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1971 ACTA U N I V E R S I T A T I S C A R O L I N A E M A T H E M A T I C A E T PHYSICA V O L . 12, N O . 1 

T-quasigroups 
Part I. 

P. NfiMEC and T. KEPKA 
Department of Mathematics, Charles University, Prague 

Received 17 September 1970 

In this paper and others that are to appear either in AUC or CMUC we are 
studying a certain class of quasigroups very closely related to Abelian groups. An 
impulse to our investigation was Toyoda's theorem: 

Be Q(o) an Abelian quasigroup, e. g. a quasigroup satisfying the identity 

(aob) o(co d)= (ao c) o(b o d). 

Then there is an Abelian group Q(+), its automorphisms <p, ip andg e Q such that 
(pxp = yxp and for every x, y e Q, 

xoy = <p(x)+ y>(y) + g. (•) 

This theorem was proved by Toyoda, Murdoch and Bruck in the early 40's. 
(See: K. Toyoda, On axioms of linear functions, Proc Imp. Acad. Tokyo, 1941, 17; 
D. G. Murdoch, Structure of Abelian quasigroups, Trans. Amer. Math. Soc , 1941, 
43; R. H. Bruck, Some results in the theory of quasigroups, Trans. Amer. Math. 
Soc, 1944, 55.) The proof of Toyoda's theorem can be also found in the book of 
V. D. Belousov: Osnovy teorii kvazigrupp i lup (Russian). As the requirement of 
commutativity of the automorphisms (p, \p seems to have no principial significance in 
the algebraic properties (in relation to Abelian groups) of quasigroups satisfying (*), 
we came to the definition of T - quasigroup. Our aim is to clear up the relation 
between the algebraic properties of T - quasigroups and Abelian groups and to 
determine to what extent the algebraic properties of T - quasigroups are similar to 
those of Abelian groups. In this first part we investigate some basic properties of 
T - quasigroups and give several examples. First we shall make several arrange­
ments concerning notation. A groupoid with the underlying set G and the operation o 
we shall denote by G(o), e. g. the symbol of operation we put into brackets behind the 
symbol of the underlying set. Instead of G(.), a . b, (a .b) .(c . d) we shall write 
G, ab, ab . cd respectively e.t.c We shall always denote an Abelian group with the 
underlying set G by G(+) or G(o), O being zero in G(+), e zero in G(o), — subtraction 
in G(+), * subtraction in G(o). If 9? is a mapping of the set A into the set B and \p 
a mapping of the set B into the set C then the composite mapping of the set A into 
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the set C we shall denote by yxp. If Xi, i e I is a system of groupoids and q>i is an 
endomorphism of Xi, then the symbol 77 Xt means a Cartesian product of grou-

iel 

poids Xi,II(pi is an endomorphism of IlXi such that its restriction on Xi, nq>i\Xi, 
iel iel iel 

is equal to (pt, i c I, and < xt > means an element of 77Xi such that its components 
iel 

are xt € Xi, i e I. Let Q(*) be a groupoid, HC1Q. The subgroupoid generated in <2(*) 
by the set .77 we shall denote by {77}*. The left (right) translation by element a we 
shall denote by L* (_R*). Let Q be a quasigroup. The group of all permutations of 
the set Q we shall denote by SQ, the multiplication (associated) group of Q by GQ, 
the group of automorphisms of Q by Aut Q. A right (left) local unit belonging to 
the element a we shall denote by e(a) or ea (f(a), fa). T h u s / ( a ) . a= a . e(a) = a. 
A mapping X : Q -> Q is called left (right) regular if there is a mapping A* : 2 -> Q 
such that for every x, y € Q, 

%xy) = X\x).yMxy) = x.k'(y)). 

A mapping q> : 2 —> Q is called central regular if there is a mapping 9?* such that 
(p(x).y = x.(p*(y). 
Our definition of left and right regular mappings is slightly more general than the 
usual one. Some results of the theory of regular mappings can be found in the paper 
of T. Kepka: "Regular mappings of groupoids". 

1° Introduction 

Definition 1: Let Q be a quasigroup. A tetrad (Q(+), (p, y>y g), Q(+) being an 
Abelian group, q> and xp its automorphisms and g € Q, is called a T - form of the 
quasigroup Q if for every x, y e Q, 

xy = (p(x) + tp(y) + g. (1) 

The group Q(+) is called a T - group of the quasigroup Q. 
Definition 2: A quasigroup Q is called a T - quasigroup if there exists at least 

one T - form of Q. 
The following Lemma is obvious from (1). 

