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tn this paper we discuss some questions arising in the transportation problem 
when solution has to be bounded by given constants. 

As in [1] we use great Latin letters to denote reed matrices of type (m, n). 
If A = fa), B = (&(,) and if % ^ 6# for every i = 1, 2, . . . m and for every 
j = 1 , 2 , . . . , n, we write A <Z B. If the sum of all elements in every line (row 
or column) of A equals the sum of all elements in the corresponding line of B, 
we write A ~ B. The null-matrix will be denoted by 0. • 

PROBLEM. Given A "> 0 and B\>0 we have to decide whether there exists 
a matrix X with O <>X <>B and X ~ A. 

We shall use the following notions: Given U = (uy) and V = (ity) we write 
U -< V if and only if 

vn ;> 0 => vi3• ;> u* ;> 0 and 

vn <. 0 =-> vn ^Ua^O 

is true for every i = 1, 2, . . . , m and for every j = 1, 2, . . . , n. If U -< V then 
V — U-< V. 
If for a given F ^ O w e have \. 

(1) V =^U1 + U, + ... +UT 

and 0 -?-- Uk~0,Uk-< V for every & -= i, 2, . . . , r then we call (I) & standard 
decomposition of V. If 0 -?-= F ^ 0 is an integer matrix (with integer elements 
only) and if no standard decomposition (1) of V with integer matrices Uk is 
possible except the trivial one with r = 1 and Ux = V, then we call V a ftoaic 
matrix. In [1] all basic matrices are found ([1], Corolary 2, I, page 192): 
V -= (%) i* feosic i/ and onZy if there are two sequences of indices il9 i2, . . . , i, and 

ji> 3%y • • • - j«? «ac& o/ £Aem containing distinct numbers only, such that 

*>iih = —vu>2 • = »«» = — * W = • • • = — V ^ y = *V, = — v y x = — l 

and tfy = 0 in att oJfter case*. 
This may be proved in connection with the following important lemma 

([1], Theorem 2, 1, page 191): 
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LEMMA: For every F such that O 9-= F ~ O it is always possible to find a 
standard decomposition 
(2) F = QlUt +Q2U2 + ... + QrUr 

• 4 -

with Qk > 0 and with basic matrices Ukfor every k = 1, 2, . . . , r. ' 
Using this lemma we may prove 
THEOREM 1: Suppose A *> O, B "> 0. Let A -^B, say ailh > bijh for same 

fixed fx andfo Then if there is a matrixXsuch that X ~ A and O <>X <,B% then 
there exists a basic matrix U — (u^) such that 

*) ikj > 0 => ay < bn 

Uxj < 0 => a# > 0 

for every i = 1, 2, . . . , m and for every j = 1, 2, . . . , n; 
2 ) ^ x < 0 

Proof: Let F = X — A so that X = A + FtmdO 9-= F ~ O. Using our lemma 
we find some standard decomposition (2) ofF. We h&vefilh < 0 and consequent
ly taking U = Uk for suitable k we have uilh<0. Now if uif > 0 then/*, > 0 
and a{j < x{j <, 6y. If Uy < 0 then^ < 0 and 0 <, x^ < aih 

REMARK I: If a basic matrix U = (uy) satisfies the conditions of theorem 1 then 
it is always possible to find a number Q > 0 such that 

% > 0 => aKi + QU{i <, bih uy < 0 =-> a{j + Quif ^ 0 

for every i = 1, 2, . . . , m and for every j = 1, 2, . . . , n. 
For any two matrices U = (uy), V = (v{i) let Pl(U9 V) denote the set 

of all pairs (i9 j) such that uy > Vy and p2(U, V\ the set of ail pairs (i, j) such 
that uq <, vih By s(U, V) we denote the sum of all u$ — vi7* where (i, j) e 
epAU.V). 

Thus the conditions 1) and 2) of theorem 1 may be written as Pl(U, O) C 
C Pi (B, A) and ft,ji) e Pl(0, U) C Pl(A, O). 
The conditions of remark 1. have the form Pl(U, O) CZP2(A + QU9 B) and 
Pl(09 U) C P2(0> A + QU)- Notice that the following is true: Pl(A + QU9B)CZ 
<ZPl(A, B), s(A + QU, B) < s(A, B). 

