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ON THE CLASSIFICATION OF 1-DIMENSIONAL MANIFOLDS 

ZDENfiK FBOLfK 

Charles University Prague 

(Received October 4, 1961) 

1. INTRODUCTION 

TA topological manifold of dimension n (or merely an w-manifold) is a Haus-
dorff connected space V such that every point of V has a neighborhood 
homeomorphic with Euclidean n-spaoe. Obviously, any point of an w-mani-
fold has arbitrarily small open neighborhoods homeomorphic with the 
Euclidean n-spaoe. 

THEOREM 1. Every compact 1-manifold is homeomorphic with the circle,. 
The proof follows at once from the fact that every compact 1-manifbld'can be 

covered by a finite number of open sets homeomorphic with Euclidean line 
( = Euclidean 1-space). 

Let V be a 1-dimensional manifold which is not compact. The following 
cases may happen: 

(1) Every countably compact subspace of V is compact. 
(2) V is not countably compact but some subspace of V is countably compact 

but not compact. 
(3) V is countably compact. 
We shall show that a 1-manifold V satisfies (1) if and only if V contains 

a countable dense set, or equivalently, V is the Euclidean line. A 1-manifold V 
satisfies (3) if and only if V is so called transfinite line. Finally, V satisfies (2) 
if and only if V is the union of an Euclidean half-line Vx and so called trans-
finite half-line V2 such that the intersection of Vx and V2 is a one-point set. 
Further, a 1-manifold satisfying (3) contains a 1-manifold satisfying (2) 
but the converse is not true. Ajialoguously, a 1-manifold satisfying (2) 
contains a 1-manifold satisfying (1) and the oonverse is not true. 

2. NATURAL ORDER OF NON-COMPACT 1-MANIFOLDS. 

We shall call an arc every space homeomorphic with a compact interval 
of real numbers; any space homeomorphic with the. Euclidean line will be 
called an open arc. 

Now let V be a non-compact 1-manifold. Let 2t be the class of all arcs J. c V. 



Using the fact that V is not compact one can prove at once the following two 
assertions: 

(4) If A and B belong to 9t, then the intersection of A and B either belongs 
to 91 or is at most a one-point set. 

(5) If A and B belong to 91 and the intersection of A and B is non-void, then 
the union of A and B belongs to 91. 

Now let z be a fixed point of V. The set of all A e 91 with an end-point z 
will be denoted by 91 (z). 

By definition of 1-manifolds there exists a neighborhood J € 91 of z. We can 
write I =I±{J I2, where I{ e 91 and Ix (\ I2 = (z). Define v 

(6) 9li (z) = {A; As%(z), A f| / i€ 91} 
One can prove at once 
(7) \J{A;Ae%(z)} = V 

Indeed, the set on the left side of (7) is both open and closed. From (7) it 
follows at once the following assertion: 

(8) If x e V, x =fc z, then there exists an A (z, x) e 91 such that £ is an end-
point of A (z, x). Moreover, clearly the set A (z, x) is uniquely determined. 
Now if x e V, x -^ z, then either A (z, x) e 9tx (z) or A (z, x)e % (z). In the 
first case we shall write x > z and in the second one z > x. If x > z, y > z, 
x 7-: y, then we write x > y if and only if A (z, x) ZD A (z, y). If x > z, y > z, 
x 7-= y, then x > y if and only if A (z, x) C A (z, y). Finally, if a; > z and y < zt 
then we put x > y. One can prove at once that > is a linear order on V and 

(9) [x, y] =-= {t; t e V, x ^ * <£ y} e 91 for every x < y. From (9) it follows 
at once that the topology of V is the order topology, that is, the family 
of all open intervals on V is a base for open sets of V. We have proved the 
following result. 

Proposition 1. Let V be a 1-manifold which is not compact. Then there 
exists a linear order > on V such that (9) is true. The topology of V is the 
order topology. 

THEOREM 2. The following conditions on a I-manifold which is not compact 
are equivalent: 

(a) V is homeomorphic with the Euclidean line. 
(b) V is a-compact (a countable union of compact subspaces). 
(c) V contains a countable dense set. 
Proof. Clearly (a) implies (b) and (b) implies (c). Let us suppose (c). From 

(7) it follows at once that there exists a sequence {An} of arcs An C V such 
that V is the union of {An} and An is "contained in the interior of A^^ It is 
easy to construct a homeomorphism of V onto the Euclidean line. 

3. CONSTRUCTION OF THE TRANSFINITE LINE 

Let T be the set of all countable ordinals. Let > be the lexicographical 
order on the cartesian product P of T and the half-open interval [0, 1) of 
real numbers. That means, (<x, x) > (ft, y) if and only if either a > /? (in T) or 
a = /? and x > y (in [0, 1)). The order > defines in P the order topology. 
This space will be called the transfinite half-line. It is easy to see that every 
closed section {p;psP9 p ^ q},qeP, of Pis an arc. From this fact it follows 
at once that 

(10) P — (0, 0) is a 1-manifold. 



