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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 1 , PAGES 1 0 5 – 1 2 2

CHANCE CONSTRAINED PROBLEMS:
PENALTY REFORMULATION AND PERFORMANCE
OF SAMPLE APPROXIMATION TECHNIQUE

Martin Branda

We explore reformulation of nonlinear stochastic programs with several joint chance con-
straints by stochastic programs with suitably chosen penalty-type objectives. We show that
the two problems are asymptotically equivalent. Simpler cases with one chance constraint and
particular penalty functions were studied in [6, 11]. The obtained problems with penalties and
with a fixed set of feasible solutions are simpler to solve and analyze then the chance con-
strained programs. We discuss solving both problems using Monte-Carlo simulation techniques
for the cases when the set of feasible solution is finite or infinite bounded. The approach is
applied to a financial optimization problem with Value at Risk constraint, transaction costs
and integer allocations. We compare the ability to generate a feasible solution of the original
chance constrained problem using the sample approximations of the chance constraints directly
or via sample approximation of the penalty function objective.

Keywords: chance constrained problems, penalty functions, asymptotic equivalence, sam-
ple approximation technique, investment problem

Classification: 93E12, 62A10

1. INTRODUCTION

Stochastic programming treats problems where optimization and uncertainty appears
together. Such problems arise in economy, finance, industry, agriculture, logistics and
civil engineering, cf. [24, 26].

In general, we consider the following program with a random factor

min {f(x) : x ∈ X, gi(x, ω) ≤ 0, i = 1, . . . , k} , (1)

where gi, i = 0, . . . , k, are real functions on Rn × Rn′ , X ⊆ Rn and ω ∈ Rn′ is a
realization of a n′-dimensional random vector defined on a probability space (Ω,F , P ).
However, ω is unknown for us, hence a question is how to deal with the uncertain
constraints. In [17], three suggestions how to deal with the stochastic constraints of the
form gi(x, ω) = ωi−hi(x) ≤ 0, i = 1, . . . , k, where ωi are random bounds with marginal
distributions Pi, are introduced. First, the constraints can be incorporated into the
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objective function of the optimization problems as the penalty function

k∑
i=1

Ni

∫ ∞

hi(x)

[ωi − hi(x)]Pi(dω)

with Ni > 0 being constant. Next, the reliability type model with a chance or proba-
bilistic constraint can be considered

P (hi(x) ≥ ωi, i = 1, . . . , k) ≥ 1− ε

for some level ε ∈ (0, 1). Finally, the constraints involving the conditional expectations
can be used

E[ωi − hi(x)|ωi − hi(x) > 0] ≤ li, i = 1, . . . , k

for some small levels li > 0.
Solving the chance constrained problems is not easy. In general, the feasible region

is not convex even if the functions are convex and in many cases it is even not easy to
check feasibility of a point because it leads to computation of multivariate integrals. On
the other hand, there are some special cases under which the convexity is preserved, e. g.
the log-concave distributions [19], or it is relatively easy to check the feasibility, e. g.
for the normal distribution. There are several methods for numerical solving of chance
constrained problems, you can see [20]. For the problems with discretely distributed
random variables, p-efficient points can be used, cf. [18]. For continuously distributed
random variables the methods based on supporting hyperplanes and reduced gradients
are available. In the case that the underlying distribution is continuous or discrete with
many realizations, sample approximation techniques and mixed-integer programming
reformulation can help us to solve the problem approximately, see [1, 13, 15].

In this paper, we will study relation between the nonlinear problems with several
chance constraints and the problems with penalty function objective. We will show
that the model with chance constraints and the penalty type model are asymptotically
equivalent under quite mild assumptions. In [11], it was shown that equivalence between
the problem with one joint chance constraint and the problem with simple penalty
function holds. The approach was recently extended to a whole class of penalty functions
in [6]. We propose further extension to multiple jointly chance constrained problems
which cover the joint as well as the separate chance constrained problems as special
cases.

The approach for solving nonlinear deterministic programs with several constraints
using the penalty functions is well studied in literature. Algorithms and basic theory
based on continuity and Karush–Kuhn–Tucker conditions are explained in [3] and [14].
Theoretical analysis of the penalty function method is provided by [22]. The penalized
objective function epiconverges to the objective function of the nonlinear problem with
several constraints, which implies “stable” behaviour of optimal values and optimal
solutions.

