Acta Universitatis Carolinae. Mathematica et Physica

M. Kočandrlova

Pseudoriemannsche Metriken mit Anwendungen

Acta Universitatis Carolinae. Mathematica et Physica, Vol. 12 (1971), No. 2, 21--29

Persistent URL: http://dml.cz/dmlcz/142266

Terms of use:

© Univerzita Karlova v Praze, 1971

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents strictly for personal use. Each copy of any part of this document must contain these *Terms of use*.

This paper has been digitized, optimized for electronic delivery and stamped with digital signature within the project *DML-CZ: The Czech Digital Mathematics Library* http://project.dml.cz

Pseudoriemannsche Metriken mit Anwendungen

M. KOČANDRLOVÁ

Lehrstuhl für darstellende Geometrie, Technische Hochschule, Prag

Eingegangen 20. Oktober 1971

In dieser Arbeit untersucht man die Geradenflächen in einem dreidimensionalen projektiven Raum P_3 , an welchem die Gruppe aller Kollineationen und Korrelationen, welche einen festen nichtparabolischen Geradenkomplex erhalten, wirkt. Durch diesen Geradenkomplex, ist auf der Kleinschen Quadrik Q_4 , in dem zu P_3 angehörigen Kleinschen Raum P_5 eine pseudoriemannsche Metrik bis auf einen von Null verschiedenen Faktor gegeben. Auf jede Geradenfläche in P_3 (eine Kurve in Q_4) kann man also die Theorie der pseudoriemannschen Räume benützen.

1. Kurven im Raum mit einer regulären quadratischen Metrik

Sei V_n eine differenzierbare Mannigfaltigkeit, auf der eine reguläre quadratische Metrik g gegeben ist. Diese Metrik bestimmt genau einen Zusammenhang ∇ so, dass $\nabla_X Y - \nabla_Y X = [X,Y]$ und $\nabla g = 0$, wo X, Y differenzierbare Vektorfelder auf V_n sind. Es sei weiter $T_p(V_n)$ der Tangentialraum der Mannigfaltigkeit V_n im Punkte p.

Definition 1. Es sei eine differenzierbare Mannigfaltigkeit V_n mit einer reg. quadr. Metrik g gegeben, dann nennen wir den Unterraum von $T_p(V_n)$ auf dem die Form g singular ist, den isotropischen Raum der Mannigfaltigkeit V_n im Punkte p.

Es sei $\underline{p}(t)$ eine Kurve auf V_n und wir werden voraussetzen, dass sie keine solche Punkte \underline{u} enthält für welche $T_{\underline{u}}(\underline{p})$ ein isotropischer Raum ist. Unter dieser Voraussetzung können wir die folgende Definition einführen.

Definition 2. Es sei $\underline{p}(t)$ eine Kurve auf V_n , dann verstehen wir unter den Bogen eine Funktion der Gestalt

$$s(t) = \pm \int_{t_0}^t \sqrt{|g_2(\underline{p}'(t))|} dt + c,$$

wo $\underline{p}'(t)$ den Tangentialvektor der Kurve bedeutet und c eine beliebige Konstante ist. Genauso wie im euklidischen Raum E_n kann man leicht beweisen, dass der so eingeführter Bogen unabhängig von der Wahl der Punktenfunktion die die Kurve bestimmt ist. Wir können dann den Bogen als Parameter auf der Kurve nehmen und es gilt dann $|g_2(\dot{p})| = 1$ wo wir $\dot{p} = \mathrm{d}p/\mathrm{d}s$ bezeichnen.

Definition 3. Der Raum ${}^ko_u = \{ Y_1, \ldots, Y_k \}$, wo $Y_1 = \underline{p}'$ und $Y_i = \nabla_{Y_1}Y_{i-1}$ für $i = 2, \ldots, k$ ist, heisst der Schmiegraum der k-ten Ordnung der Kurve \underline{p} im Punkte u.

Es ist leicht zu sehen, dass die so eingeführten Schmiegräume unabhängig von der Parameterdarstellung der Kurve sind.

Unter der Voraussetzung, dass die Schmiegräume der Kurve \underline{p} nicht isotropisch und in allen Punkten \underline{u} der Kurve \underline{p} für $k=1,\ldots,r$ verschieden sind und noch r+10 $\underline{u}=r$ 0 \underline{u} gilt, können wir die Frenetschen Formeln in der folgenden Form ableiten:

Die Funktionen k_i sind die Krümmungen der Kurve \underline{p} . Das Verfahren der Ableitung dieser Formeln ist dasselbe wie für Kurven im euklidischen Raum.