Lemma 1: Let Q be a T - quasigroup and Q(+) its T - group. Then the group 
Q(+) is a principal isotope of Q. 

Theorem 1: Let Q(+) and Q(o) be two T - groups of a T - quasigroup Q. 
Then the groups Q(+) and Q(o) are isomorphic. 
Proof: Groups Q(+) and Q(o) are, by Lemma 1, isotopes of the same quasigroup Q. 
Hence they are isotopic. According to Albert's theorem, they are isomorphic. 

Lemma 2: Let Q(+) be an Abelian group, (p and y> its automorphisms, Q(o) 
a loop with unit e. Be a, /? permutations of the set Q and g an element of Q such that 
for every x, y c Q, 

OL(X) O P(y) = ep(x) + rp(y) + g (2) 
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Then Q(o) is the Abelian group and there exist its automorphisms <pi> ipi such that 
for every x, y € Q> 

<*(*) = <pi(x) o <x.(e), fi(x) = ipi(e) o 0(e). (3) 

Proof: Define permutations oci, fii as follows: 

ai(x) = ^ a - 1 ^ ) , (ii(x) = ipfl-Kx) + g for every x € Q. 

From (2) follows for every xe Q, 

xoy = ai(*) + 0i(y). (4) 

Thus the loop Q(o) is the principal isotope of the Abelian group Q(+) and hence­
forth Q(o) is an Abelian group. 
By (4), we can write 

x + y = tf(x)oft(y). (5) 

Thus alK*) = x * Pl\0)9 p\\y) = y* a^(O). Therefore 

x + y=xoy*a, where a = ajx(0) o / ^ (O) . (6) 
Define a mapping y, y(x) = x * a for every x € Q. Since y(x + y) = (x + y) * a = 
= xoy*a*a=x*aoy*a = y(x) oy(y\y is an isomorphism of Q(+) onto Q(o). 
Evidently, a mapping <pi = y<py~x is an automorphism of the group Q(o). 
From (2) we get <p(x) = a(x) 0 b where b = fiip-K—g). Hence <pi(x) =y<py~1(x) = 

= <py-x(x) * a = oiy-^x) ob * a = a(*o a) 0 c, where c = b * a. Thus for every 

a(*) = 9>i (x * a)* c = <Pi(x) o <pi(*a) * c = <pi(x) o <x.(e). 

Similarly we can prove the existence of an automorphism yri of the group Q(o) such 
that p(x) = yriOx;) 0 fi(e). 
This completes the proof of (3). 

Lemma 3: Let Q be a T - quasigroup and a, b e Q. Define Q(o) = Q(Ra-l,L&-s -). 
Then <2(o) is an Abelian group. Put for every x € Q, 9>I(JC) = -Ra(*)* [ to. a], y>i(*) = 
= /,&(*) • [6 . &a]. Then <pi, ipi are automorphisms of the group Q(o) and the tetrad 
(Q(o)> <pu ¥>i> ba . ba) is a T - form of the T - quasigroup Q. 
Proof: It is well known, that for every quasigroup and for every a, b e Q the quasi­
group Q(Ra-\Lb-n) is a j0 0p .^h u n j t e=D(lt Since Q(0) = Qfar1*1*-11\ Q = 

= <2(0)(*a,Lb,1). Hence for every *, y e Q, ry = Ra(x) o Lt(y). 
Be (<2(+)> <p, y>, g) any T - form of the T - quasigroup Q. Then we have for every 
x, y € Q, 

xy = <p(x) + y>(y) + g = Ra(x) o Lb(y) 

In view of Lemma 2, Q(o) is an Abelian group and permutations <piy \pi, where 
<pi(x) = Ra(x)* Ra(e) = Ra(x)* [ba. a], yi(x) = Lb(x)* Lb(e) = Lb(x)* [b . ba], are 
its automorphismus. 
For every x, y e Q we can write 

xy = Ra(x) o Lb(y) = <pi(x) o \pi(y) o [(ba . a)o(b . ba)]. 
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Further, (ba . a)o(b . ba) = R'1 (ba . a) . Ll1 (b . ba) = ba . ba. Thus (Q(o), <p\, гpь 

ba . ba) is a T - form of the T - quasigroup Q. 