We will show that the penalty function approach can be helpful in numerical solu-
tion of stochastic optimization problems with chance constraints. The reformulation
of chance constrained problems using the penalties was applied in insurance, water-
management and civil engineering, cf. [10, 11, 25]. We will draw our attention to the
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nonconvex case with a finite set of feasible solutions, which can appear in bounded in-
teger programming, and with an infinite bounded set. We will extend the result on
the rates of convergence for the sample approximations of the chance constrained prob-
lems and summarize the results for the problems with the expectation in the objective
which cover the penalty function problems. The approach will be applied to the finan-
cial optimization problem with Value at Risk constraint, transaction costs and integer
allocations. We compare the ability to generate a feasible solution of the original chance
constrained problem using the sample approximations of the chance constraints directly
or via sample approximation of the penalty function objective. Another possibility how
to use penalty function for getting highly reliable solutions is to employ generalized
integrated chance constraints where the penalized constraints are used as constraints,
see [5].

The paper is organized as follows. In section 2, we formulate the multiple jointly
chance constrained problem and the problem with penalty type objective and we show
that they are asymptotically equivalent. In section 3, Monte Carlo techniques for solving
the problems are discussed. Numerical study is included in section 4. In section 5, we
will summarize our results.

2. REFORMULATION

Let gji(x, ω), i = 0, . . . , kj , j = 1, . . . ,m, be real functions on Rn × Rn′ measurable in
ω for all x ∈ X. Then the multiple chance constrained problem can be formulated as
follows:

ψε = minx∈X f(x),
s.t.

P
(
g11(x, ω) ≤ 0, . . . , g1k1(x, ω) ≤ 0

)
≥ 1− ε1,
...

P
(
gm1(x, ω) ≤ 0, . . . , gmkm(x, ω) ≤ 0

)
≥ 1− εm,

(2)

with an optimal solution xε, where ε = (ε1, . . . , εm), with the levels εj ∈ (0, 1). The
formulation covers the joint (k1 > 1 and m = 1) as well as the separate (kj = 1 and
m > 1) chance constrained problems as special cases.

In [11], asymptotic equivalence between the problem with one joint chance constraint
and the problem with simple penalty function is shown. The approach by [11] can
be extended to a whole class of penalty functions with desirable properties which was
done in [6]. We propose further extension to the multiple jointly chance constrained
problems (2).

Below, we will consider the penalty functions ϑj : Rkj → R+, j = 1, . . . ,m, which are
continuous nondecreasing in their components, equal to 0 on Rkj

− and positive otherwise.
Two special penalty functions are readily available: ϑ1,o(u) =

∑k
i=1([ui]+)o, o > 0, where

ϑ1,1(u) =
∑k

i=1[ui]+ was applied in [11], and ϑ2(u) = max1≤i≤k[ui]+ applied in [10].
Both functions preserve convexity, ϑ2 is usually used for the joint chance constraints.
The ideal (perfect) penalty function is closely connected to the duality in nonlinear
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programming:

ϑ3(u) = sup
y≥0

k∑
i=1

yiui,

where y ∈ Rk. For any nonpositive u it holds ϑ3(u) = 0, and ϑ3(u) = ∞ otherwise.
We denote

pj(x, ω) = ϑj(gj1(x, ω), . . . , gjkj
(x, ω)) : Rn × Rn′ → R

the penalized constraints. Our choice is appropriate, because it holds

P
(
gji(x, ω) ≤ 0, i = 1, . . . , kj

)
≥ 1− εj ⇐⇒ P

(
pj(x, ω) > 0

)
≤ εj . (3)

The corresponding penalty function problem can be formulated as follows:

ϕN = min
x∈X

[
f(x) +N ·

m∑
j=1

E[pj(x, ω)]
]

(4)

with N a positive parameter. We denote xN an optimal solution of (4).
A rigorous proof of the relationship between the optimal values of (2) and those of (4)

for a special additive penalty function and one chance constraint was given by [11]. The
following main theorem states the asymptotic equivalence of the models in generalized
settings.

Theorem 2.1. Consider the two problems (2) and (4) and assume: X 6= ∅ is compact,
f(x) is a continuous function, ϑj : Rkj → R+, j = 1, . . . ,m, are continuous functions,
nondecreasing in their components, which are equal to 0 on Rkj

− and positive otherwise,
denote

pj(x, ω) = ϑj(gj1(x, ω), . . . , gjkj
(x, ω)), j = 1, . . . ,m,

and assume

(i) gji(·, ω), i = 1, . . . , kj , j = 1, . . . ,m, are almost surely continuous;

(ii) there exists a nonnegative random variable C(ω) with E[C1+κ(ω)] < ∞ for some
κ > 0, such that |pj(x, ω)| ≤ C(ω), j = 1, . . . ,m, for all x ∈ X;

(iii) E[pj(x
′
, ω)] = 0, j = 1, . . . ,m, for some x

′ ∈ X;

(iv) P (gji(x, ω) = 0) = 0, i = 1, . . . , kj , j = 1, . . . ,m, for all x ∈ X.

