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WEAK∗-CONTINUOUS DERIVATIONS
IN DUAL BANACH ALGEBRAS

M. Eshaghi-Gordji1, A. Ebadian2, F. Habibian3, and B. Hayati4

Abstract. LetA be a dual Banach algebra. We investigate the first weak∗-continuous
cohomology group of A with coefficients in A. Hence, we obtain conditions on
A for which

H1
w∗ (A,A) = {0} .

1. Introduction

Let A be a Banach algebra and let X be a Banach A-bimodule. The right and
left actions of A on the dual space X∗ of X can be defined as follows

〈fa, b〉 = 〈f, ab〉 , 〈af, b〉 = 〈f, ba〉 (a, b ∈ A, f ∈ X∗) .
Then X∗ becomes a Banach A-bimodule. For example, A is a Banach A-bimodule
with respect to the product in A. Then A∗ is a Banach A-bimodule.

The second dual space A∗∗ of a Banach algebra A admits a Banach algebra
product known as the first (left) Arens product. We briefly recall the definition of
this product.

By [1], for m, n ∈ A∗∗, the first (left) Arens product indicated by mn is given
by

〈mn, f〉 = 〈m,nf〉 (f ∈ A∗) ,
where nf as an element of A∗ is defined by

〈nf, a〉 = 〈n, fa〉 (a ∈ A) .
A Banach algebra A is said to be dual if there is a closed submodule A∗ of A∗

such that A = A∗∗. Let A be a dual Banach algebra. A dual Banach A-bimodule
X is called normal if, for every x ∈ X, the maps a 7−→ a · x and a 7−→ x · a are
weak∗-continuous from A into X. For example, if G is a locally compact topological
group, then M(G) is a dual Banach algebra with predual C0(G). Also, if A is an
Arens regular Banach algebra, then A∗∗ is a dual Banach algebra with predual A∗.

If X is a Banach A-bimodule then a derivation from A into X is a linear map
D, such that for every a, b ∈ A, D(ab) = D(a) · b+a ·D(b). If x ∈ X, and we define
δx : A → X by δx(a) = a · x− x · a (a ∈ A), then δx is a derivation. Derivations
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of this form are called inner derivations. A Banach algebra A is amenable if every
bounded derivation from A into dual of every Banach A-bimodule X is inner;
i.e., H1(A, X∗) = {0}, [10]. Let n ∈ N, then a Banach algebra A is n-weakly
amenable if every (bounded) derivation from A into n-th dual of A is inner; i.e.,
H1(A,A(n)) = {0} (see [4]). A dual Banach algebra A is Connes-amenable if every
weak∗-continuous derivation from A into each normal dual Banach A-bimodule
X is inner; i.e., H1

w∗(A, X) = {0}, this definition was introduced by V. Runde
(see Section 4 of [15] or [6] and [7]). In this paper we study the weak∗-continuous
derivations from A into itself when A is a dual Banach algebra. Hence, we obtain
conditions on A for which the following holds
(∗) H1

w∗(A,A) = {0} .
One can see that every Connes-amenable dual Banach algebra satisfies in (∗).

We have already some examples to show that the condition (∗) does not imply
Connes-amenability (see Corollary 2.3).

Example 1.1. Let B be a von-Neumann algebra. Then H1
w∗(B,B) ⊆ H1(B,B) =

{0} (Theorem 4.1.8 of [16]). Thus B satisfies (∗).

Example 1.2. Let A be a commutative semisimple dual Banach algebra, then by
commutative Singer-Warmer theorem, (see for example [2, Section 18, Theorem
16]) we have H1(A,A) = {0}, so A satisfies in (∗).

Let now A be a commutative Banach algebra which is Arens regular and let A∗∗
be semisimple. Trivially A∗∗ is commutative. Then A∗∗ is a dual Banach algebra
which satisfies (∗).

Let A be a Banach algebra. The Banach A-submodule X of A∗ is called left
introverted if A∗∗X ⊆ X (i.e. X∗X ⊆ X). Let X be a left introverted Banach A−
submodule of A∗, then X∗ by the following product is a Banach algebra:

〈x′y′, x〉 = 〈x′, y′ · x〉 (x′, y′ ∈ X∗, x ∈ X) .
(See [1] for further details.) For each y′ ∈ X∗, the mapping x′ 7−→ x′y′ is
weak∗-continuous. However, for certain x′, the mapping y′ 7−→ x′y′ may fail
to be weak∗-continuous. Due to this lack of symmetry the topological center Zt(X∗)
of X∗ is defined by

Zt(X∗) := {x′ ∈ X∗ : y′ 7−→ x′ y′ : X∗ → X∗ is weak∗-continuous} .
See [5] and [12] for further details. If X = A∗, then Zt(X∗) = Zt(A∗∗) is the left
topological center of A∗∗.

