
Kybernetika

Saeed Ketabchi; Hossein Moosaei
Computing minimum norm solution of a specific constrained convex nonlinear
problem

Kybernetika, Vol. 48 (2012), No. 1, 123--129

Persistent URL: http://dml.cz/dmlcz/142066

Terms of use:
© Institute of Information Theory and Automation AS CR, 2012

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped
with digital signature within the project DML-CZ: The Czech Digital Mathematics
Library http://project.dml.cz

http://dml.cz/dmlcz/142066
http://project.dml.cz


KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 1 , PAGES 1 2 3 – 1 2 9

COMPUTING MINIMUM NORM SOLUTION
OF A SPECIFIC CONSTRAINED CONVEX
NONLINEAR PROBLEM

Saeed Ketabchi and Hossein Moosaei

The characterization of the solution set of a convex constrained problem is a well-known
attempt. In this paper, we focus on the minimum norm solution of a specific constrained convex
nonlinear problem and reformulate this problem as an unconstrained minimization problem by
using the alternative theorem.The objective function of this problem is piecewise quadratic,
convex, and once differentiable. To minimize this function, we will provide a new Newton-type
method with global convergence properties.

Keywords: solution set of convex problems, alternative theorems, minimum norm solution,
residual vector
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1. INTRODUCTION

In 1988, Mangasarian [6] has characterized the solution set of convex programs for
twice continuously differentiable convex functions. This characterization described in
the following theorem (see [6]), can be applied to obtain the minimum norm solution of
convex optimization problem.

Theorem 1.1. Let S ⊆ Rn be an open convex subset, f : S → R be a differentiable
convex function and X ⊆ S be any convex subset. Consider the problem: minx∈X f(x).
Take that the solution set of this problem is denoted by X∗ and x∗ ∈ X∗. Then,

X∗ =
{
x ∈ X : ∇f(x∗)T x∗ = ∇f(x∗)T x,∇f(x∗) = ∇f(x)

}
. (1)

At first, in section 2 of this paper we have a theorem characterizing the solution
set of a specific convex nonlinear program. It continues by determining the solution of
minimum norm for this problem, using alternative theorem and finally in section 3, we
will give an example to test the results numerically.

In this article, all vectors will be column vectors and we denote the n-dimensional
real space by Rn. By using A†, we denote the Moore–Penrose pseudoinverse of matrix
A. The symbols AT , ‖.‖ and ‖.‖∞ will denote transpose of matrix A, and Euclidean
norm and ∞ norm respectively, and Ai will denote the ith row of matrix A. By using
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Null(A), we denote the null space of a matrix A, which is the set of all vectors x for
which Ax = 0. For x, y ∈ Rn, x > y means that xi > yi for i = 1, 2, . . . , n. In vector
a ∈ Rn, the plus function a+ is defined as (a+)i = max{0, ai}, i = 1, 2 . . . n and the
scalar product of vectors c and x is denoted by cT x. ∇f(x0)T d is called directional
derivative of f in the direction d at x0 where ∇f(x0) is the gradient of f at x0.

2. ALTERNATIVE THEOREMS AND MINIMUM NORM SOLUTION OF A CON-
VEX OPTIMIZATION PROBLEM

In this section, we use Theorem 1.1 for a convex programming to study the algorithm
that looks for minimum norm solution to a specific constrained convex nonlinear pro-
gramming. We start by considering the following programming.

min
x

f(x) =
1
2
‖(Qx− d)+‖2 (2)

subject to A1x ≤ b1,

A2x = b2,

x ≥ 0,

where Q, A1 and A2 are m×n, m1×n and m2×n full rank matrices respectively, and
d ∈ Rm, b1 ∈ Rm1 and b2 ∈ Rm2 are fixed vectors.

Suppose that X = {x ∈ Rn : A1x ≤ b1, A2x = b2, x ≥ 0} and X∗ is the solution set
to problem (2).

Lemma 2.1. Let X∗ 6= ∅ and x∗ ∈ X∗, then there exist two submatrices Q1, Q2 of Q
and two subvectors d1, d2 of d respectively, such that for each solution point x ∈ X∗,
we have

(Q1x− d1)+ = 0, (Q2x− d2) > 0, (3)
d2

T (Q2x− d2) = dT (Qx∗ − d).