Denote η = κ/(2(1 + κ)), and for arbitrary N > 0 and ε ∈ (0, 1)m put

εj(x) = P
(
pj(x, ω) > 0

)
, j = 1, . . . ,m,

αN (x) = N ·
m∑

j=1

E[pj(x, ω)],

βε(x) = ε−η
max

m∑
j=1

E[pj(x, ω)],
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where εmax denotes maximum of the vector ε = (ε1, . . . , εm)
and [1/N1/η] = (1/N1/η, . . . , 1/N1/η) is the vector of length m.

THEN for any prescribed ε ∈ (0, 1)m there always exists N large enough so that
minimization (4) generates optimal solutions xN which also satisfy the chance constraints
(2) with the given ε.

Moreover, bounds on the optimal value ψε of (2) based on the optimal value ϕN of
(4) and vice versa can be constructed:

ϕ1/εη
max(xN ) − βε(xN )(xε(xN )) ≤ ψε(xN ) ≤ ϕN − αN (xN ),

ψε(xN ) + αN (xN ) ≤ ϕN ≤ ψ[1/N1/η ] + β[1/N1/η ](x[1/N1/η ]),

with

lim
N→+∞

αN (xN ) = lim
N→+∞

εj(xN ) = lim
εmax→0+

βε(xε) = 0

for any sequences of optimal solutions xN and xε.

P r o o f . We denote

δN =
m∑

j=1

E[pj(xN , ω)]

for some sequence xN of optimal solutions of the problem (4). Our assumptions and
general properties of the penalty function method, see [3, Theorem 9.2.2], ensure that
for any sequence xN of optimal solutions δN → 0+ and also αN (xN ) = NδN → 0 as
N →∞. Then by Chebyshev inequality

P
(
pj(xN , ω) > 0

)
=

= P
(
0 < pj(xN , ω) ≤

√
δN

)
+ P

(
pj(xN , ω) >

√
δN

)
≤ Gj(xN ,

√
δN )−Gj(xN , 0) +

1√
δN

E[pj(xN , ω)]

≤ Gj(xN ,
√
δN )−Gj(xN , 0) +

√
δN → 0, as N →∞, j = 1, . . . ,m.

Here for a fixed x, Gj(x, ·) denotes the distribution function of pj(x, ω) defined by

Gj(x, y) = P
(
pj(x, ω) ≤ y

)
, j = 1, . . . ,m.

Assumption (iii) implies that for every vector ε > 0 (with small components) there exists
some xε ∈ X such that

P
(
gji(xε, ω) ≤ 0, i = 1, . . . , kj

)
≥ 1− εj , j = 1, . . . ,m.
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Then for any ε > 0 the following relations hold

m∑
j=1

E[pj(xε, ω)] =

=
m∑

j=1

∫
Ω

|pj(xε, ω)|I(pj(xε,ω)>0)P (dω)

≤
m∑

j=1

∫
Ω

C(ω)I(pj(xε,ω)>0)P (dω)

≤

(∫
Ω

C1+κ(ω)P (dω)

)1/(1+κ)

·
m∑

j=1

(∫
Ω

I(pj(xε,ω)>0)P (dω)

)κ/(1+κ)

≤ c ·
m∑

j=1

P
(
pj(xε, ω) > 0

)κ/(1+κ)

≤ c ·m · εκ/(1+κ)
max ,

where c :=
( ∫

Ω
C1+κ(ω)P (dω)

)1/(1+κ)

, which is finite due to the assumption (ii). Ac-
cordingly, for εmax → 0+

0 ≤
m∑

j=1

E[pj(xε, ω)] ≤ c ·m · εκ/(1+κ)
max → 0,

and also βε(xε) → 0. If we set

εj(xN ) = P
(
pj(xN , ω) > 0

)
, j = 1, . . . ,m,

then the optimal solution xN of the expected value problem is feasible for the chance
constrained program with ε(xN ) = (ε1(xN ), . . . , εm(xN )), because the following relations
hold

P
(
gji(xN , ω) ≤ 0, i = 1, . . . , kj

)
≥ 1− εj(xN )

⇐⇒ P
(
pj(xN , ω) > 0

)
≤ εj(xN ).