Da für unsere weitere Betrachtungen nützlich sein wird, dass mit jedem Punkt der Kurve ein fester n-Bein verbunden ist, führen wir weitere Vektoren E_i , i=r+1, ..., n so ein, dass sie zusammen mit E_1, \ldots, E_r ein orthonormiertes n-Bein bilden (d.h. für das n-Bein $E_1, \ldots, E_n \mid g(E_i, E_j) \mid = \delta_i^j$, $i, j = 1, \ldots, n$ ist, wo δ_i^j der Kroneckersche Symbol ist), wobei wir noch verlangen, dass $\nabla_{E_1} E_i = 0$ für i = r+1, ..., n. Wir setzen $k_i = 0$ für $i = r+1, \ldots, n$.

Sei \underline{p} die Kurve auf V_n . Wenn X_1, X_2, \ldots Vektorfelder auf \underline{p} sind und $Y \in T_{\underline{u}}(\underline{p})$, können wir die Vektorformen $\varphi_k(X_1, \ldots, X_k)$ durch die Formeln

$$abla_Y X = \psi_1(X,Y) + \varphi_2(X,Y)$$
 $abla_Y \varphi_k(X_1,\ldots,X_k) = \psi_k(X_1,\ldots,X_k,Y) + \varphi_{k+1}(X_1,\ldots,X_k,Y),$
wo $\varphi_{k+1}(X_1,\ldots,X_k,Y) \in {}^{k+1}o_u, \ \psi_k(X_1,\ldots,X_k,Y) \in {}^{k}o_u \ \text{und}$

 $\varphi_{k+1}(X_1, \ldots, X_k, Y)$ zu k_{0u} orthogonal ist, definieren.

Definition 5: Die 2k-lineare Form $h_k(X_1, \ldots, X_k, Y_1, \ldots, Y_k) = g(\varphi_k(X_1, \ldots, X_k), \varphi_k(Y_1, \ldots, Y_k)), \text{ wo } X_1, \ldots, X_k, Y_1, \ldots, Y_k)$

Vektorfelder auf \underline{p} sind, nennen wir den k-metrischen Tensor der Kurve \underline{p} (siehe [1]).

Schrittweise bekommen wir die einzige Komponente des Tensors h_k der Kurve p, die wir $\overline{h_k}$ bezeichnen:

für
$$j=2,\ldots,r$$
 ist $\overline{h_j}=\varepsilon_j(k_1\ldots k_{j-1})^2$.

Sei W_n ein Vektorraum mit regulärer quadratischer Metrik g_2 . Es sei U die Menge aller orthonormierten n-Beine des Raumes W_n , d.h. aller n-Beine E_1, \ldots, E_n , wo $g(E_i, E_j) = 0$ für $i \neq j$ und $g_2(E_i) = \varepsilon_i$. Dabei sind ε_i voraus gegebene Zahlen mit $|\varepsilon_i| = 1$ und die Anzahl der positiven und negativen ε_i ist durch die Signatur von g_2 gegeben. Sei weiter G die Menge aller Übergangsmatrizen zwischen n-Beinen aus U.

Satz 1.: Die Menge G ist eine Liesche Gruppe (Untergruppe der Gruppe GL(R,n)), deren Lie-Algebra G die Menge aller Matrizen G die G with G ist.

Hilfssatz 1.: Es sei auf dem Hauptfaserbündel P aller orthonormierten n-Beine der Mannigfaltigkeit V_n ein Zusammenhang durch die Form ω gegeben. Dann existiert auf V_n genau ein Zusammenhang ∇ so, dass für jeden lokalen Schnitt E_1, \ldots, E_n des Raumes P

$$\nabla_{Y}E_{j}=a_{i}^{i}(Y)E_{i}$$

gilt, wo $Y \in T_p(V_n)$ und $(a_j^i(Y)) = \omega(Y')$, Y' ist der Tangentialvektor des gewählten lokalen Schnittes für den Π' (Y') = Y. Mit Π haben wir die natürliche Projektion von P auf V_n bezeichnen.

Wir bezeichnen mit k_1, \ldots, k_{n-1} positive Funktionen der Veränderlichen s (eventuell, von bestimmten festen Index r an, können k_i identisch Null sein) die auf einem offenen Intervall D definiert sind, $\varepsilon_1, \ldots, \varepsilon_n$ die oben angegebene Zahlen. Wir werden untersuchen, ob es auf V_n eine Kurve $\underline{p}(s)$ mit dem Definitionsbereich D so gibt, dass k_1, \ldots, k_{n-1} ihre Krümmungen sind und dass für die Vektoren ihres Frenet-Beines $g_2(E_i) = \varepsilon_i$ für $i = 1, \ldots, n$ gilt.