P r o o f . By using Theorem 1.1, if x ∈ X∗ then ∇f(x∗) = ∇f(x),∇f(x∗)T x∗ =
∇f(x∗)T x this implies:

QT (Qx− d)+ = QT (Qx∗ − d)+, (4)
x∗T QT (Qx∗ − d)+ = xT QT (Qx∗ − d)+, (5)

from (4), we obtain (Qx − d)+ = (Q†)T QT (Qx∗ − d)+. We use F to denote (Q†)T QT .
After some rearrangement, we can rewrite F and d in the following form

F =
[

F1

F2

]
, d =

[
d1

d2

]
, (6)

where F1(Qx∗ − d)+ = 0 and F2(Qx∗ − d)+ > 0. Thus, for each x ∈ X∗ we have

(Qx− d)+ =
[

F1(Qx∗ − d)+
F2(Qx∗ − d)+

]
. This implies that there exist two submatrices Q1, Q2
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of Q and two subvectors d1, d2 of d for which (Q1x − d1)+ = F1(Qx∗ − d)+ = 0 and
(Q2x− d2)+ = F2(Qx∗ − d)+. Therefore, (Q1x− d1) ≤ 0, and (Q2x− d2) > 0.
Moreover, since ‖(Qx∗−d)+‖2 = ‖(Qx−d)+‖2, from formulas (4), (5) we obtain dT (Qx−
d)+ = dT (Qx∗ − d)+ and then we have d2

T (Q2x− d2) = dT (Qx∗ − d)+. Thus, x ∈ X∗

satisfies the system (3), and our proof is complete. �

The equation (Q1x− d1)+ = 0 implies that Q1x ≤ d1 and the equation
(Q2x − d2)+ = F2(Qx∗ − d)+ implies that Q2x = F2(Qx∗ − d)+ + d2. Also, from
d2

T (Q2x − d2)+ = dT (Q2x
∗ − d2)+ we obtain d2

T (Q2x − d2) = dT (Qx∗ − d)+. On
the other hand, if x ∈ X and it also satisfies system (3), then by using (Qx − d)+ =
(Q†)T QT (Qx∗ − d)+, we will have ‖(Qx − d)+‖ = ‖(Qx∗ − d)+‖. Hence, x ∈ X∗, and
we have proven the following theorem.

Theorem 2.2. Suppose that the conditions of Lemma 2.1 hold, and assume that p∗ =
(Qx∗ − d)+. Then, X∗ is characterized by the following system

A1x ≤ b1, Q1x ≤ d1,

A2x = b2, Q2x = F2p
∗ + d2 , d2

T Q2x = dT p∗ + d2
T d2,

x ≥ 0.
(7)

We can, therefore, rewrite (7) as a linear system

Ax ≤ b, (8)
Aeqx = beq,

x ≥ 0,

where A =
[

A1

Q1

]
, b =

[
b1

d1

]
, Aeq =

 A2

Q2

d2
T Q2

 and beq =

 b2

F2p
∗ + d2

dT p∗ + dT
2 d2

 .

The alternative system to (8) is

Aeq
T u−AT v ≤ 0, beq

T u− bT v = ρ > 0, v ≥ 0, (9)

where ρ is an arbitrary fixed positive number.
As we show below, the alternative system can be applied to obtain the minimum

norm solution of (2). To do so, we introduce the following constrained minimization
problem for the residual vector of system (9). Find

min
u,v≥0

g(u, v), (10)

where

g(u, v) ≡ 1
2

(
‖(Aeq

T u−AT v)+‖2 + |(beq
T u− bT v)− ρ|2

)
.
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By combining the objective function of (10) and constraints v ≥ 0 into a penalty
function, we can define the penalty function as

min
u,v

g̃(u, v), (11)

where

g̃(u, v) ≡ 1
2

(
‖(Aeq

T u−AT v)+‖2 + |(beq
T u− bT v)− ρ|2 + µ‖(−v)+‖2

)
.

We will minimize the objective function of (11) without constraints for a series of in-
creasing values of µ.

Theorem 2.3. Suppose X∗ 6= ∅ and x∗ ∈ X∗, also suppose that the minimum norm
solution of (2) is denoted by x̂, then

x̂ =
(Aeq

T u∗ −AT v∗)+
(ρ− beq

T u∗ + bT v∗)
, (12)

where
2664 u∗

v∗

3775 is the solution of (11).

P r o o f . The objective function to problem (10) is a convex piecewise quadratic and is

bounded from below by 0. Thus, this problem has a global solution
2664 u∗

v∗

3775 and since g

is convex, then ∂g
∂u (u∗, v∗) = 0 and ∂g

∂v (u∗, v∗) ≥ 0. These relations imply that

Aeq(Aeq
T u∗ −AT v∗)+ − beq(ρ− beq

T u∗ + bT v∗) = 0, (13)

−A(Aeq
T u∗ −AT v∗)+ + b(ρ− beq

T u∗ + bT v∗) ≥ 0. (14)

Since X∗ 6= ∅ then the system (9) is infeasible. This implies that g(u∗, v∗) > 0 and
therefore (ρ− beq

T u∗ + bT v∗) > 0 (see[2, 3]). Thus from (13) and (14) we obtain x̂ ≥ 0

and it satisfies the system (8). Moreover, since x̂ = (Aeq
T u∗−AT v∗)+

(ρ−beq
T u∗+bT v∗)

, then the following
relation holds for x̂ (see[8]).

x̂− (Aeq
T u∗ −AT v∗)+

(ρ− beq
T u∗ + bT v∗)