Hence, we get the inequality

ϕN = f(xN ) +N ·
m∑

j=1

E[pj(xN , ω)]

≥ f(xε(xN )) +N ·
m∑

j=1

E[pj(xN , ω)]

= ψε(xN ) + αN (xN ).
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Finally,

ψε =
(
ψε + ε−η

max

m∑
j=1

E
[
pj(xε, ω)

])
− ε−η

max

m∑
j=1

E[pj(xε, ω)]

≥ ϕε−η
max

− ε−η
max

m∑
j=1

E
[
pj(xε, ω)

]
= ϕε−η

max
− βε(xε).

This completes the proof. �

Note that the theorem does not make any statement on the convergence of optimal
solutions but it relates optimal values for certain values of the levels and the penalty
parameter. We will investigate the behaviour of the optimal solutions in the numerical
study.

Remark 2.2. The assumption (iv) ensures that the probability function

P
(
gji(x, ω) ≤ 0, i = 1, . . . , kj

)
is continuous in the decision vector, which can be easy seen if we realize that the only
point of discontinuity of the function is gji(x, ω) = 0, i = 1, . . . , kj for any x.

The bounds (5) and the terms αN (x), ε(x) and βε(x) depend on the choice of the
penalty function ϑ. Notice, however, that when we want to evaluate one of the bounds
in (5), we must be prepared to face some problems. We are able to compute αN (xN ),
ε(xN ), hence the upper bound for the optimal value ψε(xN ) of the chance constrained
program (2) with probability levels ε(xN ). But we are not able to compute βε(xN )(xε(xN ))
without having the solution xε(xN ) which we do not want to find or even may not be
able to find.

3. SAMPLE APPROXIMATIONS USING MONTE-CARLO TECHNIQUES

In this part, we will address the rates of convergence for the chance constrained prob-
lems and the problems with expectation type objectives which cover the penalty type
objectives. Usually, the sample approximation of the chance constrained problems leads
only to the feasible solutions of the original problem. Moreover, the sample reformu-
lation results in a large mixed-integer optimization problem, see below. Hence, it may
be interesting to investigate the ability to generate the feasible solutions of the original
chance constrained problem using the penalty function problems, where no additional
integer variables are necessary. Our approach is is summarized in Table 1.

For the case when the set of feasible solutions, the objective function and the con-
straints are convex, stronger results on the sample approximations are valid, cf. [7]. The
results below generalize those of [1, 13, 16] for the case with several chance constraints
and they are valid without assuming convexity of any parts of the problems. We will
draw our attention to the case when the set of feasible solutions is finite, i. e. |X| <∞,
and to the bounded infinite X.
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Program
with a random

factor
Stochastic ↙↘

1. programming
formulation

Chance constrained as.⇐⇒ Penalty function
problem (CCP) problem (PFP)

2. Sample ↓ ↓
approximation

SA CCP SA PFP

3. Solution ↓ ↓
validation

Reliability Reliability

Tab. 1. Formulation and approximation schema.

In this section, we will refer to the problem (2) as the original problem. We denote
the probability functions using the equivalence (3)

qj(x) = P
(
pj(x, ω) > 0

)
. (5)

Then the multiple chance constrained problem (2) can be rewritten as

ψε = minx∈X f(x),
s.t.

q1(x) ≤ ε1,
...

qm(x) ≤ εm.

(6)

Let ω1, . . . , ωS be an independent Monte Carlo sample of the random vector ω. Then,
the sample version of the function qj is defined to be

q̂S
j (x) = S−1

S∑
s=1

I(0,∞)

(
pj(x, ωs)

)
, (7)

where I(·) denotes the indicator function. Finally, the sample version of the multiple
jointly chance constrained problem (6) is defined as

ψ̂S
γ = minx∈X f(x),

s.t.
q̂S
1 (x) ≤ γ1,

...
q̂S
m(x) ≤ γm,

(8)
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where the levels γj are allowed to be different from the original levels εj . Let the set X be
compact and gji(·, ωs) be continuous for all triplets (i, j, s). The sample approximation
of the chance constrained problem can be reformulated as a large mixed-integer nonlinear
program

min(x,u)∈X×{0,1}mS f(x)
s.t.

g1i(x, ωs)−M(1− u1s) ≤ 0, i = 1, . . . , k1, s = 1, . . . , S
...

gmi(x, ωs)−M(1− ums) ≤ 0, i = 1, . . . , km, s = 1, . . . , S,
1
S

∑S
s=1 u1s ≥ 1− ε1,

...
1
S

∑S
s=1 ums ≥ 1− εm,

u1s, . . . , ums ∈ {0, 1}, s = 1, . . . , S,

(9)

where we set M = maxj=1,...,m maxi=1,...,kj maxs=1,...,S supx∈X gji(x, ωs). Due to the in-
creasing number of binary variables ums, it may be very difficult to solve the problem (9)
even using special solvers for the mixed-integer problems.