Lemma 4: Let Q b e a T - quasigroup and a loop Q(o) be a principal isotope of 
the quasigroup Q, Q(o) = QtøлM). Then Q(o) is an Abelian group and the mappings 
<pi, i, where <pi(x) = a-^jфa-Ҷč), гpi(x) = ß~Kx)*ß"Ke) a г e i t s automorphisms. 
The tetrad (Q(o), <pi, щ, a_ 1(č) o ß~Ke)) is a T - form of Q. 
Proof: Since Q(o) is the principal isotope of Q, there exist elements a, b of Q such 
that a = R'1, ß = LГ 1. Further, e = ba. Now we can use Lemma 3. 

Theorem 2: Let Q be a T - quasigroup and Q(o) be a loop. Then, Q(ó) is 
a T - group of the T - quasigroup Q if and only if Q(o) is a principal isotope of Q. 

Proof: If Q(o) is a T - group of Q, then, by Lemma 1, Q(o) is a principal isotope 
of Q. Conversely, if Q(o) is a principal isotope of Q, then, by Lemma 4, Q(o) is 
a T - group of Q. 

Lemma 5: Let (Q(+), <p, гp, g) be an arbitrary T - form of a T - quasigroup Q. 

Then <p = RЄ(o), (p = Lf(o), g= O . O. 

Proof: From (1) follows <p(x) = x . гp-1 ( -g) for every x e Q. 

B u t O . ^ - Ч - ^ ^ ^ + ^ - Ч - ^ + ^ ^ O . T Һ u s ^ - Ҷ - ^ ^ ^ a n d ç ) ^ ^ ) ^ 
Similarly гp = Lf(0). Further, O . O = <p(0) + гp(0) + g =g. 

Lemma 6: Be Q a T - quasigroup, w an arbitrary element of Q. Then there 

exists a T - group Q(+) of the T - quasigroup Q such that u is zero in Q(+). 

Proof: Put Q(+) = QWu-x,Lf(U)-\i), Q(-L.) І S a i o o p having unit O, O = 

= f(u) .u=u.Ђy Theorem 2, Q(+) is the T - group of Q. 

Lemma 7: Let Q be a T-quasigroup and v be an arbitrary element of Q. Then 
there is z e Q such that zz = v if and only if there exists a T - form (Q(+), <p, гp, v) 
of the T - quasigroup Q. 

Proof: 1) Be z c Q such that zz = v. With regard to Lemma бthere is a T - form 
(ô(ö)з <P> V> S) °f Q s u c n t n a t z is zero in Q(o). By Lemma 5, g = zz = v. 
2) Be (Q(+), <p,гp,v)aT- form of Q. Then v = O . O. 

Lemma 8: Let Q be a T - quasigroup and u, v be arbitrary elements of Q. Then 
there exists a T - form (Q(+), Ru, Lv, g) of Q if and only if there is z c Q such that 
vz = zu = z. 

Proof: Let ze Q be such that v = f(z), u = e(z). Select a T - form (Q(o), <p, гp, Һ) 
such that z is zero in Q(o). Then, by Lemma 5, <p = RЄ(Z) = Ru, гp = Lf(Z) = Lv. 
If, on the contrary, (Q(+), Ru, Lv, g) is a T - form of Q, then Ru, Lv are certain 
automorphisms of Q(+). Hence Ru(0) = O = O .u, Lv(0) = 0 = v . O. 

Lemma9: Let Q be a T - quasigroup and (Q(+), <p, гp, g), (Q(ó), f, Q, h) two its 
T - forms. Let the groups Q(+) and Q(o) have the same zero. Then Q(+) = Q(o), 
<p= Ç,гp= Q,g= h. 

Proof: By Lemma 5, g=0.0 = h, <p= RЄ(0) = rj, гp = Lf(0) = Q. 
Further, xy = <p(x) + гp(y) + g = Ç(x) o Q(y) oh = <p(x) o гp(y) o g. 
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As ąo, \p are permutations, we have for every x, y e Q, x + y + g = x o y o g. 
Let u, v be arbitrary elements of Q. We can write 

u + v = u+(v — g) + g = uo(v — g)og= uo (Oo (v — g) og) = 
= u o (O + v — g + g) = uov 

Thus Q ( + ) = Q(o). 

DefìnitíonЗ: Let Q be a T - quasigroup, P its subquasigroup. A T - form 
(Q(+)> <P> W> S) of Љe T - quasigroup Q is called P - canonic if P ( + ) is subgroup 
in Q ( + ) , <p\P and гp\P are automoфhisms of P ( + ) and g - P. 