Es sei P der oben eingeführte Hauptfaserbündel und es sei α die Abbildung von P nach dem Tangentialbündel $T(V_n)$ von V_n , die durch α $(E_1, \ldots, E_n) = E_1$ gegeben ist.

Jedem $(\Re, s_0) \in P \times D$ sind die Zahlen $k_1(s_0), \ldots, k_{n-1}$ (s_0) und der Vektor α $(\Re) = E_1$ eindeutig zugeordnet. Die Zahlen $k_i(s_0)$ bestimmen das Element (a_i^i) der Lie – Algebra \mathfrak{G} mit $a_i^{i+1} = k_i$, $a_{i+1}^i = -\epsilon_i \epsilon_{i+1} k_i$ und $a_i^i = 0$ sonst. Wir definieren die Vektorfelder X_1, X_2, X_3 auf $P \times D$ wie folgt:

 X_1 ist das Vektorfeld, das auf jeder Mannigfaltigkeit $P \times \{s_o\}$ mit dem durch das Element $(a_i^i(s_o)) \in \mathcal{G}$ gegebenen Fundamentalvektorfeld zusammenfällt.

 X_2 ist das Horizontalvektorfeld welches durch $\Pi'(X_{2\mathfrak{R}}) = \alpha(\mathfrak{R})$ bestimmt ist.

 X_3 ist das kanonische Vektorfeld von D, also $X_3 = d/ds$.

Wir bezeichnen mit X das Vektorfeld $X = X_1 + X_2 + X_3$ auf $P \times D$ und suchen alle maximale Integralkurven von X. Durch jeden Punkt (\Re, s_o) geht genau eine solche Integralkurve q(s).

Es sei ϱ die natürliche Projektion von $P \times D$ auf P, dann gilt:

Satz 2.: $\underline{h}(s) = \Pi(\varrho(\underline{q}(s)))$ ist dann eine Kurve aut V_n mit den oben angegebenen Eingenschaften deren Frenet-Bein im Punkte s_o gleich \Re ist.

Beweis: $\dot{h}(s) = \Pi' \circ \varrho' \circ \dot{\underline{q}}(s) = \Pi'(\varrho'(\underline{\dot{q}}(s))) = \Pi'(\varrho'(X_1 + X_2 + X_3)) = \Pi'(X_1 + X_2) = \Pi'(\overline{X}_2) = E_1.$

Aus der Konstruktion der Vektorfelder X_1 und X_2 und aus dem *Hilfssatz 1* folgt, dass $\varrho(q(s))$ die Frenetschen Formeln erfüllt und daraus folgt die Behauptung.

Bemerkung: Wenn eine Kurve p(s) mit den Krümmungen k_1, \ldots, k_{n-1} und den Grössen $\varepsilon_i = g_2(E_i)$ gegeben ist, dann ist die Kurve $(\Re(s), s)$ eine Integralkurve des Vektorfeldes $X(\Re(s))$ ist das Frenet-Bein der Kurve p im Punkte p(s)).

Aus den oben angeführten Behauptungen kann man ähnlich wie im euklidischen Fall den folgenden Satz beweisen.

Satz 3.: Existiert eine Liesche Gruppe von isometrischen Transformationen der Mannigfaltigkeit V_n , die auf P transitiv wirkt, dann bestimmen die Krümungen und die Zahlen ε_i die Kurve eindeutig bis auf Isometrie.

2. Geradengeometrie

Sei W ein Vektorraum. Wir bezeichnen mit $\wedge^k W$ die Menge aller äusseren k-Formen auf \widetilde{W} , wo \widetilde{W} der duale Raum zu W ist. Ausführlicher siehe [2].

Hilfssatz 2.: Existiert genau ein Isomorphismus φ von $\widetilde{\wedge}^k W$ auf $\wedge^k \widetilde{W}$ so, dass für $\alpha \in \widetilde{\wedge}^k W$, $X_1, \ldots, X_k \in W$ gilt:

$$\alpha (X_1 \wedge \ldots \wedge X_k) = (\varphi \alpha) (X_1, \ldots, X_k).$$

Es sei P_3 der projektive Raum aller eindimensionalen Unterräume des Vektorraumes W_4 .

Definition 6: Den zugehörigen fünfdimensionalen projektiven Raum zu dem sechsdimensionalen Vektorraum $W_6 = W_4 \wedge W_4$ nennen wir K-Raum und seine Punkte K-Punkte.

Es sei $\mathfrak S$ die Menge aller Geraden in P_3 . Wir konstruieren die injektive Abbildung Φ von $\mathfrak S$ nach P_5 und zwar so, dass wir jeder Gerade $a=\{X\} \lor \{Y\} \in \mathfrak S$ den K-Punkt $\{X \land Y\}$ zuordnen. Aus den Eigenschaften des äusseren Produktes folgt, dass der K-Punkt $\{X \land Y\}$ von der Wahl der Punkte $\{X\}$, $\{Y\}$ auf der Gerade a unabhängig ist.

