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KYB ERNET IK A — VO LUME 4 8 ( 2 0 1 2 ) , NUMBER 1 , PAGES 8 3 – 1 0 4

AN OPTIMALITY SYSTEM FOR FINITE AVERAGE
MARKOV DECISION CHAINS UNDER RISK-AVERSION

Alfredo Alańıs-Durán and Rolando Cavazos-Cadena

This work concerns controlled Markov chains with finite state space and compact action
sets. The decision maker is risk-averse with constant risk-sensitivity, and the performance of a
control policy is measured by the long-run average cost criterion. Under standard continuity–
compactness conditions, it is shown that the (possibly non-constant) optimal value function is
characterized by a system of optimality equations which allows to obtain an optimal stationary
policy. Also, it is shown that the optimal superior and inferior limit average cost functions
coincide.

Keywords: partition of the state space, nonconstant optimal average cost, discounted
approximations to the risk-sensitive average cost criterion, equality of superior
and inferior limit risk-averse average criteria

Classification: 93E20, 60J05, 93C55

1. INTRODUCTION

This note is concerned with discrete-time Markov decision processes (MDPs) evolving on
a finite state space. The system is driven by a risk-averse decision maker with constant
risk sensitivity coefficient λ > 0, and the performance of a control policy is measured by
the (superior limit) risk-sensitive average cost criterion. It is supposed that the action
set is a compact metric space, and that the cost function and the transition law depend
continuously on the action applied, but otherwise they are arbitrary; in particular,
no communication conditions are imposed on the transition law, so that the optimal
value function may not be constant. Within that framework, the following problem is
addressed:

• To characterize the optimal value function using a system of equations form which
an optimal stationary policy can be determined.

The study of stochastic systems endowed with the risk-sensitive average criterion can
be traced back, at least, to the seminal papers by Howard and Matheson [16], Jacobson
[17] and Jaquette [18, 19]. Recently, there has been an intensive work on (controlled)
stochastic system endowed with the risk-sensitive average criterion; see, for instance,
Flemming and McEneany [12], Di Masi and Stettner [9, 10, 11], Jaśkiewicz [20], Sladký
and Montes-de-Oca [26], Sladký [25] and the references there in. A fundamental result
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on the existence of solutions of the risk-sensitive optimality equation was obtained by
Howard and Matheson [16], where controlled Markov chains with finite state and action
spaces were studied, and it was shown that the optimal average cost is determined by
a single equation whenever each stationary policy determines a communicating Markov
chain. In such a case, the optimal average cost function is constant, say g, and the
existence of a solution to the optimality equation was established using the Perron–
Frobenius theory of nonnegative matrices (Gantmakher [13]). Other approaches have
been used to obtain a solution to the optimality equation: the main result in Hernández-
Hernández and Marcus [14] is based on game theoretical ideas, the approach in Cavazos-
Cadena and Fernández-Gaucherand [4] relies on the risk-sensitive total cost criterion,
and the discounted technique — involving contractive mappings — was employed in
Di Masi and Stettner [9] and Cavazos-Cadena [5]. On the other hand, there is an
interesting contrast between the risk-neutral and the risk-sensitive average cost criteria:
Under strong recurrence conditions, like the simultaneous Doeblin condition — under
which the Markov chain determined by each stationary policy has a single recurrent class
— the risk-neutral optimality equation has a solution, but a similar conclusion is not
valid in the risk-sensitive context, even if the optimal average cost is constant (Cavazos-
Cadena and Fernández-Gaucherand [4], Cavazos-Cadena and Hernández-Hernandez [6]).
Thus, the characterization of the optimal risk-sensitive average cost can not be based, in
general, on a single equation, and the problem posed above is an interesting and natural
one.

The characterization of a general (risk-sensitive) optimal average cost function was
recently studied in Sladký [25] for models with finite state and action sets; in that paper,
the analysis is based on Perron-Frobenius decompositions of a family of nonnegative
matrices (Rothblum and Whittle [22], Sladký [23, 24], Whittle [27], Zijm [28]). On the
other hand, the discounted approach has also been employed to study the case of a non
necessarily constant optimal average index; see, for instance, Hernández-Hernández and
Marcus [15] for models with denumerable state space, and Jaśkiewicz [20] and Cavazos-
Cadena and Salem-Silva [8], which concern MDPs with Borel state space. Roughly, in
those papers a characterization of the optimal average cost is obtained at some states
where the optimal performance index attains its minimum. In the context of this work,
the discounted technique will play a central role to obtain a complete characterization
of the optimal average cost function.

The main results of this work involve the idea of optimality system introduced in
Section 3, and can be briefly described as follows: An optimality system is determined
by (i) a partition S1, . . . , Sk of a state space, (ii) a sequence of pairs {(gi, hi(·))}i=1,...,k,
where gi is a real number and hi is a function defined on Si, (iii) the specification of
a (generally proper) subset of B(x) of the original set admissible actions A(x) at each
state x. In terms of these objects, an equation — which is similar to the usual optimality
equation — is stipulated for every i = 1, 2, . . . , k, and the following conclusions, extend-
ing those in Cavazos-Cadena and Hernández-Hernández [7] for uncontrolled models, are
obtained:

(1) An optimality system characterizes the optimal average cost function and renders
an optimal stationary policy (the verification theorem);

(2) There exists and optimality system (the existence theorem).
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The approach used below to establish these conclusions relies on basic probabilistic
and dynamic programming ideas, which are used to establish the verification theorem,
whereas the discounted method is employed to derive the existence result.

The organization of the paper is as follows: In Section 2 a brief description of the
decision model is presented and, after introducing the notion of optimality system in
Section 3, the verification and existence results are stated as Theorems 3.1 and 3.2,
respectively. Then, in Section 4 a technical result on the inferior limit average criterion
is presented, and it is used to establish the verification theorem in Section 5. Next in
Section 6 the discounted approach is used to specify the components of an optimality
system, and the exposition concludes in Section 7 with a proof of the existence theorem.

Notation. The set of all nonnegative integers is denoted by IN and, for a given topo-
logical space IK, B(IK) stands for the Banach space of all bounded functions C : IK → IR
equipped with the supremum norm:

‖C‖ := sup
x∈IK

|C(x)|.

On the other hand, for x ∈ IK, δx(·) is the Dirac’s measure concentrated at x, that is,
for every Borel subset D ⊂ IK, δx(D) = 1 if x ∈ D, and δx(D) = 0 when x 6∈ D. If
A is an event, the corresponding indicator function is denoted by I[A] and, as usual,
all relations involving conditional expectations are supposed to hold almost surely with
respect to the underlying probability measure.