Finally, note that the main results on the sample average approximation (SAA) tech-
niques for the expectation type stochastic programs with a finite or bounded set of
feasible solutions can be found in [23].

3.1. Lower bound for the chance constrained problem

We will assume that it holds γj > εj for all j, i. e. that the levels of the sample
approximated problem are less restrictive. We derive the rate of convergence of the
probability that the feasible solution of the original problem is feasible for the sample
approximated problem. Hence, the optimal value of the sample approximated problems
is lower bound for the optimal value of the original problem with some probability.

For a fixed x ∈ X, the probability of the event pj(x, ωn) > 0 is qj(x). If the x is
feasible for the original chance constrained problem, we get qj(x) ≤ εj , j = 1, . . . ,m.
Using Bonferroni inequality

P (∩m
j=1Aj) ≥ 1−

m∑
j=1

(
1− P (Aj)

)
for the events Aj = {pj(x, ω) > 0} and the inequality based on the Chernoff inequality
for the cumulative distribution function of the binomial distribution, see [15, 16]

1− P
(
q̂S
j (x) ≤ γj

)
≤ exp

{
− S(γj − εj)2/(2εj)

}
,

we obtain

P
(
q̂S
1 (x) ≤ γ1, . . . , q̂

S
m(x) ≤ γm

)
≥ 1−

m∑
j=1

exp
{
− S(γj − εj)2/(2εj)

}
≥ 1−m exp

{
− S/2 min

j∈{1,...,m}
(γj − εj)2/εj

}
.(10)
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This means, that we can choose the sample size S to obtain that the feasible solution x
is also feasible for the sample approximation with a probability at least 1− δ, i. e.

S ≥ 2
minj∈{1,...,m}(γj − εj)2/εj

ln
m

δ
, (11)

which corresponds to the result of [1] for m = 1. Previous analysis also implies, that the
probability P (ψ̂S

γ ≤ ψε) increases exponentially fast with increasing sample size S.

3.2. Feasibility for the chance constrained problem

We derive the rate of convergence of the probability that the set of feasible solutions
of the sample approximated problem is contained in the feasibility set of the original
problem.

3.2.1. Finite |X|

First, we will draw our attention to the case when the set of feasible solutions is finite,
i. e. |X| < ∞, which appears in the bounded integer programs. We will assume that
it holds γj < εj for all j, i. e. that the levels of the sample approximated problem are
more restrictive.

We define the random variable Ysj = I(pj(x,ωs)≤0), i. e. Yjs = 1 if pj(x, ωs) ≤ 0 and 0
otherwise. Let

XS
γj

=
{
x ∈ X :

1
S

S∑
s=1

Yjs ≥ 1− γj

}
,

Xεj =
{
x ∈ X : P (pj(x, ω) ≤ 0) ≥ 1− εj

}
,

XS
γ =

m⋂
j=1

XS
γj
,

Xε =
m⋂

j=1

Xεj
.

Then, for x ∈ X \Xεj we obtain E[Yjs] = P (pj(x, ω) ≤ 0) < 1 − εj , which we can use
to get an estimate for the probability

P (x ∈ XS
γj

) = P

(
1
S

S∑
s=1

Yjs ≥ 1− γj

)

≤ P

( S∑
s=1

(Yjs − E[Yjs]) ≥ S(εj − γj)
)

≤ exp
{
− 2S(εj − γj)2

}
, (12)

where we used Hoeffding’s inequality, cf. [8]. We use this estimate to get an upper
bound for the probability that there exists a feasible solution of the sample approximated
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problem which is infeasible for the original problem.

1− P (XS
γ ⊆ Xε) = P

(
∃j̃∈{1,...,m}∃x∈XS

γ
: P (pj̃(x, ω) ≤ 0) < 1− εj̃

)
≤

m∑
j=1

∑
x∈X\Xεj

P (x ∈ XS
γj

)

≤ |X \Xε|
m∑

j=1

exp
{
− 2S(εj − γj)2

}
≤ m|X \Xε| exp

{
− 2S min

j∈{1,...,m}
(εj − γj)2

}
.