Sind ω , $\omega' \in \wedge^2 W_4$, so ist $\omega \wedge \omega' \in \wedge^4 W_4$. Ist A_0, \ldots, A_3 eine Basis von W_4 , so ist $\Omega = A_0 \wedge \ldots \wedge A_3$ eine Basis von $\wedge^4 W_4$ und jedes Element $\omega \wedge \omega'$ kann man in der Form $\varrho \cdot \Omega$ eindeutig ausdrücken, wo ϱ eine reelle Zahl ist.

Wir definieren jetzt die Abbildung $f: \wedge^2 W_4 \times \wedge^2 W_4 \to R$ (R ist die Menge der reellen Zahlen) durch die Beziehung $\omega \wedge \omega' = f(\omega, \omega') \cdot \Omega$. Ersichtlich ist f eine symetrische bilineare Form auf $\wedge^2 W_4$ und wir bezeichnen mit f_2 die zugehörige quadratische Form. Die Form f_2 ist regulär mit der Signatur (3,3). Die zugehörige Quadrik Q_4 des K-Raumes P_5 ist das Bild der Menge bei der Abbildung Φ .

Es ist leicht zu zeigen, dass sich zwei Geraden aus P_3 genau dann schneiden wenn ihre Bilder in P_5 konjugiert bezüglich Q_4 sind. Das Bild eines Geradenbüschels in P_3 bei der Abbildung Φ füllt eine Ebene $P_2 \subset Q_4$ aus. Analog die Bilder aller Geraden die in einer Ebene $\varrho \subset P_3$ liegen füllen auch eine Ebene $P_2' \subset Q_4$ aus. Umgekehrt die Menge aller Ebenen in P_5 die auf Q_4 liegen zerfällt in zwei Scharen wobei zwei Ebenen genau dann derselben Schar gehören wenn sie sich schneiden im einzigen Punkt und zu verschiedenen Scharen, wenn sie sich nicht schneiden, oder wenn sie sich in einer Gerade schneiden. Die Ebenen der einer Schar entsprechen aller Geradenbüschel in P_3 , die Ebenen der anderen Schar entsprechen allen ebenen Geradenfelder aus P_3 .

Das ganze Verfahren kann man leicht dualisieren. Wir bilden den projektiven Raum P_5^* aller eindimensionalen Unterräume des Raumes $\wedge^2 \widetilde{W}_4$ und jede Gerade a aus P_3 , die durch die Hyperebenen $\{\widetilde{X}\}, \{\widetilde{Y}\} (\widetilde{X}, \widetilde{Y} \in \widetilde{W}_4)$ gegeben ist, wird auf den Punkt $\{\widetilde{X} \wedge \widetilde{Y}\}$ des Raumes \widetilde{P}_5 abgebildet. Die Bilder aller Geraden bilden dann die Quadrik $Q_4^* \subset P_5^*$ aus. Wir bezeichnen noch mit Φ^* die so entstandene Abbildung. Es gilt:

Satz 4.: Sei φ der Isomorphismus von $\wedge^2 \widetilde{W}_4$ auf $\widetilde{\wedge}^2 W_4$ für den gilt $\varphi(\omega)$ $(X \wedge Y) = \omega(X,Y)$ $(\omega \in \wedge^2 \widetilde{W}_4)$. Es sei \varkappa_0 die zugehörige projektive Transformation von P_5^* auf P_5 . Es ist dann \varkappa_0 $(Q_4^*) = \widetilde{Q}_4$ wo \widetilde{Q}_4 die Menge aller Tangentialhyperebenen der Quadrik Q_4 bezeichnet. Bezeichnen wir mit α die projektive Abbildung von \widetilde{P}_5 auf P_5 , die jeder Hyperebene des Raumes P_5 ihren Pol bezüglich Q_4 zuordnet, ist

$$\Phi = \alpha \circ \varkappa_0 \circ \Phi^*.$$

Beweis: Sei $a = \{X\} \lor \{Y\}$ eine Gerade in P_3 , dann ist $\Phi(a) = \{X \land Y\}$. Wählen wir beliebige Hyperebenen $\{\widetilde{X}\}$, $\{\widetilde{Y}\} \in \widetilde{P}_3$, die a enthalten, ist $\Phi^*(a) = \{\widetilde{X} \land \widetilde{Y}\}$. Die Hyperebene $\sigma = (\varkappa_0 \circ \Phi^*)(a)$ enthält dann alle Punkte $\{U \land V\}$, für die gilt

$$(\widetilde{X} \wedge \widetilde{Y})(U, V) = 0.$$
 (1)