Lemma 10: Let P be a subquasigroup of a T - quasigroup Q. Let a, b be any 

elements of P. Set Q ( + ) = QC*-*-1,-V1, i). тłien the corresponding T - form 
(Q(+)> Ч>> Ъ S)i* P~ canonic. 

Proof: T - form (Q(+), <p, гp, g) exists according to Lemma 3. The element ba is 

zero in Q(+) . As P is a quasigroup, ba = O € P, hence O . 0 = g€ P. Moreover, for 
every x, y e P is Rl\x), L~b

г(y) e P. Thus z = R1 (x). LiҚy) = x + y is 
element of P. If further x + u = y, then y = RãҚx) . L~\y) so that L'1^) e P, 
and hence LьL~ľ(u) e P. But LъLү(u) = u. We have proved that P is a subgroup 
in Q(+) . By Lemma 5, <p = RЄ(oъ W = Lf(0). But e(0),f(0) € P, therefore <p\P, гp\P 

are permutations of the set P, hence automorphisms of P ( + ) . 

Theorem 3: Every subquasigroup of a T - quasigroup Q is a T - quasigroup. 

Proof.: Let P be a subquasigroup of Q and a be an arbitrary element of P. Put 

Q(+)= QLRa-l>Lf(ar\i)в By Lemrna 10 and Lemma 3, (Q(+), RЄ(a), Lf(a), a . a) 

is a P-canonic T - form of Q. Therefore (P(+), RЄ(ӣj\P, Lf(ӣj\P, a . a) is a T - form 
of P. Thus P is T - quasigroup. 

Lemma 11: Let P be a subquasigroup of a T - quasigroup Q. A T - form 

(Q(+)> Ч>> V>> s) °f Q is P - canonic if and only if O e P. 

Proof: If (Q(+), <p, гp, g) is P - canonic, then P ( + ) is a subgroup of Q ( + ) , so that 
O^ P. 
On the contrary, be O e P. Define Q(o) = QţRo-l>Lf(0r

lЛ)t By Lemma 3, there 
exists a T - form (Q(o), f, Q, h) of the T - quasigroup Q. Since O e P, f(0) e P. 
Hence, by Lemma 10, the T - form (Q(o), í , Q, h) ІS P - canonic. Asf(O) .0=0 
is zero in Q(o), from Lemma 9 follows that Q ( + ) = Q(Ö), <p= Ç, гp = Q,g = Һ.Thus 
(Q(4-)> Ç̂ J V̂J ^) -s a P - canonic T - form of Q. 

Lemma 12: LetQandPbetwoT-quasigroups. Let a mapping f, f : Q -> P, 
be an epimorphism and (Q(+), ^ , y,g) be an arbitrary T - form of Q. There are 
a, beQ such that Q(+) = QC*«-l>-VM). Define P(o) = pcяe(.гSLв(w-1,i). Then 
f : Q ( + ) -> P(o) is an epimorphism, hence P(ó) is an Abelian group. If x, y are 
arbitrary elements of Q such that S(x) = Ç(y), then £<p(x) = fç>C.v) and fгp(x) = 
= f vCv)- Define mappings ç?i, ^i as follows: For every p c P, ç?i(/>) = fçlW, V î(p) = 
= íгp(x), where x € Q such that f (x) = p. Then <p±, гpi are automorphisms of the 
group P(ó) and (P(Ö), <pi, гpi, Ç(y)) is a T - form of the quasigroup P. 
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Proof: For every x, y є Q we have 

«* + -v) = ІІKЧx). LiKy)) = .*& f(*) • iíř», í(y) = {(*) o i(ý) 
That is, f is a homomorphism of the group QЦ+) onto P(o). 
Further, f (*) . f(y) = f(ҳy) = f(ç<*) + y(y) + *) = Sф) o fy<y) O £(*). 
Obviously f(O) = e, where e is the zero of the group P(o). Let x,yeQ and f(*) = 
= f(y). Then f(*). в = f(*) . f(O) = f(y) . f(O) = f(y) . * Hence Š<p(x) o f(g) = 
= fç>(y) ö £(#)> s o tг-at i<p(x) = fç>(v). Similarly we can prove that f y)(x) = Çy>(y). 
Thus, the definition of mappings <pi, щ is correct. 
Be p, s arbitrary elements of P. There are x,y € Q such that f (*) = p, f (y) = s. We 
have <pi(p) o <pi (s) = Ç<p(x) o£<p(y)= Š(<p(x) + <p(y)) = fç<* + y) = <pi(p o s). 
Therefore <pi is an endomorphism of the group P(ó). Similarly ipi is an endomorphism 
of P(o). Moreover, ps = f(*). f(y) = fç)(*) o šip(y) o Ç(g) = <pi(p) o y>i(s) o Ç(g). 
Therefore <pi, ^i are automorphisms of P(o) and (P(o), <pi, щ, f (g)) is a T - form oҐ 
the quasigroup P. 
The following theorem is an easy consequence of Lemma 12. 