Using previous upper bound it is possible to estimate the sample size S such that the fea-
sible solutions of the sample approximated problems are feasible for the original problem
with a high probability 1− δ, i. e.

S ≥ 1
2 minj∈{1,...,m}(γj − εj)2

ln
m|X \Xε|

δ
. (13)

If we set m = 1, we get the same inequality as [13].

3.2.2. Bounded |X|

Below we will consider the case when the set of feasible solutions X is bounded but
infinite in general. Again, let γj < εj for all j. However, we will need the following
additional assumption which states Lipschitz continuity of the penalized constraints,
i. e.

|pj(x, ω)− pj(x′, ω)| ≤ Lj ‖x− x′‖ , ∀x, x′ ∈ X, ∀ω ∈ Ω, ∀ j,

for some Lj > 0. Let D = sup{‖x− x′‖∞ : x, x′ ∈ X} be the diameter of X. In this
case, it is necessary to consider the constraints which are satisfied strictly, i. e. with
some deviation τ :

XS
γj ,τ =

{
x ∈ X :

1
S

S∑
s=1

I(pj(x,ωs)+τ≤0) ≥ 1− γj

}
XS

γ,τ =
m⋂

j=1

XS
γj ,τ .

According to the proof of [13, Theorem 10], for λj ∈ (0, εj − γj) there exist finite sets
Zτ

j ⊆ X with

|Zτ
j | ≤ d1/λje d2LjD/τen
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where d·e denotes the upper integer part, and for any x ∈ XS
γ,τ and any j there exists

z ∈ Zτ
j such that ‖z − x‖∞ ≤ τ/Lj . Using the finite sets Zτ

j we can define

Zτ,S
γj

=
{
x ∈ Zτ

j :
1
S

S∑
s=1

I(pj(x,ωs)≤0) ≥ 1− γj

}
,

Zτ
εj−λj

=
{
x ∈ Zτ

j : P (pj(x, ω) ≤ 0) ≥ 1− εj + λj

}
,

Zτ,S
γ =

m⋂
j=1

Zτ,S
γj
,

Zτ
ε−λ =

m⋂
j=1

Zτ
εj−λj

.

Moreover, for all j it holds that Zτ,S
γj

⊆ Zτ
εj−λj

implies Xτ,S
γj

⊆ Xεj . For the previous
finite sets, the inequality (12) is valid, i. e. we obtain

1− P (Zτ,S
γ ⊆ Zτ

ε−λ) ≤ m

⌈
1

minj∈{1,...,m} λj

⌉⌈
2LmaxD

τ

⌉n

exp
{
− 2S min

j∈{1,...,m}
(εj − γj − λj)2

}
,

where Lmax = maxj Lj . Since Zτ,S
γ ⊆ Zτ

ε−λ implies Xτ,S
γ ⊆ Xε, we get the inequality

for the probabilities
P (XS

γ,τ ⊆ Xε) ≥ P (Zτ,S
γ ⊆ Zτ

ε−λ).

Using the bound it is possible to estimate the sample size S such that the feasible
solutions of the sample approximated problems are feasible for the original problem
with a high probability 1− δ, i. e.

S ≥ 1
2 minj∈{1,...,m}(εj − γj − λj)2(

ln
m

δ
+ ln

⌈
1

minj∈{1,...,m} λj

⌉
+ n ln

⌈
2LmaxD

τ

⌉)
.

If we choose λj = (εj − γj)/2, we obtain

S ≥ 2
minj∈{1,...,m}(εj − γj)2(

ln
m

δ
+ ln

⌈
2

minj∈{1,...,m}(εj − γj)

⌉
+ n ln

⌈
2LmaxD

τ

⌉)
.

Setting m = 1 we obtain the same estimate as [13].

4. MIXED-INTEGER VAR AND PENALTY FUNCTION PROBLEMS

In this section, we compare the penalty function approach with the chance constrained
problems on a mixed-integer portfolio problem of a small investor. We consider 13 most
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liquid assets which are traded on the main market (SPAD) on Prague Stock Exchange.
Weekly returns from the period 6th February 2009 to 10th February 2010 are used to es-
timate the means and the variance matrix. Suppose that the small investor trades assets
on the “mini-SPAD” market. This market enables to trade “mini-lots” (standardized
number of assets) with favoured transaction costs.