Wir zeigen dass jede Gerade $\{U\} \vee \{V\}$, für welche (1) gilt, die Gerade a schneidet und weil die Punkte aus $\sigma \cap Q_4$ die Hyperebene σ erzeugen, ist σ die Polarhyperebene des Punktes $\{X \wedge Y\}$. Es sei (1) erfüllt für die Gerade $\{U\} \vee \{V\}$. Offensichtlich können wir U so wählen, dass $\widetilde{X}(U)=0$. Dann ist $0=2(\widetilde{X}\wedge\widetilde{Y})(U,V)=\widetilde{X}(U)\widetilde{Y}(V)-\widetilde{X}(V)\widetilde{Y}(U)=-\widetilde{X}(V)\widetilde{Y}(U)$. Ist also entweder $\widetilde{X}(V)=0$ oder $\widetilde{Y}(U)=0$. Im jeden Fall schneidet die Gerade $\{U\} \vee \{V\}$ die Gerade a.

Sei jetzt \varkappa eine Kollineation des Raumes P_3 . Diese Kollineation bestimmt eine Transformation $\bar{\varkappa}$ der Quadrik Q_4 im Raum P_5 . Genauso bestimmt jede Korrelation $\bar{\varkappa}$ des Raumes P_3 eine Transformation $\bar{\varkappa}$ der Quadrik Q_4 .

Satz 5.: Jede Kollineation κ bzw. Korrelation $\tilde{\kappa}$ des P_3 bestimmt genau eine Kollineation κ' des Raumes P_5 die die Quadrik Q_4 erhält und deren Beschränkung auf Q_4 die beschriebene Transformation $\tilde{\kappa}$ bzw. $\tilde{\kappa}$ gibt. Umgekehrt gibt es zu jeder Kollineation κ' des Raumes P_5 , die die Quadrik Q_4 erhält, genau eine Kollineation κ bzw. Korrelation $\tilde{\kappa}$ des Raumes P_3 , die die Kollineation κ' in oben angegebener Weise bestimmt.

Beweis. Es sei \varkappa eine Kollineation des Raumes P_3 . Diese Kollineation ist durch einen Automorphismus φ von W_4 gegeben. Dieser Automorphismus bestimmt einen Automorphismus φ' des Raumes $W_4 \wedge W_4$, der die gesuchte Kollineation \varkappa' des Raumes P_5 liefert. Da man die geometrische Basis von P_5 auf Q_4 wählen kann, ist die Kollineation \varkappa' eindeutig bestimmt. Es sei $\widetilde{\varkappa}$ eine Korrelation des Raumes P_3 die durch einen Isomorphismus von W_4 auf \widetilde{W}_4 gegeben ist. Dieser Isomorphismus bestimmt einen Isomorphismus β von $\wedge^2 W_4$ auf $\wedge^2 \widetilde{W}_4$. Damit ist eine kollineare Abbildung \varkappa_1 des Raumes P_5 auf P_5^* gegeben. Es ist leicht zu sehen, dass $\varkappa'=$

 $= \alpha \circ \varkappa_0 \circ \varkappa_1$ die gesuchte Kollineation des Raumes P_5 ist, die eindeutig bestimmt ist (siehe *Satz 4*.).

Es sei jetzt κ' eine Kollineation des Raumes P_5 , die Q_4 erhält. Wir wählen eine geometrische Basis $\{A_0\}, \ldots, \{A_4\}$ des Raumes P_3 . Jeder Punkt $\{A_i\}$ bestimmt eine Ebene $\alpha_i \subset Q_4$ (alle α_i gehören derselben Schar zu). Wenn die Kollineation κ' jede Schar auf sich abbildet, bestimmen die Bilder der Ebenen α_i Punkte $\{A_0'\}, \ldots, \{A_4'\}$, die in P_3 wieder eine geometrische Basis bilden. Die Kollineation von P_3 , die die geometrische Basis $\{A_i\}$ in die geometrische Basis $\{A_i\}$ überführt, bestimmt eine Kollineation κ' des Raumes P_5 . Es ist offensichtlich $\kappa' = \kappa''$. Wenn die Kollineation κ' die Scharen umtauscht, bekommen wir in ähnlicher Weise eine Korrelation κ' des Raumes k

3. Regelflächen in P3 bezüglich der Gruppe aller Kollineationen und Korrelationen, die einen bestimmten nichtparabolischen Geradenkomplex erhalten