2. DECISION MODEL

Throughout the remainder M = (S, A, {A(x)}x∈S , C, P ) is an MDP, where the state
space S is a finite set endowed with the discrete topology, and the action set A is a
metric space. For each x ∈ S, A(x) ⊂ A is the nonempty set of admissible actions at x,
whereas IK := {(x, a) | a ∈ A(x), x ∈ S} is the class of admissible pairs. On the other
hand, C ∈ B(IK) is the cost function and P = [px y(·)] is the controlled transition law
on S given IK, that is, for each (x, a) ∈ IK and z ∈ S, px z(a) ≥ 0 and

∑
y∈S px y(a) = 1.

This model M is interpreted as follows: At each time t ∈ IN the decision maker observes
the state of a dynamical system, say Xt = x ∈ S, and selects the action (control)
At = a ∈ A(x). Then, a cost C(x, a) is incurred and, regardless of the previous states
and actions, the state of the system at time t + 1 will be Xt+1 = y ∈ S with probability
px y(a); this is the Markov property of the decision process.

Assumption 2.1. (i) For each x ∈ S, A(x) is a compact subset of A.
(ii) For every x, y ∈ S, the mappings a 7→ C(x, a) and a 7→ px y(a) are continuous in
a ∈ A(x).

Policies. The space IHt of possible histories up to time t ∈ IN is defined by IH0 := S and
IHt := IKt × S, t ≥ 1, and ht = (x0, a0, . . . , xi, ai, . . . , xt) stands for a generic element
of IHt, where ai ∈ A(xi). A policy π = {πt} is a special sequence of stochastic kernels:
For each t ∈ IN and ht ∈ IHt, πt(·|ht) is a probability measure on A concentrated on
A(xt), and for each Borel subset B ⊂ A, the mapping ht 7→ πt(B|ht), ht ∈ IHt, is
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Borel measurable; when the controller chooses actions according to π the control At

applied at time t belongs to B ⊂ A with probability πt(B|ht), where ht is the observed
history of the process up to time t. The class of all policies is denoted by P. Given the
policy π being used for choosing actions and the initial state X0 = x, the distribution
of the state-action process {(Xt, At)} is uniquely determined (Araposthatis et al. [1],
Puterman [21]), and such a distribution and the corresponding expectation operator are
denoted by Pπ

x and Eπ
x , respectively. Next, define IF :=

∏
x∈S A(x) and notice that IF is

a compact metric space, which consists of all functions f : S → A such that f(x) ∈ A(x)
for each x ∈ S. A policy π is stationary if there exists a sequence f ∈ IF such that the
probability measure πt(·|ht) is always concentrated at f(xt), and in this case π and f
are naturally identified; with this convention, IF ⊂ P.

Performance Index. As already mentioned, the decision maker is supposed to be
risk-averse with constant risk-sensitivity coefficient λ > 0, that is, the controller assesses
a random cost Y using the expectation of eλY ; the certain equivalent of Y is the real
number E [Y ] determined by eλE[Y ] = E[eλY ], so that the controller is indifferent between
paying the certain equivalent E [Y ] for sure, or incurring the random cost Y . It follows
that

E [Y ] =
1
λ

log
(
E[eλY ]

)
,

whereas Jensen’s inequality yields that if Y has finite expectation, then E [Y ] ≥ E[Y ]
and the strict inequality holds if Y is non constant. Suppose now that the controller
is driving the system using policy π ∈ P starting at x ∈ S, and let Jn(λ, π, x) be the
certain equivalent of the total cost

∑n−1
t=0 C(Xt, At) incurred before time n, that is,

Jn(λ, π, x) :=
1
λ

log
(
Eπ

x

[
eλ

Pn−1
t=0 C(Xt,At)

])
. (2.1)

With this notation, the (long-run superior limit) λ-sensitive average cost at state x under
policy π is given by

J(λ, π, x) := lim sup
n→∞

1
n

Jn(λ, π, x), (2.2)

and
J∗(λ, x) := inf

π∈P
J(λ, π, x), x ∈ S, (2.3)

is the optimal λ-sensitive average cost function; a policy π∗ ∈ P is λ-optimal if J(λ, π∗, x)
= J∗(λ, x) for each x ∈ S.

Remark 2.1. When X0 = x, the inferior limit λ-sensitive average criterion associated
with π ∈ P and x ∈ S is defined by

J−(λ, π, x) := lim inf
n→∞

1
n

Jn(λ, π, x), (2.4)

and the corresponding (inferior limit) λ-optimal value function is given by

J∗(λ, x) := inf
π∈P

J−(λ, π, x), x ∈ S, (2.5)

so that J∗(λ, ·) ≤ J∗(λ, ·); as it will be shown below, under Assumption 2.1 the optimal
value functions J∗(λ, ·) and J∗(λ, ·) coincide.



Optimality systems for finite MDPs 87

The Problem. The optimality equation corresponding to the average criterion in (2.2)
is given by

eλ(g+h(x)) = inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλh(y)

 , x ∈ S, (2.6)

where g is a real number and h : S → IR is a given function. When this equation is
satisfied by the pair (g, h(·)) ∈ IR × B(S), the optimal average cost function J∗(λ, ·)
is constant and equal to g; moreover, Assumption 2.1 yields that there exists a policy
f∗ ∈ IF such that

eλ(g+h(x)) = eλC(x,f∗(x))
∑
y∈S

px y(f∗(x))eλh(y), x ∈ S,

and such a policy f∗ is λ-optimal. As already noted, a pair (g, h(·)) satisfying (2.6) exists
when the whole state space is a communicating class under the action of each stationary
policy; however, it was shown un Cavazos-Cadena and Hernández-Hernández [7] that,
if the Markov chain associated with some f ∈ IF has two or more recurret classes, or if
the set of transient states is nonempty, then (2.6) may not have a solution, even if the
optimal average cost function is constant. On the other hand, for uncontrolled Markov
chains it was recently shown in Cavazos-Cadena and Hernández-Hernández [7] that, in
general, the average cost function is determined by a system of local Poisson equations,
and the main problem considered in this note consists in extending such a conclusion to
the present context of controlled models. The results in this direction involve the idea
of optimality system, which is introduced in the following section.

3. OPTIMALITY SYSTEMS AND MAIN RESULTS

In this section the main conclusions of this note are stated as Theorems 3.1 and 3.2
below. These results involve the idea of optimality system, which extends the notion of
optimality equation and allows to characterize the optimal value function in terms of a
system of equations, as well as to obtain a λ-optimal stationary policy.