We denote Qi the quotation of the “mini-lot” of security i, fi the fixed transaction
costs (not depending on the investment amount), ci the proportional transaction costs
(depending on the investment amount), Ri the random return of the security i, xi the
number of “mini-lots”, yi binary variables which indicate, whether the security i is
bought or not. Then, the random loss function depending on our decisions and the
random returns has the following form

−
n∑

i=1

(Ri − ci)Qixi +
n∑

i=1

fiyi.

The chance constrained portfolio problem can be formulated as follows

min
(r,x,y)∈R×X

r

P

(
−

n∑
i=1

(Ri − ci)Qixi +
n∑

i=1

fiyi ≤ r

)
≥ 1− ε, (14)

which is in fact minimization of Value at Risk (VaR). Corresponding penalty function
problem using the penalty ϑ1,1 is

min
(r,x,y)∈R×X

r +N · E
[
−

n∑
i=1

(Ri − ci)Qixi +
n∑

i=1

fiyi − r

]+
. (15)

Setting N = 1/(1− ε) we minimize Conditional Value at Risk (CVaR) exactly, see [21].
Similar problem with CVaR and transaction costs was considered by [2, 4].

The set of feasible solutions contains a budget constraint and the restrictions on the
minimal and the maximal number of “mini-lots” which can be bought, i. e.

X =
{
x ∈ Nn × {0, 1}n

Bl ≤
∑n

i=1(1 + ci)Qixi +
∑n

i=1 fiyi ≤ Bu,
liyi ≤ xi ≤ uiyi, i = 1, . . . , n

}
,

where Bl and Bu are the lower and the upper bound on the capital available for the
portfolio investment, li > 0 and ui > 0 are the lower and the upper number of units for
each security i.

4.1. Estimated sample sizes

In our case, the cardinality of the integer part of the set of feasible solutions is bounded,
i. e. |X| ≤ 11613 · 213. Moreover, if the support of the distribution of the returns
is bounded, than the free variable t can be restricted to the closed interval which is
bounded by the worst loss and by the best profit which can occur for our loss function
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ε γ δ S

0.1 0.2 0.01 93
0.05 0.1 0.01 185
0.01 0.02 0.01 9 211
0.1 0.2 0.001 139

0.05 0.1 0.001 277
0.01 0.02 0.001 13 816

Tab. 2. Sample sizes – lower bound.

ε γ δ S

0.1 0.05 0.01 143 142
0.05 0.025 0.01 574 783
0.01 0.005 0.01 1 468 253 656
0.1 0.05 0.001 144 984

0.05 0.025 0.001 582 152
0.01 0.005 0.001 1 486 674 337

Tab. 3. Sample sizes – feasibility.

considering the restrictions. Then we get the following estimate for the sample size
which is necessary to generate a lower bound for the optimal value

S ≥ 2ε
(γ − ε)2

ln
1
δ
,

and to generate a feasible solution

S ≥ 2
(ε− γ)2

(
ln

1
δ

+ 26 ln 116 + 26 ln 2 + ln
⌈

2
(ε− γ)

⌉
+ ln

⌈
2D
τ

⌉)
,

which is based on the decomposition of the set of feasible solutions into the integer and
real bounded part. In Tables 2 and 3, there are examples of the sample sizes for different
combinations of the parameters γ, ε, δ where we have chosen τ = 10−6 and D = 2 · 106

which is the difference between the worst loss and the best profit. The sample size which
is necessary to generate the lower bound for the optimal value of the original problem is
quite low and will be covered partly by the following numerical experiment, see Table 2.
However, the samples, which are necessary to ensure that the set of feasible solutions
of the sample approximated problem is contained in the feasibility set of the original
problem, are quite large and rapidly increase with decreasing level ε, see Table 3.
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4.2. Numerical comparison

We generated 100 samples for each sample size S, i. e. 100 × S realizations, from the
truncated normal distribution where the truncation points were set to −1 for all random
returns. We used the modelling system GAMS and the solver CPLEX to solve the
sample approximations of the chance constrained problems (14) and the penalty function
problems (15) for different sample sizes S, levels γ and penalty parameters N . Basic
descriptive statistics for the optimal values are contained in Tables 4, 5. Minimal and
mean reliabilities of the obtained solutions and basic descriptive statistics for the optimal
values can be found in Tables 4 and 5. As we can see from Table 5, the “Penalty term”

N · E
[
−

n∑
i=1

(Ri − ci)Qixi +
n∑

i=1

fiyi − r

]+
really decreases with increasing penalty parameter N and reduces violations of the con-
straint (Ri − ci)Qixi +

∑n
i=1 fiyi − r ≤ 0 for each sample size.