Es sei in P_3 ein nichtparabolischer Geradenkomplex gegeben. Dieser bestimmt eine Hyperebene ϱ im projektiven Raum P_5 , die nicht tangential zu der Quadrik Q_4 liegt. Die Menge $A_5 - \varrho$ ist ein affiner Raum. Wir wählen auf W_6 eine lineare Form φ , deren zugehörige Hyperebene die gegebene Hyperebene ϱ ist. Für jeden Punkt $\{X\} \in A_5$ werden wir den arithmetischen Vertreter X immer so wählen, dass $\varphi(X) = 1$. Wir bezeichnen mit O den Mittelpunkt der Quadrik Q_4 und wählen die quadratische Form f_2 , die Q_4 definiert so, dass $f_2(O) = -1$. Sei g_2 die Beschrenkung der quadratischen Form f_2 auf den Unterraum W_5 , der der Hyperebene ϱ entspricht. Offensichtlich ist g_2 eine reguläre quadratische Metrik auf A_5 in welcher Q_4 die Rolle der Einheitssphäre spielt. Damit ist gleichtzeitig eine quadratische Metrik auf Q_4 mit der Signatur (2,2) gegeben. Den folgenden Satz führen wir ohne Beweis an.

Satz 6.: Es seien $\bar{\epsilon}_1$, $\bar{\epsilon}_2$, $\bar{\epsilon}_3$, $\bar{\epsilon}_4$ Zahlen von denen zwei gleich 1 und zwei gleich —1 sind. Dann ist die Gruppe aller Affinitäten, die Q_4 erhalten, gleich der Gruppe aller isometrischen Transformationen von Q_4 , die transitiv und ohne Fixpunkte auf dem Hauptfaserbündel der orthonormierten 4 — Beinen $\overline{E}_1, \ldots, \overline{E}_4$ mit $g_2(\overline{E}_i) = \bar{\epsilon}_i$ wirkt.

Es sei jetzt in P_3 eine Regelfläche gegeben, die keine Geraden aus den gegebenen Geradenkomplex enthält. Diese Fläche kann man als eine Kurve $p \subset Q_4$ betrachten. Wir werden weiter voraussetzen, dass kein Schmiegraum dieser Kurve auf Q_4 isotropisch ist. Nach 1 können wir dann als Parameter den Bogen wählen und die Frenet-Beine E_1, \ldots, E_5 in A_5 , bzw. $\overline{E_1}, \ldots, \overline{E_4}$ in Q_4 bilden. Wir haben also $(D \text{ bzw}. \nabla \text{ bezeichnet}$ den zu der Metrik g_2 zugehörigen Zusammenhang auf A_5 bzw. Q_4):

$$egin{aligned} \dot{oldsymbol{p}} &= \overline{E}_1,\,
abla_{ar{E}_1} \overline{E}_1 &= \overline{k}_1 \, ar{E}_2 \ \overline{
abla}_{ar{E}_1} \overline{E}_2 &= \overline{k}_1^\star \, ar{E}_1 + \overline{k}_2 \, ar{E}_3 \ \overline{
abla}_{ar{E}_1} \overline{E}_3 &= \overline{k}_2^\star \, ar{E}_2 + \overline{k}_3 \, ar{E}_4 \ \overline{
abla}_{ar{E}_1} \overline{E}_4 &= \overline{k}_3^\star \, ar{E}_3 \end{aligned}$$

wo
$$\bar{k}_{i}^{*} = -\bar{\epsilon}_{i+1} \; \epsilon_{i} \bar{k}_{i}, i = 1, 2, 3 \; \text{und} \; \bar{\epsilon}_{i} = g_{2}(\bar{E}_{i}), i = 1, \dots, 4.$$

$$\dot{p} = E_{1}$$

$$\bar{D}_{E_{i}} E_{1} = k_{1} E_{2}$$

$$D_{E_{i}} E_{2} = k_{1}^{*} E_{1} + k_{2} E_{3}$$

$$D_{E_{i}} E_{3} = k_{2}^{*} E_{2} + k_{3} E_{4}$$

$$D_{E_{i}} E_{4} = k_{3}^{*} E_{3} + k_{4} E_{5}$$

$$D_{E_{i}} E_{5} = k_{4}^{*} E_{4}$$

wo $k_i^* = -\epsilon_i \epsilon_{i+1} k_i i = 1, \ldots, 4$ und $g_2(E_i) = \epsilon_i, i = 1, \ldots, 5$.

Daraus folgt unmittelbar:

Satz 7.: Die Krümmungen \overline{k}_i i=1,2,3 bestimmen die Regelfläche in P_3 eindeutig bis auf Transformationen, die den gegebenen Geradenkomplex erhalten.