2. Main results

In this section we study the first weak∗-continuous cohomology group of A with
coefficients in A, when A is a dual Banach algebra. Indeed we show that an Arens
regular Banach algebra A is 2-weakly amenable if and only if the second dual of A
holds in (∗). So we prove that a dual Banach algebra A holds in (∗) if it is 2-weakly
amenable.

We have the following lemma for the left introverted subspaces.
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Lemma 2.1. Let A be a Banach algebra and let X be a left introverted subspace
of A∗. Then the followings are equivalent.

(a) X∗ is a dual Banach algebra.
(b) Zt(X∗) = X∗.
(c) X̂ the canonical image of X in its bidual, is a right X∗-submodule of X∗∗.

Proof. (a)⇐⇒ (b) It follows from 4.4.1 of [15].
(b) → (c) Let x ∈ X, x′ ∈ X∗ and let y′α

weak∗−−−−−→ y′ in X∗. Then by (b),
x′y′α

weak∗−−−−−→ x′y′ in X∗. So we have

〈x̂x′, y′α〉 = 〈x̂, x′y′α〉 = 〈x′y′α, x〉 → 〈x′y′, x〉 = 〈x̂, x′y′〉 = 〈x̂x′, y′〉 .

It follows that x̂x′ : X∗ → C is weak∗-continuous. Thus x̂x′ ∈ X̂.
(c) =⇒ (b) Let x′ ∈ X∗ and let y′α

weak∗−−−−−→ y′ in X∗. Then for every x ∈ X, we
have

〈x′y′α, x〉 = 〈y′α, xx′〉 → 〈y′, xx′〉 = 〈x′y′, x〉 .

Then (b) holds. �

Let G be a locally compact topological group, then the dual Banach algebra
M(G) is Connes-amenable if and only if L1(G) is amenable (see Section 4 of [15]).
Also L1(G) is always weakly amenable (see [11] or [8]). In the following we show
that M(G) has condition (∗).

Theorem 2.2. For every locally compact topological group G, M(G) has the
condition (∗).

Proof. Let D : M(G) → M(G) be a weak∗-continuous derivation, since L1(G)
is a two sided ideal in M(G), then for every a, b ∈ L1(G), we have D(ab) =
D(a) · b+ a ·D(b) belongs to L1(G). We know that for every (bounded) derivation
D : L1(G)→ L1(G), there is a µ ∈M(G) such that for every a ∈ L1(G), D(a) =
aµ − µa, [13, Corollary 1.2]. On the other hand L1(G) is weak∗-dense in M(G),
and D is weak∗-continuous. Then D(a) = aµ− µa for all a ∈M(G). �

Corollary 2.3. If G is a non-amenable group, then M(G) is a dual Banach algebra
satisfies in (∗), but is not Connes-amenable.

Theorem 2.4. Let A be a Banach algebra and let X be a left introverted A-submodule
of A∗ such that D∗|X : X → A∗ taking values in X for every derivation D : A → X∗.
If Zt(X∗) = X∗, then the followings are equivalent.

(a) X∗ has the condition (∗).
(b) H1(A, X∗) = {0}.

Proof. (a) =⇒ (b) Let D : A → X∗ be a (bounded) derivation. Then, by Proposi-
tion 1.7 of [4], D∗∗ : A∗∗ → (X∗)∗∗ the second transpose of D is a derivation. We
define D1 : X∗ → X∗ by

〈D1(x′), x〉 = 〈D∗∗(x′), x̂〉 (x′ ∈ X∗, x ∈ X) .
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Since Zt(X∗) = X∗, then by Lemma 2.1, X̂ is a X∗-submodule of X∗∗. Then for
every x′, y′ ∈ X∗ and x ∈ A∗, we have

〈D1(x′y′), x〉 = 〈D∗∗(x′y′), x̂〉 = 〈D∗∗(x′)y′, x̂〉+ 〈x′D∗∗(y′), x̂〉

= 〈D∗∗(x′), y′x̂〉+ 〈D∗∗(y′), x̂x′〉 = 〈D∗∗(x′), ŷ′x〉+ 〈D∗∗(y′), x̂x′〉
= 〈D1(x′), y′x〉+ 〈D1(y′), xx′〉 = 〈D1(x′)y′, x〉+ 〈x′D1(y′), x〉 .