Definition 3.1. Let M = (S, A, {A(x)}x∈S , C, P ) be the MDP described in Section 2.
An optimality system for M is a vector of triplets

O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) (3.1)

satisfying the following conditions:
(i) S1, S2, . . . , Sk is a partition of S.
(ii) For each i = 1, 2, . . . , k, (gi, hi(·)) ∈ IR× B(Si) and

g1 ≤ g2 ≤ · · · ≤ gk. (3.2)

(iii) For each i = 1, 2, . . . , k,

B(x) := {a ∈ A(x) |
∑

y∈S1∪S2∪···∪Si
px y(a) = 1}, x ∈ Si, is nonempty. (3.3)
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(iv) For each i = 1, 2, . . . , k,

eλ(gi+hi(x)) = inf
a∈B(x)

eλC(x,a)
∑
y∈Si

px y(a)eλhi(y)

 , x ∈ Si. (3.4)

Remark 3.1. Notice that (3.4) implies that, for every x ∈ Si,
∑

y∈Si
px y(a) > 0 for all

a ∈ B(x), since eλ(gi+hi(x)) > 0.

The number k of triplets in O will be referred to as the order of O. The above
idea is an extension of the notion of J-system used in Cavazos-Cadena and Hernández-
Hernández [7] to characterize the average cost function for an uncontrolled Markov chain.
In the present controlled context, the following result shows that an optimality system
renders (i) the optimal value function, (ii) the equality of the superior and inferior limit
optimal value functions, as well as (iii) a λ-optimal stationary policy.

Theorem 3.2. [Verification.] Let M be the model described in Section 2 and sup-
pose that Assumption 2.1 holds. If O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) is an
optimality system for M, then the following assertions (i) – (iii) hold:
(i) For each i = 1, 2, . . . , k, the optimal average cost at each state x ∈ Si is given by gi:

J∗(λ, x) = gi, x ∈ Si.

Moreover,
(ii) J∗(λ, x) = J∗(λ, x) for all x ∈ S; see (2.3) and (2.5).
(iii) Suppose that the stationary policy f ∈ IF satisfies that

f(x) ∈ B(x), x ∈ S, (3.5)

and

eλ(gi+hi(x)) =

eλC(x,f(x))
∑
y∈Si

px y(f(x))eλhi(y)

 , x ∈ Si, i = 1, 2, . . . , k. (3.6)

In this case f is λ-optimal and

lim
n→∞

1
n

Jn(λ, f, x) = J∗(λ, x), x ∈ S.

Notice that Assumption 2.1 yields that the set B(x) in (3.3) is always compact, a
fact that using (3.4) implies the existence of a stationary policy f satisfying (3.5) and
(3.6). The following result establishes the existence of an optimality system.

Theorem 3.3. [Existence.] Under Assumption 2.1, there exists an optimality system
O for model M.

The proof of Theorems 3.2 and 3.3 will be presented in Sections 5 and 7, respectively,
after establishing the necessary preliminary results. The argument used to establish the
verification result relies on standard probabilistic and dynamic programming arguments,
whereas the existence of an optimality system will be obtained via the risk-sensitive
discounted criterion.
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4. A LOWER BOUND FOR THE INFERIOR LIMIT AVERAGE CRITERION

In this section a basic technical tool that will be used to prove Theorem 3.2 is established.
The main objective is to show that if O is as optimality system for model M, then a
lower bound for the optimal inferior limit average cost function can be obtained, a result
that is precisely stated in the following theorem.

Theorem 4.1. Let O in (3.1) be an optimality system for model M. In this case, gi

is a lower bound for the inferior limit λ-sensitive average cost criterion at each state
x ∈ Si:

J∗(λ, x) ≥ gi, x ∈ Si, i = 1, 2, . . . , k; (4.1)

see Remark 2.1.

This result will be proved below by induction. Since the argument is rather tech-
nical, to ease the presentation the simple auxiliary facts involved in the argument are
established in the following three lemmas.

Lemma 4.2. If O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) is an optimality system
for model M, then the following assertions (i) and (ii) hold:
(i) For each positive integer n,

1
n

Jn(λ, π, x) ≥ gk −
2‖hk‖

n
, x ∈ Sk, π ∈ P.

Consequently,
(ii) At each state x ∈ Sk, the constant gk is a lower bound for the optimal inferior limit
average cost function:

J∗(λ, x) ≥ gk, x ∈ Sk;

see (2.1), (2.4) and (2.5).

P r o o f . Since S1 ∪ · · · ∪ Sk = S, from (3.3) it follows that B(x) = A(x) when x ∈ Sk,
and then the fourth part in Definition 3.1 yields that

eλ(gk+hk(x)) ≤ eλC(x,a)
∑
y∈Sk

px y(a)eλhk(y), a ∈ A(x), x ∈ Sk. (4.2)

Now let π ∈ P be arbitrary. After integrating both sides of the above inequality with
respect to π0(·|x), it follows that

eλ(gk+hk(x)) ≤ Eπ
x

[
eλC(X0,A0)+λhk(X1)I[X1 ∈ Sk]

]
, x ∈ Sk, π ∈ P. (4.3)

On the other hand, for every positive integer n, the Markov property yields that

Eπ
x

[
eλ

Pn
t=0 C(Xt,At)+λhk(Xn+1)I[Xr ∈ Sk, 1 ≤ r ≤ n + 1]

∣∣∣ (Xm, Am), 1 ≤ m ≤ n
]

= eλ
Pn−1

t=0 C(Xt,At)I[Xr ∈ Sk, 1 ≤ r ≤ n]eλC(Xn,An)
∑
y∈Sk

pXn y(An)eλhk(y)

≥ eλ
Pn−1

t=0 C(Xt,At)I[Xr ∈ Sk, 1 ≤ r ≤ n]eλgk+λhk(Xn)
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where (4.2) was used to set the inequality. Therefore,

Eπ
x

[
eλ

Pn
t=0 C(Xt,At)+λhk(Xn+1)I[Xr ∈ Sk, 1 ≤ r ≤ n + 1]

]
≥ eλgkEπ

x

[
eλ

Pn−1
t=0 C(Xt,At)+λhk(Xn)I[Xr ∈ Sk, 1 ≤ r ≤ n]

]
.