≥ 0, (15)

x̂T (x̂− (Aeq
T u∗ −AT v∗)+

(ρ− beq
T u∗ + bT v∗)

) = 0, (16)

but, from (15) and (16) we conclude that x̂ satisfies the KKT optimality conditions for
minimum norm solution to the system (8) and this implies that x̂ is minimum-norm
solution of (2) and so the proof is complete. �
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3. AN EXAMPLE AND NUMERICAL RESULTS

In this section, we begin our discussion on method given in above algorithm, regarding
convex programming, by considering the case where only equality constraints are present.
Let us now consider the following equality-constrained nonlinear problem

min
x

f(x) (17)

subject to Sx = s,

x ≥ 0,

where f(x) ≡ 1
2‖(Qx−d)+‖2, Q and S are m×n and k×n full rank matrices respectively,

and d ∈ Rm and s ∈ Rk are fixed vectors.
The objective function to problem (10) is g(u, v) which is piecewise quadratic, convex

and once differentiable. Suppose that u and w ∈ Rm. For gradient of g(u, v) we have

‖∇g(u, v)−∇g(w, t)‖ ≤ ‖B‖‖BT ‖(‖u− w‖2 + ‖v − t‖2)
1
2 ,

where B=

2664 Aeq

−A

3775. This means that ∇g is globally Lipschitz continues with a constant

K = ‖B‖‖BT ‖. Thus, for this function we can define the generalized Hessian matrix
which is a symmetric positive semidefinite matrix of the form: [7, 8]

∇2g(u, v) = BD(z)BT ,

where D(z) denotes a diagonal matrix with i-diagonal element, then zi equals to 1 if
(Aeq

T u−AT v)i > 0, otherwise zi = 0.
Similarly, ∇g̃(u, v) is globally Lipschitz continuous and the generalized Hessian of

g̃(u, v) is
∇2g̃(u, v) = BT D(z)B + µD̃(z),

where D̃(z) denotes a diagonal matrix whose ith diagonal entry zi is equal to 1 if (−v)i >
0; zi is equal to 0 if (−v)i ≤ 0.
par Therefore, we can use the generalized Newton method to solve this problem [4, 5].

In the following algorithm we apply the generalized Newton method with a line-search
based on the Armijo rule [1].

Algorithm: Generalized Newton Method with the Armijo Rule. Choose any
y0 = [u0

>, v0
>]> and ε > 0, i = 0;

while ‖∇g̃(yi)‖∞ ≥ ε

Choose αi = max{c, cδ, cδ2, . . .} such that the next inequality holds.

g̃(yi)− g̃(yi + αipi) ≥ −δη∇g̃(yi)
T
pi,

where pi = −∇2g̃(yi)−1∇g̃(yi), c > 0 is a constant, δ ∈ (0, 1) and η ∈ (0, 1).
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yi+1 = yi + αipi,

i = i + 1;

end————————————————————————————–

In this algorithm, the generalized Hessian may be singular, thus we use a modified
Newton direction Choleski factorizations as follows:

MT M = (∇2g̃(yk) + γI), pk = −(MT M)−1∇g̃(yk),

where M is an upper triangular matrix, γ is a small positive number and I is the identity
matrix.

Now, we next give an example to illustrate this strategy:

Example 3.1. Consider problem (17) for which,

Q =
[

1 0 − 2 1 0
0 −1 0 2 −1

]
, d =

[
1
1

]
,

S =
[

0 3 0 − 2 −1
2 0 −5 3 0

]
, s =

[
0
0

]
.

Define the vector x∗ =
[

1 1 1 1 1
]T and note that Qx∗ = 0, ‖(Qx∗ −

d)+‖ = 0 and Sx∗ = 0. From these relations we may be able to tell that x∗ is a global
minimizer of (17). Also, it is obvious that x̂ =

[
0 0 0 0 0

]T is minimum
norm solution of (17).

Here, we will try to obtain the minimum norm solution of this problem by using our
approach. Since Null(Q) = {0} and p∗ = (Qx∗ − d)+ = 0, we will have, A = Q, b = d
and Aeq = S, beq = s. Thus,

g(u, v) =
1
2
(‖(ST u−QT v)+‖2 + |(sT u− dT v)− ρ|2)

=
1
2
(‖(ST u−QT v)+‖2 + |dT v + ρ|2).

By solving the minu,v≥0 g(u, v) problem, we obtain

u∗ =
[

3.9096e− 016
3.9501e− 016

]
, v∗ =

[
1.1590e− 015
−6.9321e− 016

]
. Therefore, we have

x̂ =
(ST u∗ −QT v∗)+

ρ + dT v∗
=

1
ρ


0

4.7969e− 016
3.4289e− 016
6.3055e− 016

0

 .

It shows that ‖x̂‖ = 8.6328e−016
ρ ≈ 0. Thus, x̂ is the minimum norm solution of (17).
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