a set of generators of the quasigroup F[X, x0]. 
Proof: Denote P the subquasigroup in F[X, x0] that is generated by the set 
C(X). Since O e P, the T - form T is P - canonic. Hence P(+) is a subgroup in 
F(+) and f (p) e P for every f, p, £ e A(F[X, x0], T), peP. Further the element 
O • O = (j, x0) is also in P. Be a e G and xe X arbitrary elements. By Lemma 34, 
there is an isomorphism r : G -> A(F[X, x0,] T) such that r(a) (/, x) = (a/, x) = 
= (a, x). Since (j, x) e P, (a,x) e P. Hence B(X) .= P. Therefore P(+) = F(+), 
P = F[X, xo]. 

Theorem 54: Let X be an arbitrary non-empty set and x0e X an arbitrary 
element. The quasigroup F[X, x0] is a free T - quasigroup freely generated by the 
set C(X). Hence rank F[X, x0] = card X. 
Proof: Be E a free T - quasigroup freely generated by the set C(X). Be 
S = (E(+), <x,p,g)aT- form of E such that the element O e C(X) is zero inE(+). 
Since E is freely generated by C(X), the identical mapping of the set C(X) onto 
itself can be uniquely extended to a homomorphism a, a : E -> F[X, x0]. In what 
follows we shall prove that a is an isomorphism. 
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By Lemma 35, the set C(X) is a set of generators of F[Xy x0]. Hence a is an epi-
morphism. Be T = (F(+)y (py y)y (;, x0)) the principal T - form of F[Xy x0]. The 
element O is zero in both groups F(+)y E(+) and a(0) = O. Therefore, by Lemma 
30, a is an epimorphism of E(+) onto F (+ ) , <ra = cpay a{$ = tpa and a(g) = (jy x0). 
Further, according to Theorem 33, there is an epimorphism a, 
a : A(EyS) -> A(F[Xy x0]y T) such that a(y) (a(h)) = ay(h)y where y e A(Ey S) and 
h e E are arbitrary. Hence a(a) = <py a(/?) = xp. By Lemma 35, the group A(F[Xy x0]yT) 
is free and is freely generated by <py xp. Hence there is an epimorphism 
b : A(F[Xy x0]y T) -> A(Ey S) such that b(q>) = a and b(xp) = /?. But from this we can 
deduce that ba = 1A(E,S)- Thus a is one - to - one, and hence, a is an isomorphism. 
B e D c £ the set consisting of all elements y(jy x) and y(g)y all y e A(Ey S)y all 
x e Xy x =7-- x0. * 
We have, 

°y(h x) = a(y)a(jy x) = a(y) (;, x)y 

<*y(g) = <y)<*(g) = <y) (h x0). 

By Lemma 34, there is an isomorphism r, r : G -+ A(F[Xy x0]y T) such that 
*(f) (h y) = (£h y) for every f e G and y e X. 
Hence 

<y) (jy x) = rr--a (y) (jy x) = (x^y) •>, x) = (x-ia(y)y x)y a(y) (jy x0) = (x~la(y)y x0). 

Thus we have proved that a(D) c B(X). Be be B(X) arbitrary. Hence there is 
f e G and xe X such that b = (f, x). If x -?-- x0 then a~-r(f) (;, x)e D and we have 

o a -^f l (I, *) = ttf) (;, *) = (f, x) = ^ 

If x = x0 then a--r(f) (^) e D and cra--r(f)(g) = (f, x0) = b. Therefore a(D) = B(X). 
Now we shall prove that the restriction <r|£> is one - to - one. Let c, d e D be such 
that a(c) = a(d). Such cases can arise: 
(i) c = y(jy x)y d = d(jyy)y where yy 6 e A(Ey S)y xyyeX and x -^ x0 ^y. 
(ii) c = y(jy x)y d = d(g)y where y, <r 6 .^(£, S)y x e X, x ^ x0. 
(iii) c = y(g)y d = a(g)y where yy d e i4(£, 5). 
For (i): we have 

<ryU> x) = a(y) (;, x) = (T-*a(y), x) = ad(jyy) = (r~1a(<5),-y). 

Hence * = y and r~1a(y) = r~1a(<5). But r_1a is one - to - one, therefore y = 6. 
Thus c = d. 
For (ii): we have 

<jy(j> x) = (r-Mr)* x) = ad(g) = (r-!a(<5), x0). 

Hence x = x0y a contradiction. 
For (iii) similarly as for (i). 
Thus we have proved that a : D -> B(X) is a biunique mapping. Hence there is 
a mapping T : -B(X) -> D such that rcr = ID. Since F(-f) is a free Abelian group 
freely generated by the set B(X)y there is a homomorphism fi : F(+) -> E(+) such 
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that jn\B(X) = T. Denote H(+) the subgroup in E(+) that is generated by the set D. 
Since for every h e H(+), y e A(E, S) is y(h) e H(+) and g e H(+), H is a subqua-
sigroup in E. But C(X) c H. Hence H = E, H(+) = E(+). Thus n is an epi-
morphism and fia\D = ID. Hence po = 1 ̂ . Therefore a is one - to - one. This 
completes the proof. 

Theorem 55: Be F an arbitrary free T - quasigroup, F(+) its T - group and 
A(F) its characteristic group. Then F(+) is a free Abelian group and A(F) is a free 
group. 
Proof: The theorem follows from Theorem 54. 
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