Combining this last relation and (4.3), a simple induction argument yields that, for every
positive integer n, x ∈ Sk and π ∈ P,

Eπ
x

[
eλ

Pn−1
t=0 C(Xt,At)+λhk(Xn)I[Xr ∈ Sk, 1 ≤ r ≤ n]

]
≥ eλ(ngk+hk(x)),

and then

eλ(Jn(λ,π,x)+‖hk‖) ≥ Eπ
x

[
eλ

Pn−1
t=0 C(Xt,At)+λhk(Xn)

]
≥ Eπ

x

[
eλ

Pn−1
t=0 C(Xt,At)+λhk(Xn)I[Xr ∈ Sk, 1 ≤ r ≤ n]

]
≥ eλ(ngk+hk(x)) ≥ eλ(ngk−‖hk‖)

so that, for every positive integer n,

1
n

Jn(λ, π, x) ≥ gk −
2‖hk‖

n
, x ∈ Sk, π ∈ P,

establishing part (i), and then the second assertion follows from (2.4) and (2.5). �

Now let the optimality system O be as in (3.1), suppose that k > 1 and set

Ŝ = S1 ∪ · · · ∪ Sk−1. (4.4)

Next, let x ∈ Ŝ be arbitrary, so that there exists i < k such that x ∈ Si for some i < k;
since

a ∈ B(x) =⇒
∑

y∈S1∪···∪Si

px y(a) = 1 =⇒
∑
y∈Ŝ

px y(a) = 1,

it follows that
Â(x) :=

{
a ∈ A(x) |

∑
y∈Ŝ px y(a) = 1

}
, x ∈ Ŝ, (4.5)

is always nonempty. Set ÎK := {(x, a)|x ∈ Ŝ, a ∈ Â(x)} and define the transition
P̂ = [p̂x y] and Ĉ : ÎK → IR by

p̂x y(a) := px y(a), Ĉ(x, a) := C(x, a), (x, a) ∈ ÎK, y ∈ Ŝ. (4.6)

Definition 4.1. Let O be an optimality system for model M as in Definition 3.1, and
suppose that the order k of O is larger than 1. With the notation in (4.4) – (4.6), the
reduced model M̂ is specified by

M̂ = (Ŝ, A, {Â(x)}x∈Ŝ , Ĉ, P̂ ) (4.7)

Combining Definitions 3.1 and 4.1 the following lemma follows immediately.
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Lemma 4.3. If O = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk, gk, hk)) is an optimality system
for model model M, where k > 1, then

Ô = ((S1, g1, h1), (S2, g2, h2), . . . , (Sk−1, gk−1, hk−1)), (4.8)

is an optimality system for the reduced model M̂. Moreover, setting

B̂(x) := {x ∈ Â(x) |
∑

y∈S1∪···∪Si

p̂x y = 1}, x ∈ Si, i = 1, 2, . . . , k − 1,

the equality B̂(x) = B(x) holds for every x ∈ Ŝ; see (3.3).

Remark 4.4. The class of policies for model M̂ will be denoted by P̂. For ∆ ∈ P̂,
Ĵ−(λ, ∆, ·) denotes the inferior limit λ-sensitive average cost criterion associated with
∆, and Ĵ∗(λ, ·) = inf∆∈P̂ Ĵ−(λ, ∆, ·) stands for the optimal inferior limit average cost
function for model M̂.

The following lemma is the final step before the proof of Theorem 4.1. Write

Hn := (X0, A0, . . . , Xn−1, An−1, Xn). (4.9)

Lemma 4.5. Let O in (3.1) be an optimality system for model M, where k > 1.
Suppose that for some r ∈ {1, 2, . . . , k − 1}, the state x ∈ Sr and π ∈ P satisfy

J−(λ, π, x) < gr. (4.10)

In this case, the following assertions (i) – (iii) hold:
(i) With probability 1 with respect to Pπ

x , the actions chosen by π after observing Hn

always belong to Â(Xn). More precisely,

1 = Pπ
x [πn(Â(Xn)|Hn) = 1], n ∈ IN.

Now let w : Ŝ → A be a stationary policy for model M̂, that is, w(x) ∈ Â(x) for each
x ∈ Ŝ, and define the policy ∆ ∈ P̂ as follows: For each n ∈ IN and hn ∈ ÎHn,

∆n(D|hn) : = πn(D ∩ Â(xn)|hn) + (1− πn(Â(xn)|hn))δw(xn)(D), D ∈ B(A). (4.11)

With this notation,
(ii) For every n ∈ IN,

P∆
x [Hn ∈ D] = Pπ

x [Hn ∈ D], D ∈ B(ÎHn), (4.12)

and then,
(iii) Ĵ−(λ, ∆, x) = J−(λ, π, x) < gr.

P r o o f . (i) The argument is by contradiction. Suppose that, for some n ∈ IN,

0 < Pπ
x [πn(A(Xn) \ Â(Xn)|Hn) > 0]. (4.13)
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Notice now that

Pπ
x [Xn+1 ∈ Sk|Hn] =

∫
A(Xn)

∑
y∈Sk

pXn y(a)πn(da|Hn)

≥
∫

A(Xn)\Â(Xn)

∑
y∈Sk

pXn y(a)πn(da|Hn)

=
∫

A(Xn)\Â(Xn)

∑
y∈S\Ŝ

pXn y(a)πn(da|Hn).

For a ∈ A(Xn) \ Â(Xn) the summation inside the integral is positive, by (4.5), and then
the integral is larger that zero on the event [πn(A(Xn) \ Â(Xn)|Hn) > 0]. It follows
from (4.13) that Pπ

x [Xn+1 ∈ Sk|Hn] > 0 with positive Pπ
x -probability, so that

Pπ
x [Xn+1 ∈ Sk] > 0. (4.14)

Next, given h̃n ∈ IHn and ã ∈ A(xn), define the (shifted) policy πh̃n,ã as follows:

πh̃n,ã
t (·|ht) : = πn+1+t(·|h̃n, ã,ht), ht ∈ IHt, t ∈ IN.

With this specification, the Markov property yields that for every m > n + 1

Eπ
x [eλ

Pm−1
t=0 C(Xt,At)I[Xn+1 ∈ Sk]|Hn, An, Xn+1]

= eλ
Pn

t=0 C(Xt,At)I[Xn+1 ∈ Sk]EπHn,An

Xn+1
[eλ

Pm−n−2
t=0 C(Xt,At)]

≥ e−λ(n+1)‖C‖I[Xn+1 ∈ Sk]EπHn,An

Xn+1
[eλ

Pm−n−2
t=0 C(Xt,At)]

≥ e−λ(n+1)‖C‖I[Xn+1 ∈ Sk]eλJm−n−1(λ,πHn,An ,Xn+1);

see (2.1). From this point, Lemma 4.2(i) yields that

Eπ
x [eλ

Pm−1
t=0 C(Xt,At)I[Xn+1 ∈ Sk]|Hn, An, Xn+1]
≥ e−λ(n+1)‖C‖I[Xn+1 ∈ Sk]eλ(m−n−1)gk−2λ‖hk‖

and then

eλJm(λ,π,x) = Eπ
x [eλ

Pm−1
t=0 C(Xt,At)]

≥ Eπ
x [eλ

Pm−1
t=0 C(Xt,At)I[Xn+1 ∈ Sk]]

≥ e−λ(n+1)‖C‖Pπ
x [Xn+1 ∈ Sk]eλ(m−n−1)gk−2λ‖hk‖.