Reliabilities Optimal values
S γ min mean mean st.dev

100 0.1 0.8844 0.9592 41784.66 7525.69
100 0.05 0.9054 0.9516 41821.60 7465.46
100 0.01 0.8939 0.9456 42312.34 7612.11
250 0.1 0.9546 0.9824 52429.77 9887.54
250 0.05 0.9545 0.9820 52431.23 9884.16
250 0.01 0.9555 0.9807 52626.23 9909.60
500 0.1 0.9744 0.9903 67824.32 15849.91
500 0.05 0.9744 0.9903 67824.32 15849.91
500 0.01 0.9726 0.9906 67942.02 15757.14
750 0.1 0.9849 0.9952 74655.08 19435.11
750 0.05 0.9849 0.9952 74652.82 19436.71
750 0.01 0.9866 0.9953 74679.40 19187.28

1000 0.1 0.9870 0.9966 93390.26 28293.28
1000 0.05 0.9870 0.9966 93414.25 28269.13
1000 0.01 0.9870 0.9966 93384.85 28264.63

Tab. 4. Chance constrained problems – optimal values.

To verify the reliability of the obtained optimal solutions, we used the independent
samples of 10 000 realizations from the truncated normal distribution which was used
to model the random returns. The columns “Reliability” contain relative number of
realizations for which the chance constraint is fulfilled. As can be easy seen, the reliability
of the obtained solutions increases with increasing levels γ and penalty parameters N
for each sample size S. Both problems are also able to generate comparable solutions for
the same sample sizes, see Tables 4 and 5. Furthermore, we can compare the descriptive
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Reliabilities Optimal values Penalty term
S N min mean mean st.dev mean st.dev

100 1 0.7622 0.8770 33403.52 4311.27 7731.06 2530.95
100 10 0.8967 0.9581 42830.41 7489.58 3.09 30.93
100 100 0.8967 0.9581 42902.79 7484.36 0.00 0.00
100 1000 0.8967 0.9581 42903.93 7474.20 0.00 0.00
250 1 0.8330 0.8888 37382.48 6017.16 9673.10 2115.72
250 10 0.9495 0.9788 52156.49 9360.82 2570.37 2255.62
250 100 0.9571 0.9841 53493.47 9862.21 0.00 0.00
250 1000 0.9571 0.9840 53458.34 9898.87 0.00 0.00
500 0 0.5408 0.5408 4202.39 596.15 4202.39 596.15
500 1 0.8716 0.9016 43537.39 8424.45 11865.88 3520.77
500 10 0.9723 0.9871 63886.92 13472.75 5109.98 2719.34
500 100 0.9813 0.9935 68995.38 15851.31 0.00 0.00
500 1000 0.9813 0.9934 68914.67 15748.83 0.00 0.00
750 1 0.8697 0.8990 44922.49 9914.34 13191.21 5100.68
750 10 0.9785 0.9878 68251.45 17167.97 7328.08 3405.62
750 100 0.9890 0.9957 75669.31 19379.62 0.00 0.00
750 1000 0.9890 0.9956 75541.31 19234.11 0.00 0.00

1000 1 0.8739 0.8976 51840.01 12169.11 16647.91 7013.17
1000 10 0.9753 0.9886 82550.78 23493.47 9591.71 5108.62
1000 100 0.9900 0.9966 94331.08 27977.78 0.00 0.00
1000 1000 0.9900 0.9966 94357.45 28209.17 0.00 0.00

Tab. 5. Penalty function problems – reliabilities.

statistics of the optimal values ψ̂S
γ , ϕ̂S

N . We observe that the variability of the values
increases with the sample size. Thus, we pay for the increasing reliability of the optimal
solutions by decreasing reliability of the optimal values when we increase the size of the
sample. Finally, we can compare the used sample sizes with theoretically estimated sizes
in Tables 2 and 3, which can be now seen as very conservative.

5. CONCLUSION

Reformulation of chance constrained programs by incorporating a suitably chosen penalty
function into the objective helps to arrive at problems with expectation in the objec-
tive and a fixed set of feasible solutions. The obtained problems are much simpler to
solve and analyze then the chance constrained programs, cf. [12]. The recommended
form of the penalty function follows the basic ideas of penalty methods and its suitable
properties follow by generalization of the results from [6, 11].

The numerical study shows that not only the sample approximated chance constrained
problems but also the penalty function problems are able to generate solutions which
are feasible for the original chance constrained problem with a high reliability.
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[17] A. Prékopa: Contributions to the theory of stochastic programming. Math. Programming
4 (1973), 202–221.
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