Auf Q_4 haben wir den ersten und zweiten Fundamentaltensor, wo der zweite durch die Beziehung

$$b(X,Y) = D_X Y \cdot \overline{E}_5$$

definiert ist. Dabei ist der Vektor $\overline{E_5}$ im Punkte $\underline{q} \in Q_4$ gleich $\underline{q} - O$. Analog wie für eine Fläche in E_3 gilt:

$$D_XY = \nabla_XY + b(X,Y) \cdot \overline{E}_5$$

 $b(X,Y) = -g(D_X\overline{E}_5,Y).$

Weiter ist $D_X \overline{E}_5 = X$ und also b(X, Y) = -g(X, Y).

Betrachten wir die Beziehungen zwischen dem Krümmungen k_i und \overline{k}_j .

$$(2) k_1 E_2 = \overline{k}_1 \overline{E}_2 - \varepsilon_1 \overline{E}_5$$

(3)
$$k_2E_3 = \left(\frac{\overline{k_1}}{k_1}\right) \cdot \overline{E}_2 + \frac{\overline{k_1}\overline{k_2}}{k_1} \overline{E}_3 + \varepsilon_1\left(\frac{1}{k_1}\right) \cdot \overline{E}_5$$

$$(4) k_3 E_4 = \left(\left(\frac{1}{k_2} \left(\frac{\overline{k}_1}{k_1} \right)^{\cdot} \right) + \frac{\overline{k}_1 \overline{k}_2 \overline{k}_2^{*}}{k_1 k_2} \right) \overline{E}_2 + \left(\frac{\overline{k}_2}{k_2} \left(\frac{\overline{k}_1}{k_1} \right)^{\cdot} + \right. \\ + \left. \left(\frac{\overline{k}_1 \overline{k}_2}{k_1 k_2} \right)^{\cdot} \right) \overline{E}_3 + \frac{\overline{k}_1 \overline{k}_2 \overline{k}_3}{k_1 k_2} \overline{E}_4 + \varepsilon_1 \left(\frac{1}{k_2} \left(\frac{1}{k_1} \right)^{\cdot} \right)^{\cdot} \overline{E}_5$$

(5)
$$k_4E_5 = (\dot{a} + b\bar{k}_2^*)\bar{E}_2 + (a\bar{k}_2 + \dot{b} + c\bar{k}_3^*)\bar{E}_3 + (b\bar{k}_3 + \dot{c})\bar{E}_4 + \dot{d}\bar{E}_5$$

wo wir

(6)
$$a = \frac{1}{k_3} \left(\frac{1}{k_2} \left(\frac{\bar{k}_1}{k_1} \right)^{\cdot} \right)^{\cdot} + \frac{\bar{k}_1 \bar{k}_2 \bar{k}_2}{k_1 k_2 k_3}^{\cdot}$$

$$b = \frac{1}{k_3} \left(\frac{\bar{k}_2}{k_2} \left(\frac{\bar{k}_1}{k_1} \right)^{\cdot} + \left(\frac{\bar{k}_1 \bar{k}_2}{k_1 k_2} \right)^{\cdot} \right)$$

$$c = \frac{\bar{k}_1 \bar{k}_2 \bar{k}_3}{k_1 k_2 k_3}$$

$$d = \varepsilon_1 \frac{1}{k_3} \left(\frac{1}{k_2} \left(\frac{1}{k_1} \right)^{\cdot} \right)^{\cdot}$$

bezeichnet haben.

Wenn die Kurve \underline{p} in einem affinen Unterraum A_m von A_5 liegt, ist $k_i=0$ für $i=m,\ldots,4$; $2\leq m\leq 4$. Wir suchen also Bedingungen für \bar{k}_i , die aus der Verschwindung der Krümmungen k_i folgen. Ist $k_2\equiv 0$ dann folgt aus (3) $\bar{k}_2=0$, $\bar{k}_1=$ Konst. Ist $k_2\neq 0$, $k_3\equiv 0$, folgt aus (4)

(7)
$$\left(\frac{1}{k_2}\left(\frac{\overline{k_1}}{k_1}\right)^{\cdot}\right)^{\cdot} + \frac{\overline{k_1}\overline{k_2}\overline{k_2^*}}{k_1k_2} = 0$$

(8)
$$\frac{\bar{k}_1}{k_1} = -\frac{\bar{k}_1 \bar{k}_2}{k_1 k_2}$$

$$(9) \qquad \bar{k}_3 = 0$$

(10)
$$\frac{1}{k_2} \left(\frac{1}{k_1} \right)^{\bullet} = \text{Konst.}$$

Für $k_4 \equiv 0$, $k_3 \not\equiv 0$ bekommen wir aus (5) die Bedingungen

$$(11) \qquad \dot{a} + b\bar{k}_2^* = 0$$

(12)
$$a\bar{k}_2 + \dot{b} + c\bar{k}_3^* = 0$$

(13)
$$\left(\frac{\overline{k}_1}{k_1}\right)^3 \left(\frac{\overline{k}_2}{k_2}\right)^2 \frac{\overline{k}_3}{k_3} = \text{Konst.}$$