Theorem 4: If a quasigroup P is a homomorphic image of a T - quasigroup Q, 
then P is a T - quasigroup. 

Theorem 5: A cartesian product of any non - empty system of T - quasigroups 
is a T - quasigroup. 
Proof.: Let {QІ, i c 1} be a given system of T-quasigroups. For every i€ Ibe (QІ(+)> 

<PҺ y>h gi) arbitrary T - form of the T - quasigroup QІ. Define Q(+) = ПQІ(+), 
ІЄІ 

<p = П<pi, \p = Пщ. Then (Q(+), <p, y>, < gi >) is obviously a T - form of the 
ІЄІ ІЄІ 

quasigroup ПQt. 
ІЄІ 

Now we can formulate: 
Theorem 6: All T - quasigroups form a primitive class in the class of all qua-

sigroups. 

2° Abelian groups whose every isotope is a T - quasigroup 

Lemma 13: Let Q(+) be an Abelian group. Every quasigroup isotopic to Q(+) 
is a T - quasigroup if and only if the symmetric group VSQ of the set Q is generated 
by all translations and automorphisms of the group Q(+). 
Proof: Denote by G the group generated by all translations and automorphisms of 
the group Q(+) in the group Sç. As for every a, b e Q(+) and every <p € Aut Q(+) is 
La = Ra, LaLъ = La+ь, Ľa

l = L(-a), <pLa = Lą>ia)<p, it is possible to express every 
element of G in the form Luy>, where tp e Aut Q(+) and u e Q(+) are convenient 
elements. 
Let G= SQ and Q(.) be any isotope of Q(+), Q(*) = Q(+)M>v). We can 
suppose that y = 1 (Q(.)(y~,'y~1'y~,) = Q(+Уay-1>hrl»l> and quasigroups Q(.) and 
Q^yy1 V^У1) are isomorphic). There are <p, e Aut Q(+) and a, b € Q(+) such 
that a = La<p, ß = Lђtp. Put g = a + b. Then for every x, y e Q(+) we have 
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x.y = CL(X) + ß(y) = <p(x) + a + b + y)(y) = <p(x) + ip(y) + g. 

Thus Q(») is a T - quasigroup. 
On the contrary, let every isotope of the group Q(+) be a T - quasigroup. Be 
л€ SQ an arbitrary permutation. Put Q(*) = ß(+) (a*1»1). Q(*) is a T - quasi-
group, so that, by Lemma 4, there is <p e Aut Q(+) such that a = La(0)<p. There-
fore OІ€ G. Thus G = SQ. 

Lemma 14: Let Q(+) be an Abelian group satisfying one of following two 
conditions: 
(i) Q(+) has at most three elements. 
(ii) Q(+) has four elements and each of them has order 2. 
Then every quasigroup isotopic to Q(+) is a T - quasigroup. 
Proof: In view of Lemma 13, we shall prove that the group SQ is generated by all 
translations and automorphisms of the group Q(+). 

If the group Q(+) has at most two elements, then every element of the group Sç 
is a translation of the group Q(+). 
Let Q(+) have three elements. Then the group GQ(+) of all translations of Q(+) has 
three elements. The group Aut Q(+) has only two elements. The intersection 
GQ(+) П Aut Q(+) is, evidently, the unit subgroup. As the union Aut Q(+) U GQ(+) 
has four elements, the group G generated in S Q by all translations and automorphisms 
of Q(+) has at least four elements. By Lagrange's theorem, *SQ = G. 
Let Q(+) have four elements and let every (nonzero) element of Q(+) have order 2. 
The group of translations GQ(+) has four elements, the group Aut Q(+) has six 
elements and GQ(+) П Aut Q(+) = 1. Denote by G a group generated in 5 Q by the 
set Aut Q(+) U GQ(+). Let a e GQ<+), a Ф 1. If <p € Aut Q(+) , <p Ф 1, then oi<p ф Aut 

Q ( + ) , cfлp ф GQ(+), but oкp € G. Therefore G has at least fourteen elements. Since 
SQ has 24 elements, it must be G = SQ. 