One can prove easily: ^ 
(11) Every countable subset of the transfinite half-line is contained in an 

arc of P. 
Indeed, if N C P is countable, then there exists (because cox is not cofinal 

with co0) 
OQ = sup {a; (a, x) € N} e T 

Clearly N is contained in [(0,0), (a + 1, 0)). From (II) it follows the following 
assertions: 

(12) The transfinite half-line is countably compact. 
Now the transfinite line will be defined. Let P_ be the set of all pairs (p, —), 

p e P. Let us define (x, —) > (y, —) if and only if y > x. Let R be the union 
of P and P— Identifying the points (0, 0) and ((0, 0,), —) we obtain the set L. 
Defining an order in L such that x > y if and only if either x,yeP and x > y 
inPorx, yeP- and y > xorxeP, yeP-, x -?-= y (the symbol (0,[0) denotes 
also the element of L containing (0, 0)): The set L with the order topology 
will be called the transfinite line. Clearly P and P_ are subspaces of L. Thus 
the transfinite line was obtained by sticking two copies of the transfinite 
half-line. 

From the definition of the transfinite line and from (10), (11) and (12) it 
follows at once the following result. 

Proposition 2. The transfinite line is a countably compact l7manifold which 
is not compact. The closure of every countable subset of L is compact. 

4. THE MAIN THEOREM 

Let V be a 1-manifold which is not compact and let z be a point of V. Let > 
be a linear order in V satisfying (6). Put 

(13) 7X ={x;xeV, x^z) 
(U)I2 ={x;xeV, x<g>z) 

We shall prove that Zi (i = 1, 2) is the Euclidean half-line or the transfinite 
half-line. 

Let F be the set of all homeomorphical mappings which transform open 
sections of the transfinite halb-line P (i. e., either the sets of the form {p; p e P, 
p < q} or P) onto open sections of /-[. Thus any feF is defined on an open 
section U of P and f [U] is an open section of Iv For / , g e F we shall write 
f'D g, if g is a restriction off. One ean prove at once that any linearly ordered 
(by 3 ) subset Fx of F has an upper bound in F. Thus there exists a maximal 
element / in F. Let D be the domain of the definition of/. Thus either D = P 
or D is an open section of P. We shall prove 

( 1 5 ) / [ 2 ) ] = / 1 
If D ^ P, then (12) follows at once from the maximality of/. If -D-— P, then 
/ [P] is an open section of Iv I f / [D] # Il9 then one can choose a point x in 
Ix — / [D] and an arc A C I\ with end-points z and x. Clearly/ [D] C A. But 
it is impossible because / [P] contains no countable dense set and any subset 
of A contains a countable dense set. 

Thus we have proved that Ii is either the Euclidean half-line or the trans­
finite half-line. Thus we have proved the following main result. 



THEOREM 3. Let Vbe a 1-manifold which is not compact. Then exactly one of the 
conditions (1)—(3) is fulfilled. (1) is fulfilled if and only if V is the Euclidean 
line. (3) is fulfilled if and only if V is the transfinite line. (2) is fulfilled if and 
only if V is the union of the Euclidean half-line Ix and the transfinite half-line 
I2 such that the intersection of Ix and I2 is a one-point set. 

5. T R A N S F I N I T E PLANE 

By the transfinite plane we mean the topological product of two transfinite 
lines. Clearly the transfinite plane is a 2-manifold. 

Proposition 3. The transfinite plane L2 is countably compact but not compact. 
Proof. L2 is not compact because the transfinite line is not. On the other 

hand one can prove at once that every countable subset of L2 is contained 
in a compact set. This follows from Proposition 1. 

From Proposition 3 we have that the transfinite plane contains no countable 
dense set. One can prove that the transfinite plane is a normal space. Also 
one can prove that every 1-manifold is a normal space. I do not know whether 
every 2-manifold is a normal space. *-

Note. Of course, other examples of non-separable 2-manifolds are well-
known. 

KLASIFIKACE J E D N O R O Z M Ě R N Ý C H V A R I E T 

Souhrn 

n-rozměrnou varietou se rozumí Hausdorffův souvislý topologický prostor, jehož 
každý bod má okolí homeomorfní s w-rozměrným Eukleidovským prostorem. V článku 
je dokázáno, že jednorozměrná varieta je kompaktní tehdy a jen tehdy, je-li topologic­
kou kružnicí. Nekompaktní jednorozměrná varieta je bud homeomorfní s Eukleidov­
skou přímkou (to nastane právě tehdy, jestliže obsahuje spočetnou hustou množinu, 
nebo ekvivalentně, je a-kompaktní), nebo je „transfinitní přímkou "(to nastane právě 
tehdy, jestliže je spočetně kompaktní) a nebo vznikne slepením Eukleidovské polo-
přímky a „transfinitní polopřímky" (to nastane právě tehdy> není-li spočetně kom­
paktní, ale obsahuje spočetně kompaktní množinu, která není kompaktní). Přitom 
transfinitní polopřímka se dá sestrojit z prostoru všech spočetných ordinálních čísel 
spojením každých dvou sousedních bodů uzavřenou úsečkou a transfinitní přímka se 
sestrojí „slepením" dvou transfinitních polopřímek. 

Topologický součin dvou transfinitních přímek je příkladem neseparabilní plochy 

О КЛАССИФИКАЦИИ МНОГООБРАЗИЙ РАЗМЕРНОСТИ 1. 

Р е з ю м е 

В статье дается полная классификация многообразий размерности 1. 
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