(14)
$$\frac{1}{k_3} \left(\frac{1}{k_2} \left(\frac{1}{k_1} \right) \right) = \text{Konst.}$$

wo a, b, c, d die Ausdrücke aus (6) sind. Aus diesen Betrachtungen folgt:

Satz 8.: Die hinreichende und notwendige Bedingung dafür dass die gegebene Regelfläche in P3 mit dem gegebenen Geradenkomplex

- 1. eine Quadrik ist, ist $k_2 \equiv 0$, $k_1 = \text{Konst.}$
- 2. in einer Geradenkongruenz enthalten ist und keine Quadrik ist, ist die Erfüllung der Bedingungen (7), (8), (9), (10),
- 3. in einem Geradenkomplex enthalten ist ohne dass sie in einer Geradenkongruenz liegt, ist die Erfüllung der Bedingungen (11), (12), 13), (14).

Beispiel: Berechnung der Beziehungen zwischen den Krümmungen der beiden Geradenscharen einer Quadrik:

Es sei in P_3 eine quadratische Fläche durch drei schiefgehende Geraden ω_1 , ω_2 , ω_3 gegeben. Durch die Bilder $\Phi(\omega_1)$, $\Phi(\omega_2)$, $\Phi(\omega_3)$ ist in A_5 eine K-Ebene ϱ gegeben, die die Quadrik Q_4 in einem einfachen K-Kegelschnitt schneidet, der das Bild der Schar ist, die ω_1 , ω_2 , ω_3 enthält. Das Bild der zweiten Schar bestimmt eine weitere K-Ebene $\hat{\varrho}$ die mit dieser konjugiert ist. Für unsere weitere Betrachtungen wird es nützlich sein, die Abstände der Ebenen ϱ , $\hat{\varrho}$ von denn Mittelpunkt O der Quadrik Q_4

zu berechnen. Es sei also X ein Punkt auf dem gegebenen K-Kegelschnitt in der Ebene ϱ . E_1 , E_2 ist ein Frenet-Bein dieses Kegelschnites in A_5 , $\overline{E}_5 = X - O$. Dann ist

$$A = \overline{E_5} - \varepsilon_2 g(\overline{E_5}, E_2) E_2$$

ein zu ϱ orthogonaler Vektor und $g_2(A) = g_2(\overline{E}_5) - \varepsilon_2(g(\overline{E}_5, E_2))^2$. ist der Quadrat des gesuchten Abstandes. Mit Hilfe der Frenetschen Formeln für den Kegelschnitt in ϱ bekommen wir

$$g_2(A) = 1 - \varepsilon_2 \left(g \left(\overline{E}_5, \frac{\overline{k}_1}{k_1} \overline{E}_2 + \frac{1}{k_1} \overline{E}_5 \right) \right)^2 = 1 - \varepsilon_2 \frac{1}{k_1^2}.$$

Analog bekommen wir für die Ebene $\hat{\varrho}$ anstatt A den Vektor $\frac{1}{g_2(A)}A$ und zu dieser Kurve gehörende Objekten bezeichnen wir mit \hat{k}_1 , $\hat{\varepsilon}_2$. Es gilt dann

$$\left(1-\varepsilon_2\frac{1}{k_1^2}\right)\left(1-\hat{\varepsilon}_2\frac{1}{\hat{k}_1^2}\right)=1.$$

Es sei ξ eine Regelfläche in P_3 , ξ' ihr Bild in P_5 . Dann die Schar des Schmieghyperboloids der Fläche ξ entlang der Gerade $a \in \xi$, die diese enthält, wird auf den Durchschnitt der Schmiegebene der Kurve ξ' und der Quadrik Q_4 abgebildet. Da wir für eine beliebige Regelfläche genauso wie für eine quadratische Regelfläche zeigen könnten, dass die Krümmung k_1 schon durch die Schmiegebene der entsprechenden Kurve in P_5 gegeben ist, gilt der

Satz 9.: Die Krümmung der Schar des Schmieghyperboloids ζ der Regelfläche ξ entlang einer Gerade a, die diese enthält, ist gleich der ersten Krümmung der Fläche ξ .

Literatur

- [1] Boček L., Globaldifferentialgeometrie der Untermannigfaltigkeiten in E_n und S_n . Czechosl. Math. J., 17, 92; 1967.
- [2] AUSLANDER L., MACKENZIE R. E., Introduction to Differentiable Manifolds; 1963 (New York).