So D1 is a derivation. Now let x′α
weak∗−−−−→ x′ in X∗. Since D∗∗ is weak∗-continuous,

then for every x ∈ X, we have

lim
α
〈D1(x′α), x〉 = lim

α
〈D∗∗(x′α), x̂〉 = 〈D∗∗(x′), x̂〉 = 〈D1(x′), x〉 .

It follows that D1 is weak∗-weak∗-continuous. Then there exists x′ ∈ X∗ such that
D1 = δx′ , so D = δx′ .

(b) =⇒ (a) Let D : X∗ → X∗ be a weak∗-continuous derivation, then D |A : A →
X∗ is a bounded derivation. Thus, there is x′ ∈ X∗ such that D(â) = âx′ − x′â
for every a ∈ A. Since X∗ is a dual Banach algebra, then δx′ : X∗ → X∗

is weak∗-continuous. On the other hand Â is weak∗-dense in X∗, and D is
weak∗-continuous, then we have D = δx′ . �

Corollary 2.5. Let A be an Arens regular Banach algebra, then A∗∗ has the
condition (∗) if and only if A is 2-weakly amenable.

Theorem 2.6. Let A be a dual Banach algebra. If A is 2-weakly amenable, then
A has the condition (∗).

Proof. Let A be a dual algebra with predual A∗, and let D : A → A be a
weak∗-continuous derivation, then D is bounded. In other wise, there exists a
sequence {xn} in A such that limn ‖xn‖ = 0 and limn ‖D(xn)‖ =∞. By uniform

boundedness theorem, D(xn)
weak∗
−−9 0. On the other hand, weak∗− limn xn =

0, therefore D is not weak∗-continuous, which is a contradiction. The natural
embedding :̂ A → A∗∗ is an A-bimodule morphism, then ̂ oD : A → A∗∗ is a
bounded derivation. Since A is 2-weakly amenable, then there exists a′′ ∈ A∗∗ such
that ̂oD = δa′′ . We have the following direct sum decomposition

A∗∗ = A⊕A∗⊥

as A-bimodules, [9]. Let π : A∗∗ → A be the projection map. Then π is an
A-bimodule morphism, so that D = δπ(a′′). �

In the following (example 1) we will show that the converse of Theorem 2.6 does
not hold.

Examples

1 Let ω : Z→ R define by ω(n) = 1 + |n| and let

`1(Z, ω) =
{∑
n∈Z

f(n)δn : ‖ f‖ω =
∑
|f(n)|ω(n) <∞

}
.
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Then `1(Z, ω) is a Banach algebra with respect to the convolution product defined
by the requirement that

δmδn = δmn (m,n ∈ Z) .
We define

`∞
(
Z,

1
ω

)
=
{
λ =

∑
n∈Z

λ(n)λn : sup |λ(n)|
ω(n) <∞

}
,

and
C0(Z, 1

ω
) = {λ ∈ l∞(Z, 1

ω
) : |λ|

ω(n) ∈ C0(Z)} .

Then A = `1(Z, ω) is an Arens regular dual Banach algebra with predual C0(Z, 1
ω )

[5].A is commutative and semisimple, thenA has the condition (∗) (see Example 1.2).
On the other hand, by [5], A is not 2-weakly amenable. It follows that A∗∗ does
not have the condition (∗).

2 The algebra C(1)(I) consists of the continuously differentiable functions on
the unit interval I = [0, 1]; C(1)(I) is a Banach function algebra on I with respect
to the norm ‖f‖1 = ‖f‖I + ‖f ′‖I (f ∈ C(1)(I)). By Proposition 3.3 of [4], C(1)(I)
is Arens regular but it is not 2-weakly amenable. Thus by Corollary 2.5 above,
C(1)(I)∗∗ is a dual Banach algebra which does not have the condition (∗).

3 For a function f ∈ L1(T), the associated Fourier series is (f̂(n) : n ∈ Z). For
α ∈ (0, 1) the associated Beurling algebra Aα(T) on T consists of the continuous
functions f on T such that ‖f‖α =

∑
n∈Z | f̂(n) | (1+ | n |)α <∞. By Proposition

3.7 of [4], Aα(T) is Arens regular and 2-weakly amenable. Then by applying
Corollary 3.5 above, Aα(T)∗∗ has the condition (∗).
Acknowledgement. The authors would like to express their sincere thanks to
referee for his/her helpful suggestions and valuable comments to improve the
manuscript.
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