Using (4.14), this inequality immediately yields that

J−(λ, π, x) = lim inf
m→∞

1
m

Jm(λ, π, x) ≥ gk

and then (4.10) implies that gk < gr, an inequality that, recalling that r < k, contradicts
(3.2). Therefore, (4.13) does not hold and it follows that

0 = Pπ
x [πn(A(Xn) \ Â(Xn)|Hn) > 0],
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that is, 1 = Pπ
x [πn(Â(Xn)|Hn) = 1].

(ii) The argument is by induction. For n = 0, both sides of (4.12) are equal to δx(D).
Assume now that (4.12) holds for certain nonnegative integer n, and let D ∈ B(ÎHn),
D1 ∈ B(Â) and D2 ⊂ Ŝ be arbitrary. Next observe that

Pπ
x [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2|Hn] = I[Hn ∈ D]

∫
a∈D1

∑
y∈D2

pXn y(a)πn(da|Hn);

since the equality ∆n(·|Hn) = πn(·|Hn) holds Pπ
x -a.s., by part (i) and (4.11), it follows

that

Pπ
x [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2|Hn]

= I[Hn ∈ D]
∫

a∈D1

∑
y∈D2

pXn y(a)∆n(da|Hn) Pπ
x -a.s.,

and then

Pπ
x [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2]

=
∫
hn∈D

∫
a∈D1

∑
y∈D2

pxn y(a)∆n(da|hn)

Pπ
x [dhn].

By the induction hypothesis the distribution of Hn is the same under Pπ
x and P∆

x , so
that

Pπ
x [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2]

=
∫
hn∈D

∫
a∈D1

∑
y∈D2

pxn y(a)∆n(da|hn)

P∆
x [dhn],

that is,

Pπ
x [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2] = P∆

x [Hn ∈ D,An ∈ D1, Xn+1 ∈ D2].

Since D ∈ B(Ĥn), D1 ∈ B(Â) and D2 ⊂ Ŝ are arbitrary, Theorem 10.4 in Billingsley [2]
yields that (4.12) holds with n + 1 instead of n.

(iii) The previous part yields that E∆
x [eλ

Pn−1
t=0 C(Xt,At)] = Eπ

x [eλ
Pn−1

t=0 C(Xt,At)] for every
positive integer n. Therefore, Jn(λ, ∆, x)/n = Jn(λ, π, x)/n, and the conclusion follows
after taking the inferior limit as n goes to ∞ in both sides of this equality. �

After the above preliminaries, the proof of the main result of this section is presented
below.

P r o o f o f Theorem 4.1. The argument is by induction in the order k of the optimality
system O. If k = 1 then (4.1) follows from Lemma 4.2(ii). Suppose now that (4.1) holds
when k = m − 1 for certain integer m ≥ 2, and let O be an optimality system for M
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with order m. The reduced optimality system Ô in Definition 4.1 has order m− 1, and
then the optimal inferior limit average cost corresponding to M̂ satisfies

Ĵ∗(λ, x) ≥ gi, x ∈ Si, i = 1, 2, . . . ,m− 1, (4.15)

by the induction hypothesis, a fact that will be used to verify that

J∗(λ, x) ≥ gi, x ∈ Si, i = 1, 2, . . . ,m− 1. (4.16)

Indeed, if this relation fails, there exist r < m and a state x ∈ Sr such that J∗(λ, x) < gr,
and then J−(λ, π, x) < gr for some policy π ∈ P. Using Lemma 4.5(iii), there exists
a policy ∆ ∈ P̂ such that Ĵ−(λ, ∆, x) = J−(λ, π, x) < gr, and then Ĵ∗(λ, x) < gr,
contradicting (4.15). Thus, (4.16) holds, whereas an application of Lemma 4.2(i) to
the present optimality system of order m yields that J∗(λ, x) ≥ gm for all x ∈ Sm,
a fact that together with (4.16) yields that (4.1) holds when k = m, concluding the
argument. �

5. PROOF OF THE VERIFICATION THEOREM

In this section Theorem 3.2 will be established. The argument combines Theorem 4.1
with the following result, which provides an upper bound for the (superior limit) aver-
age cost function associated with a stationary policy f satisfying (3.6). Although such
a result can be obtained from Cavazos-Cadena and Hernández-Hernández [7], for the
sake of completeness a different proof is presented, which uses simple probabilistic ar-
guments. The following notation is involved in the argument: For each set W ⊂ S, the
corresponding hitting time is given by

TW := min{n > 0 |Xn ∈ W}, (5.1)

where the minimum of the empty set is ∞.

Theorem 5.1. (i) Let f be a stationary policy as in the statement of Theorem 3.2(ii).
In this case,

J(λ, f, x) ≤ gi, x ∈ Si, i = 1, 2, . . . , k. (5.2)

Consequently,

(ii) For each i ∈ {1, 2, . . . , k} and x ∈ Si, J∗(λ, x) ≤ gi.

P r o o f . To begin with, notice that (3.3) and (3.5) together imply that the set S1∪· · ·∪Si

is closed under the action of policy f , that is, for each i = 1, 2, . . . , k,

x ∈ S1 ∪ · · · ∪ Si and px y(f(x)) > 0 =⇒ y ∈ S1 ∪ · · · ∪ Si. (5.3)

On the other hand, starting from (3.6), a standard induction argument using the Markov
property yields that, for every n = 1, 2, 3, . . . and i = 1, 2, . . . k,

eλ(ngi+hi(x)) = Ef
x [eλ

Pn−1
t=0 C(Xt,At)+λhi(Xn)I[Xt ∈ Si, t < n]], x ∈ Si. (5.4)
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Since (5.3) implies that 1 = P f
x [Xt ∈ S1] for every x ∈ S1 and t ∈ IN, it follows that if

the initial state x belongs to S1, the equality

eλ(ng1+h1(x)) = Ef
x

[
eλ

Pn−1
t=0 C(Xt,At)eλh1(Xn)

]
holds for each n > 0, and in this case Ef

x

[
e

Pn−1
t=0 C(Xt,At)

]
≤ eλ(ng1+2‖h1‖), that is,

Jn(λ, x, f) ≤ ng1 + 2‖h1‖, x ∈ S1, n = 1, 2, 3, . . . (5.5)

see (2.1). Next, for i ∈ {1, 2, . . . , k} consider the following claim. Ci : J(λ, f, x) ≤ gi for

every x ∈ Si. It will be proved, by induction, that Ci is valid for every i = 1, 2, . . . , k.