Lemma 15: Let Q(+) be an Abeüan group having at least four elements. 
Let in Q(+) exist a nonzero element g of order 0(g) Ф 2. Then there exists an 
isotope Q(*) of Q(+) which is not a T - quasigroup. 

Pгoof: We have g Ф O, 0(g) Ф 2. Define a permutation a of the set Q such that 
a(O) = g, oi(g) = O and OL(X) = x for each other x € Q. Consider the principal 
isotope Q(») = Q(+)<aAA) of the group Q(+). Suppose Q(») to be a T -quasigroup. 
Then, by Lemma 4, the mapping <p, <p(x) = OL(X) — a(O) = OL(X) — g for every 
x € Q(+) , is an automorphism of the group Q(+). Especially we have <p(x — g) = 
= <p(x) — <p(g) = <p(x) — oi(g) + a(O) = <p(x) + g and <p(x - g) = CL(X—g) - g = 

= Ф) + g = «(*)• Thus OL(X — g) = CL(X) + g. (1) 
Since Q(+) has at least four elements, there exists y € Q(+) such that y фO,y Ф g, 
y Ф 2g. For such an element y is y — g Ф O, y — g Ф g and thus OL(У — g) = 
= y — g. From(7) wehavea(-y — g) = y — g = cn(y) + g = y + g. Hence-y — g= 
= y + g and hence, 0(g) = 2, which is a contradiction. 

Lemma 16: Let Q(+) be an Abelian group having at least five elements. Let 
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for every g e Q(+) be O(g) = 2. Then there exists a quasigroup Q(*) isotopic to 
Q(+) such that Q(*) is not a T - quasigroup. 
Proof: Select gi, g2 € Q(+) such that gi Ф 0,g2 Ф O, gi Ф g2. Define a permutation 
a of the set Q such that a(O) = gi, <z(gi) = g2, a.(g2) = O and OL(X) = x for each 
other x € Q(+). Suppose that Q(*) = Q ( + ) ( a Д Д ) is a T - quasigroup. Then the 
mapping cp, <p(x) = OL(X) — a(O) is an automorphism of the group Q(+). There 
exists y e Q(+) such that y Ф O, y Ф gi, y ф gг, y ф gi + gг. Since every element 
°f Q(+) bas order 2, we have y + g2 фO,y + g2Ф gi,y + g2ф g2. Thus a(y) = 

= У* *(У + gг)=У + gг. 
Further, (p(y + g2) = cc(y + g2) — a(O) = y + g2 — gi = y + g2 + gi = 
= Чtø) + <P(g2) = o-OO — a(O) — a(O) = a(y) = y. Thus y + gi + g2 = y. Hence 
gi+ gг= O, and hence, gi = gi + gi + gг = gг, which is a contradiction. 

Theorem 7: Let Q(+) be an Abelian group. Then every quasigroup isotopic 
to the group Q(+) is a T - quasigroup if and only if Q(+) satisfies one of the 
following conditions: 
(-) Q(+) n a s a t шost three elements. 
(i i) Q(+) has four elements and each of them has order 2. 
Proöf: This theorem follows directly from Lemmas 14, 15, 16. 

3° Several examples of T - quasigroups 

Theorem 8: Every Abelian group is a T - quasigroup. 
Proof: Be Q(+) any Abelian group. Then evidently (Q(+), 1, 1, O) is a T - form of 
the group Q(+). 

Defìnition 4: Let « b e a positive integer, n ^ 2. Quasigroup Q is called an 
aw - quasigroup if for every JCI, . . ., xn e Q and for every yi, . . ., yn e Q, 

(xi (x2 ( . . . (xn-i xn )))) ((((yn yn-i) . . .) y2) yi) = (8) 

= (xi (x^ ( . . . (xn-iУn)))) ((((xnyn-i) . . . )yг)yi). 