SOLUTION or THE PROBLEM*): Our solution of the problem (for formulation 
see above) is based on a certain construction of a sequence A = A0, Al9 . . . , 
Ak9 . . . such that O <; Ak ^ A. (k = 0, 1, . . . ) . This sequence is constructed 
term by term and will stop in the following two cases: 

1) We come to a matrix Ak such that Ak < B. Then our problem is solved 
by X = Ak. 

2) We come to a matrix Ak ^ B and choosing some fixed pair ft, jj} e 
€ Pl(Ak, B) we prove that there is no basic matrix U such that 

Pl(U,0)<ZPl(B,Ak) 
(3) and 

(hJi)ePl(0, U)<ZPl(Ak,0). 

Then from theorem 1 we conclude that our problem has no solution. 

*) for rational matrices A and B. 
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If for some Ak neither 1) nor 2) is satified then we construct Ak+1 in the 
following way: We have already chosen some (ix, j-,) ep^A^ B) and we have 
found a basic matrix U such that (3). Using remark 1 we find greatest Q > 0 
such that px(U9 0) C ^ t + qU9 B) andpt(09 U) Cp*(09 Ak + QU). Then 
putting Ak+1 = Ak + QU we have 0 <, Ak+1 ~ Ak~ A, Pi(Ak+l9 B) C 
C. Pi(Ak9 B) &nd s(Ak+l9 B) < s(Ak, B). 

From that it follows that if A and B have rational elements then our sequence 
must be finite so that after a finite number of steps we come to the case 1) or 2). 

Let us now discuss the case 2) in greater detail. Let A ^B and (ij, jt) e 
epx(A9 B). We have to decide whether there exists a basic.matrix U such 
that 

Pi(U90)CPi(B9A) 
(4) and 

(h,h)epi(0, U)<ZPi(A,0) 

On the set 3 == {1, 2, . . . , n) we define a binary relation a: for j , f e 3 
we write jaf if and only if there exists an index i = 1, 2, . . . , m such that 
(i, j) epx(A9 0) and (i, f) epx(B9 A). Let 3i be the set of all j e 3 such that 
(iu j)epx(B9 A). Let 3i be the least subset of 3 containing 3i 8UCn that if 
j e 3i a n ( l j*f * n e n f e 3i- N ° w w e c a n prove 

. THEOREM 2: .For JAe existence of a basic matrix U satisfying (4) it is necessary 
and sufficient that j t e 3i-

.Proof: Let U =-'(%) be a basic matrix satisfying (4). We can find two 
sequences of indices h, i2, . -., i8 and j l 9 j29 ..'., j8 such that Uilh = —uilh = 
= Ui2h = —Uhh = . . . = - ^ V ^ , = ft-y, = —^Vx = — 1 . _ 

We have j a e% j^j^ jBaj€9 . . . , J-a^ and consequently j t s 3X. 
Now let jj e 3X. We may find j29 j 8 , . . . , j8 such that j2 e 3i, j ^ , jaaj4, . . . , 

j«oy'i, making s at the same time as small as possible. It follows that (H, j2)e 
epx(B9 A) and that there aredsome indices ia, i8, . . . , i8 satisfying (ik9 jk) € 
epx(A9 0) and (ik,jk+i)ePi(B, A) for all £ = 2, 3, . . . , s (we put j f + 1 = £ ) . 

From the fact that s is minimal it follows that j l 9 j29 . . . , j8 are distinct indices 
and that ik ^ik+1(k = 1, 2, . . . , s — 1), i8 -?-. i^ Now putting fli;fc,fc == —1 
(fc = 1, 2, , s)9 Vi^k+X = 1 (k = 1, 2, . , . , s) &nd t?tf = 0 in all other cases 
we get an integer matrix V = (vy) satisfying the conditions (4). Making integer 
standard decomposition V = U1 + U2 + . . . + Ur in basic matrices and tak
ing U = Ui for suitable 2 we get a basic matrix U satisfying (4). 

REMARK 2: Methods given in this paper may be joined with methods given 
in [1] for an ordinary transportation problem so that we get methods for 
solving a transportation problem with given bounds. These methods will be 
treated in another paper. 
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o J E D N O M P R O B L É M U SOUVISEJÍCÍM S D O P R A V N Í M P R O B L É M E M 

S o u h r n 

V prác i se řeší tento problém: Pro d v ě nezáporné mat ice A, B s racioná lními prvky je* 
třeba rozhodnout, zdali existuje mat ice O <C X -< B, která b y se s mat icí A shodovala 
v řádkových a s loupcových součtech. 

-» 
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