To achieve this goal, observe that (5.5) implies that

J(λ, f, x) = lim sup
n→∞

1
n

Jn(λ, x, f) ≤ g1, x ∈ S1,

so that C1 is valid. Now, suppose that Cj holds for j = 1, 2, . . . , i − 1, where i ∈
{2, 3, . . . , k}. In this case, given ε > 0, for each x ∈ Sj with 1 ≤ j ≤ i− 1, there exists a
positive integer N(x) such that Jn(λ, f, x)/n ≤ gj + ε for n ≥ N(x), a relation that via
(2.1) is equivalent to

Ef
x

[
e

Pn−1
t=0 C(Xt,At)

]
≤ eλn(gj+ε), n ≥ N(x);

since gj ≤ gi for j < i , by (3.2), it follows that

Ef
x

[
e

Pn−1
t=0 C(Xt,At)

]
≤ D(ε)eλn(gi+ε), x ∈ S1 ∪ · · · ∪ Si−1, n = 1, 2, 3, . . . , (5.6)

where, setting

D̃(ε) := max
{

e−λn(gi+ε)Ef
x

[
e

Pn−1
t=0 C(Xt,At)

] ∣∣∣ 1 ≤ n < N(x), x ∈
⋃
j<i

Sj

}
,

D(ε) ≥ 1 is given by
D(ε) := max{D̃(ε), 1}.

Next, let x ∈ Si be arbitrary but fixed, and observe that (5.3) yields that

P f
x [Xt ∈ S1 ∪ · · · ∪ Si, t = 1, 2, 3, . . .] = 1. (5.7)

Combining this relation with the specification of the hitting time TW in (5.1), it follows
that for every positive integers n and r the following equalities occur with probability 1
with respect to P f

x :

I[TS1∪···∪Si−1 = r] = I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ S1 ∪ · · · ∪ Si−1]
I[TS1∪···∪Si−1 > n− 1] = I[Xm ∈ Si, 1 ≤ m ≤ n− 1].
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Therefore, for a positive integer n,

Ef
x

[
e

Pn−1
t=0 C(Xt,At)

]
=

n−1∑
r=1

Ef
x

[
e

Pn−1
t=0 C(Xt,At)I[TS1∪···∪Si−1 = r]

]
+Ef

x

[
e

Pn−1
t=0 C(Xt,At)I[TS1∪···∪Si−1 > n− 1]

]
(5.8)

=
n−1∑
r=1

Ef
x

[
e

Pn−1
t=0 C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]
]

+Ef
x

[
e

Pn−1
t=0 C(Xt,At)I[Xt ∈ Si, t = 1, 2, . . . , n− 1]

]
.

To continue, each one of the terms in this last equality will be analyzed. First, recalling
that x ∈ Si, notice that (5.4) immediately implies that

Ef
x

[
e

Pr−1
t=0 C(Xt,At)I[Xt ∈ Si, t = 1, 2, . . . , r − 1]

]
≤ eλ(rgi+2‖hi‖), r = 1, 2, 3, . . . . (5.9)

Next, for r ∈ {1, 2, . . . , n− 1}, the Markov property yields

Ef
x

[
e

Pn−1
t=0 C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]
∣∣∣ Hr

]
= I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]e
Pr−1

t=0 C(Xt,At)

×Ef
Xr

[
e

Pn−r−1
t=0 C(Xt,At)

∣∣∣ Hr

]
≤ I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]e
Pr−1

t=0 C(Xt,At)D(ε)eλ(n−r)(gi+ε)

≤ I[Xm ∈ Si, 1 ≤ m < r]e
Pr−1

t=0 C(Xt,At)D(ε)eλ(n−r)(gi+ε)

where (5.6) was used to set the first inequality. Thus,

Ef
x

[
e

Pn−1
t=0 C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]I[Xr ∈ ∪i−1

j=1Sj ]
]

≤ D(ε)eλ(n−r)(gi+ε)Ef
x

[
e

Pr−1
t=0 C(Xt,At)I[Xm ∈ Si, 1 ≤ m < r]

]
≤ D(ε)eλ(n−r)(gi+ε)eλ(rgi+2‖hi‖)

≤ e2λ‖hi‖D(ε)eλn(gi+ε)

where (5.9) was used to set the second inequality. Combining this last display and (5.9)
and recalling that D(ε) ≥ 1, from (5.8) it follows that

eλJn(λ,f,x) = Ef
x

[
e

Pn−1
t=0 C(Xt,At)

]
≤

n−1∑
r=1

e2λ‖hi‖D(ε)eλn(gi+ε) + e2λ‖hi‖eλngi

≤ D(ε)ne2λ‖hi‖eλn(gi+ε),
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that is,

Jn(λ, f, x) ≤ log(n) + 2λ‖hi‖+ log(D(ε))
λ

+ n(gi + ε),

a relation that leads to

J(λ, f, x) = lim sup
n→∞

1
n

Jn(λ, f, x) ≤ gi + ε;

since x ∈ Si and ε > 0 are arbitrary, it follows that Ci holds, concluding the induction
argument. Therefore Cj occurs for every j = 1, 2, . . . , k, a fact that is equivalent to
(5.2). �

P r o o f o f Theorem 3.2. Since J∗(λ, ·) ≤ J∗(λ, ·), Theorems 4.1 and 5.1(ii) together
yield that

gi ≤ J∗(λ, x) ≤ J∗(λ, x) ≤ gi, x ∈ Si, i = 1, 2, . . . , k,

a relation that immediately implies parts (i) and (ii). Now, let f ∈ IF be as in (3.5) and
(3.6). Using that J(λ, f, ·) ≥ J−(λ, f, ·) ≥ J∗(λ, ·), by (2.2), (2.4) and (2.5), the above
displayed relation and Theorem 5.1(i) lead to

J(λ, f, x) = J−(λ, f, x) = gi = J∗(x), x ∈ Si, i = 1, 2, . . . , k,

where part (i) was used to set the last equality. Therefore, f is λ-optimal and, via (2.2)
and (2.4), lim

n→∞
Jn(λ, f, x)/n = J∗(λ, x) for all x ∈ S, completing the proof. �

6. DISCOUNTED APPROACH

This section presents the necessary technical tools that will be used to establish the
existence of an optimality system for model M. The approach relies on the discounted
operators introduced below which, when λ is small enough and appropriate communica-
tion conditions are satisfied by the transition law, have been used to construct solutions
of the optimality equation (2.6) (Di Masi and Stettner [9], Cavazos-Cadena [5]).