Q is called a ßn- quasigroup if 

((((^i x2) xз) . . .) xn) (yn(. . . (yз(yгyi)))) = 

= ((((Уi xг) xz)...) xn) (Уn (...(yз (Уг xi)))). (9) 

Theorem 9: Let n b e a positive integer, n ^ 2. Let Q be an OLП - quasigroup or 
ßn - quasigroup. Then Q is a T - quasigroup. 
Proof: Assume that Q is an a л - quasigroup. 

1) Be xi, . . ., xn,yi, . . .,yn arbitrary elements of Q. 

Define ai = x2(xs(. . . (xn-i xn)))y a2 = x2(xs ( . . . (xn-iyn))\ 
bi = (((ynУn-i) . . • )yг)yг, Ь2 = (((xnУn-i) . . . )yз)yг. 

Let x, y € Q. In view of (8), we can write 

Rai (x) . Lbí (y) = Ra2 (x) . Lb2 (y). 
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Thus Rӣí Ra\ (x). y = x . Lђ2 L~} (y). Hence Rax R~\ is a central regular map-
ping of Q. Let u, v be arbitrary elements of Q. There is z e Q such that uz = v-
Since RЄ(u)(u) = щ v = RгRr^(u). We can select the elements *2, . . . xn, y2, . . ., yn 

such that ai = z, a2 = e(u). Then Я a i R£(u) = ü- W e have proved that Q is 
a transitive quasigroup. 

2) Be xь • • •> *и-ъ /yъ • • •> /yя-i Ѓ1xed elements of Q. For every x,yєQ define 

* ø-y = (*i(*2 ( . . . (xn-i x)))) ((((yyn-i) • • • )^2)^1). 

According to (8), Q(o) is a commutative groupoid. Moreover, Q(o) is a principal 
isotope of Q. 
3) From 1) and 2) follows that Q is a principal isotope of some Abelian group 
Ö(+) , ô = ö ( + ) ( ö ^ д > . By (8), we have 

a(a(*i) + ß(*(x2) +ß(... + ß(*(xn-i) + ß(xn))))) + 

+ ß(ß(УÙ + *(ßЫ + a ( . . . + *(ß(Уn-i) + <Уn))))) = (10) 
= a(a(*i) + ß(oi(x2) + ß(...+ ß(*(xn-i) + ß(yn))))) + 

+ ß(ß(УÙ + *(ß(У2) + a (. . . + *(ß(yn--i) + « ) ) ) • 

Since a, /? are permutations of the set Q, from (10) easily follows 
OL(XI + ß(x2 + ß( . . . + ß(xn-i + ß (xn))))) + 
+ ß(Уl + <У2+ *(... + 0L(yП-l + *(Уn))))) = 
= OL(xi + ß(X2+ß(... + ß(xn-i + ß(Уn))))) + 

+ ß(Уi + afø + « ( . . . + *(yn-i + <xn))))). 

If WЄ pUt X2 = JCз = . . . = Xn~l = Уl = У2 = • • • = Уn = Oy WЄ gЄt for ЄVЄГy 
*Ь *n € Q, OL(XI + ß"-1 (xn)) + ßn~\0) = a (* i+ ßn'KO)) + ß^-\xn). Hencethere 
are permutationsy, ô of the set Q such that for every a, b e Q, OL (a + b) = y(a) + ò(b). 
That is, a is a quasiautomorphism of the group Q(+) and henceforth there exists an 
automorphism <p of the group Q(+) and an element gi of Q such that for every 
x e Q, OL(X) = <p(x) + gi. Similarly we can prove the existence of c Лut Q(+) and 
g2 € Q such that for every y € Q, ß(y) = ip(y) + g2. Denote g = gi + g2. Then 
xy = a(*) + ß(y) = <p(x) + гp(y) + g. Thus Q is a T - quasigroup. 
The proof for ßn - quasigroups is similar and of no principal difficulties. 

Theoгem 10: Let и b e a positive integer, n ^ 2. Let Q be a T - quasigroup. 
Then Q is an OLП - quasigroup if and only if for any (and then for every) T - form 
(Q(+)y <p, y>, g) of the quasigroup Q is <py>n-i = yxpn-i, 
Pгoof: Since Q is a T - quasigroup, the condition (8) is obviously equivalent to the 
condition 

<P2(xi) + <p(g) + <PW(X2) + . . . + yxpП--(Xn) + g + 

+ У>-(Уi) + W(g) + WV>(У2) + . • • + <py>n~KУn) = 
= <PZ(xi) + <P(g) + <PУ><P(X2) + ...+yxpn~1 (yn) + g + 

+ V̂ CУi) + W(g) + WV Ы) + . . . + <ptpn-x (xn). 