Definition 6.1. Given α ∈ (0, 1) define the operator Tα : B(S) → B(S) as follows: For
each V ∈ B(S) and x ∈ S, Tα[V ](x) is determined by

eλTα[V ](x) = inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλαV (y)

 , x ∈ S. (6.1)

According to this specification, Tα[V ](x) is the minimum certain equivalent of the ran-
dom cost C(X0, A0) + αV (X1) that can be achieved when the initial state is X0 = x.
On the other hand, it is not difficult to see that T is a monotone and α-homogeneous
operator, that is, for V,W ∈ B(S) (i) V ≥ W implies that T [V ] ≥ T [W ], and (ii)
T [V + r] = T [V ] + αr for every r ∈ IR. Combining these properties with the relation
W − ‖W − V ‖ ≤ V ≤ W + ‖W − V ‖, it follows that

T [W ]− α‖W − V ‖ ≤ T [V ] ≤ T [W ] + α‖W − V ‖, V, W ∈ B(S), (6.2)
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so that ‖T [W ]− T [V ]‖ ≤ α‖V −W‖, showing that Tα is a contractive operator on the
space B(S) endowed with the maximum norm. Consequently, by Banach’s fixed point
theorem, there exists a unique function Vα ∈ B(S) satisfying Tα[Vα] = Vα, that is,

eλVα(x) = inf
a∈A(x)

eλC(x,a)
∑
y∈S

px y(a)eλαVα(y)

 , x ∈ S, α ∈ (0, 1). (6.3)

Notice now that (6.1) yields that Tα[0](x) = infa∈A(x) C(x, a), so that ‖Tα[0]‖ ≤ ‖C‖.
Using (6.2) with Vα and 0 instead of W and V , respectively, it follows that

(1− α)‖Vα‖ ≤ ‖C‖. (6.4)

In the remainder of the section, the family {Vα}α∈(0,1) of fixed points will be used
to construct the components of an optimality system, and the idea in the following
definition is the essential step in that direction. Throughout the remainder, {αm} ⊂
(0, 1) is a fixed sequence satisfying the following requirements:

αm ↗ 1 as m ↗∞ (6.5)

and

for every x, y ∈ S, the following limits exist:
lim

m→∞
[Vαm

(x)− Vαm
(y)] ∈ [−∞,∞] (6.6)

lim
m→∞

(1− αm)Vαm(x) ∈ [−‖C‖, ‖C‖],

where the last inclusion follows from (6.4).

Definition 6.2. The relation ‘∼’ in the state space S is specified as follows:

x ∼ y ⇐⇒ lim
m→∞

[Vαm
(x)− Vαm

(y)] ∈ (−∞,∞). (6.7)

From this definition it is not difficult to see that ‘∼’ is an equivalence relation, and
then it induces a partition of S into equivalence classes. Notice that for x, y ∈ S, (6.6)
and Definition 6.2 yield that

x 6∼ y ⇐⇒ lim
m→∞

[Vαm
(x)− Vαm

(y)] = ∞ or lim
m→∞

[Vαm
(x)− Vαm

(y)] = −∞; (6.8)

moreover,

if x ∼ x1 and y ∼ y1 and lim
m→∞

[Vαm(x)− Vαm(y)] = ∞,

then lim
m→∞

[Vαm(x1)− Vαm(y1)] = ∞. (6.9)

Definition 6.3. The relation ‘≺’ in the family of equivalence classes determined by the
equivalence relation in (6.7) is defined as follows: If E and E ′ are two different equivalence
classes, then

E ≺ E ′ ⇐⇒ lim
m→∞

[Vαm(x)− Vαm(y)] = ∞ for some x ∈ E ′ and some y ∈ E .
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By (6.9) this relation is well-defined, whereas (6.8) implies that ≺ is a (strict) total
order, that is, if E and E ′ are two different equivalences classes, then either E ≺ E ′ or
E ′ ≺ E . Moreover, combining the above definition and (6.9), it follows that

E ≺ E ′ ⇐⇒ lim
m→∞

[Vαm(x)− Vαm(y)] = ∞ for all x ∈ E ′ and all y ∈ E . (6.10)

Throughout the remainder,

S∗1 , . . . , S∗k are the different equivalence clasess of S with respect to ‘∼’ (6.11)

where, without loss of generality, the labelling of the equivalence classes is such that

S∗i ≺ S∗i+1 1 ≤ i < k; (6.12)

also, the states x1, . . . , xk are fixed and satisfy

xi ∈ S∗i , i = 1, 2, . . . , k. (6.13)

Now, for i ∈ {1, 2, . . . , k}, define

g∗i := lim
m→∞

(1− αm)Vαm(xi), (6.14)

and
h∗i (x) = lim

m→∞
[Vαm(x)− Vαm(xi)], x ∈ S∗i . (6.15)

Notice that g∗i ∈ [−‖C‖, ‖C‖], by (6.4) whereas, observing that xi ∼ x for every x ∈ Si,
from Definition 6.2 it follows that hi(x) is finite for every x ∈ S∗i ; the above objects S∗i ,
g∗i and h∗i (·) will be used to build an optimality system for model M.

7. PROOF OF THE EXISTENCE RESULT

In this section it will be verified that an optimality system for model M exists. With
the notation in (6.11) – (6.15), define the sequence of triplets O∗ as follows:

O∗ := ((S∗1 , g∗1 , h∗1), . . . , (S
∗
k , g∗k, h∗k)). (7.1)

P r o o f o f Theorem 3.3. It will be shown that O∗ specified above is an optimality
system for model M. To achieve this goal, the four conditions in Definition 3.1 will be
verified.

(i) Since S∗1 , . . . , S∗k are the different equivalence classes of S with respect to the equiv-
alence relation in Definition 6.2, those sets S∗i form a partition of S.

(ii) As already noted, g∗i is a finite number and h∗i ∈ B(S∗i ). Now let i < j be arbitrary
in {1, 2, . . . , k}. Recall now that xi ∈ Si and xj ∈ Sj , by (6.13), and combine Definition
6.3 with (6.10) and (6.12) to obtain that limm→∞[Vαm(xj) − Vαm(xi)] = ∞, so that
Vαm(xj) > Vαm(xi) for m large enough, a fact that leads to

g∗j = lim
m→∞

(1− αm)Vαm(xj) ≥ lim
m→∞

(1− αm)Vαm(xi) = g∗i ,
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and then g∗1 ≤ · · · ≤ g∗k.
(iii) Setting

B∗(x) = {a ∈ A(x) |
∑

y∈S∗1∪···∪S∗i

px y(a) = 1}, x ∈ S∗i , i = 1, 2, . . . , k, (7.2)

it will be shown below that B∗(x) is always a nonempty set. To achieve this goal, notice
that Assumption 2.1 yields that, for each α ∈ (0, 1), there exists a policy fα ∈ IF such
that, for every x ∈ S,

eλVα(x) = eλC(x,fα(x))
∑
y∈S

px y(fα(x))eλαVα(y). (7.3)

Now, let the sequence {αm} be as in (6.5) and (6.6), and consider the sequence {fαm} ⊂
IF. Recalling that IF is a compact metric space, taking a subsequence (if necessary),
without loss of generality it can be assumed that there exists f∗ ∈ IF such that

lim
m→∞

fαm
(x) = f∗(x). (7.4)

Next, it will be shown that f∗(x) always belongs to B∗(x), an assertion that will be
verified by contradiction. Let i ∈ {1, 2, . . . , k} and x ∈ S∗i be arbitrary but fixed, and
suppose that

px z(f∗(x)) > 0 for some z ∈ S∗j where j > i. (7.5)

Replacing α by αm in (7.3) and multiplying both sides of the resulting equality by
e−λVαm (xi), where xi is the fixed state in (6.13), direct calculations yield that

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)]

= eλC(x,fαm (x))
∑
y∈S

px y(fαm(x))eλαm[Vαm (y)−Vαm (xi)], (7.6)

and then

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)]

≥ eλC(x,fαm (x))px z(fαm(x))eλαm[Vαm (z)−Vαm (xi)]. (7.7)

Since x, xi ∈ S∗i , taking the limit as m goes to ∞ in both sides of this inequality, the
continuity of the transition law and the cost function together with (6.6), (6.14), (6.15)
and (7.4), lead to

eλg∗i +λh∗i (x) ≥ eλC(x,f∗(x))px z(f∗(x))eλ limm→∞[Vαm (z)−Vαm (xi)];

since z ∈ S∗j and xi ∈ S∗i with j > i, via (6.10) and (6.12) it follows that

lim
m→∞

[Vαm
(z)− Vαm

(xi)] = ∞,

and recalling that λ and px z(f∗(x)) are positive, the above display yields that eλg∗i +λh∗i (x)

≥ ∞, a contradiction that stems from (7.5). Therefore, px z(f∗(x)) = 0 when z ∈ S∗j
with j > i, and it follows that ∑

y∈S∗1∪···∪S∗i

px,y(f∗(x)) = 1,
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that is,
f∗(x) ∈ B∗(x); (7.8)

since x ∈ S∗i and i ∈ {1, 2, . . . , k} were arbitrary in this argument, it follows that B∗(x)
is always a nonempty set.

(iv) It will be verified that

eλ(g∗i +h∗i (x)) = inf
a∈B∗(x)

eλC(x,a)
∑

y∈S∗i

px y(a)eλh∗i (y)

 , x ∈ S∗i . (7.9)

Let i ∈ {1, 2, . . . , k} and x ∈ S∗i be arbitrary but fixed. Now take an arbitrary action
a ∈ B∗(x) ⊂ A(x) and notice that (7.2) yields that px y(a) = 0 when y 6∈ S∗1 ∪ · · · ∪ S∗i .
Using this fact (6.3) implies that, for every positive integer m,

eλVαm (x) ≤ eλC(x,a)
∑

y∈S∗1∪···∪S∗i

px y(a)eλαmVαm (y),

and multiplying both sides of this inequality by e−λVαm (xi) it follows that

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)] ≤ eλC(x,a)
∑

y∈S∗1∪···∪S∗i

px y(a)eλαm[Vαm (y)−Vαm (xi)];

recalling that xi ∈ S∗i and using (6.6), (6.14) and (6.15), taking the limit as m goes to
∞ in both sides of the above inequality the following relation is obtained:

eλg∗i +λh∗i (x) ≤ eλC(x,a)
∑

y∈S∗i

px y(a)eλh∗i (y)

+eλC(x,a)
∑

y∈∪1≤j<iS
∗
j

px y(a)eλ limm→∞[Vαm (y)−Vαm (xi)]. (7.10)

Since
lim

m→∞
[Vαm(y)− Vαm(xi)] = −∞ when y ∈ S∗j with j < i, (7.11)

by (6.10) and (6.12), the positivity of λ yields that the second summation in the above
display vanishes, so that

eλg∗i +λh∗i (x) ≤ eλC(x,a)
∑

y∈S∗i

px y(a)eλh∗i (y)

and then, since a ∈ B∗(x) was arbitrary in this argument,

eλg∗i +λh∗i (x) ≤ inf
a∈B∗(x)

eλC(x,a)
∑

y∈S∗i

px y(a)eλh∗i (y)

 . (7.12)

To establish the reverse inequality, notice that (7.6) yields that

eλ(1−αm)Vαm (xi)+λ[Vαm (x)−Vαm (xi)]

≥ eλC(x,fαm (x))
∑

y∈S∗i ∪···∪S∗i

px y(fαm(x))eλαm[Vαm (y)−Vαm (xi)].
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Taking the limit as m goes to ∞, the specifications of g∗I and h∗i (·) together with As-
sumption 2.1 and (7.4) lead to

eλg∗i +λh∗i (x) ≥ eλC(x,f∗(x))
∑

y∈S∗i

px y(f∗(x))eλh∗i (y)

+eλC(x,fαm (x))
∑

y∈∪1≤j<iSj

px y(f∗(x))eλ limm→∞[Vαm (y)−Vαm (xi)]

and then (7.11) and the positivity of λ yield that

eλg∗i +λh∗i (x) ≥ eλC(x,f∗(x))
∑

y∈S∗i

px y(f∗(x))eλh∗i (y)

≥ inf
a∈B∗(x)

eλC(x,a)
∑

y∈S∗i

px y(a)eλh∗i (y)


where the second inequality follows from the inclusion in (7.8). This display and (7.12)
together imply that

eλg∗i +λh∗i (x) = inf
a∈B∗(x)

eλC(x,a)
∑

y∈S∗i

px y(a)eλh∗i (y)

 ;

since i ∈ {1, 2, . . . , k} and x ∈ S∗i are arbitrary, (7.9) follows.

In short, it has been verified that O∗ in (7.1) is an optimality system for M, establishing
the conclusion of Theorem 3.3. �
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