But this is equivalentto yxpn~ľ (xn) + <p n-i (yn) = çpn-i (yn) -|- cpгpn-i (Xn) which 

is equivalent to фipn-1 = yxpn-1. 
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Theorem 11: Let Q be a T-quasigroup and n a positive integer, n ^ 2. Then 
Q is a ßn - quasigroup if and only if for any (and then for every) T - form (Q(+), 

<P> У>> g) o f Q i s 4>n = Vw-

Proof: The proof is quite similar to that of Theorem 11. 
Remark: An aг - quasigroup is often called Abelian quasigroup. 

As a corollary of Theorem 10 we get: 

Theorem 12: A T-quasigroup Q is Abelian if and only if for any (and then for 

every) its T - form (Q(+), <p, y>, g) is <py> = yxp. 

Theorem 13: Let Q be a T - quasigroup and (Q(+), <p, y>, g) its T - form such 
that <p, y> have finite order in the group 5Q. Then there is a natural number n such 
that Q is a ßn - quasigroup. 

Corollary: Every finite T-quasigroup is a ßn - quasigroup for some convenient 
natural number n. 
Proof: Denote 0(<p) = k, 0(y>) = 1. Then <pкl = (<pк)1 = 1 = (ү)к = ipкl. 
Therefore, by Theorem 11, Q is ßы - quasigroup. 

Definitíon 5: Quasigroup Q is called 

Бi - quasigroup if x(yz) = y(xz) (11) 

Бг - quasigroup if (xy)z = (xz)y (12) 

Ðг - quasigroup if x(yz) = z(yx) (13) 

BĄ - quasigroup if (xy)z = (zy)x (14) 

for every x, y, z € Q. 

Theorem 14: A T - quasigroup Q is a left (right) loop if and only if for any 

(and then for every) its T - form (Q + ) , <p, y>,g) is y> = 1 (<p = 1). 

Proof: We shall prove the statement for left loops only. Let the quasigroup Q have 

a T - form (Q(+), <p, 1, g). Then for every x є Q, <p-l(— g) x= —g+x + g = x. 

Hence <p~ľ(— g) - s a -eft ^ - ü 1n Q-
On the contrary, be e a left unit in Q. Let (Q(+), <p, y>, g) be arbitrary T - form of Q. 
Then for every x € Q, x = ex = <p(e) + y>(x) + g. For x = O we get <p(e) + g = O, 
hence^ = 1. 

Theorem 15: Let a T - quasigroup Q be a left or right loop. Then the quasigroup 
Q is Abelian. 
Proof: By Theorem 14 and Theorem 12. 

Theorem 16: Let Q be a T - quasigroup. Then Q is a left (right) loop if and 
only if Q is a Бi - quasigroup (Bг - quasigroup). 
Proof: Let Q be a left loop and e be its left unit. Then, by Theorem 15, Q is an 
Abelian quasigroup. For every x,y, ze Q we have ex . yz = x(yz) = ey . xz = y(xz). 
Thus Q is a Bi - quasigroup. 
Conversely, let Q be a B\ - quasigroup and (Q(+), <p, y>, g) be a T - form of Q. 
Then, by (11), for every x, y, ze Q, <p(x) + yxp(y) + y>2(z) + g + y>(g) = <p(y) + 
+ yxp(x) + yß(z) + g + (g). Hence <p(x) + yxp(y) = <p(y) + yxp(x). For y = O we 
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get <p(x) = yxp(x). Therefore ip = 1 and, by Theorem 14, Q is a left loop. The other 
part of the proof is similar. 

Theorem 17: Every Bs - quasigroup and every BA - quasigroup is an Abelian 
quasigroup and hence a T - quasigroup. 
Proof: Be Q a quasigroup and x, -y, u, v arbitrary elements of Q. If Q is a B$ -
quasigroup, then xy . uv = v(u . xy) = v(y . xu) = xu . yz;, which is the Abelian 
identity. If Q is a 2?4 - quasigroup, then xy . uv = (w . y) x = (yz;. u)x = xu .yv. 
Theorem 18: A T - quasigroup Q is a .64 -quasigroup (B3 - quasigroup) if and only 
if for any (and then for every) its T - form (Q(+), q>, y>, g) is y> = qfi (<p = xp2). 
Proof: The proof is similar to that of Theorem 16. 
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