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Abstract. The reverse Wiener index of a connected graph G is defined as
1
AG) = §n(n —1)d - W(G),

where n is the number of vertices, d is the diameter, and W (G) is the Wiener index (the
sum of distances between all unordered pairs of vertices) of G. We determine the n-vertex
non-starlike trees with the first four largest reverse Wiener indices for n > 8, and the n-
vertex non-starlike non-caterpillar trees with the first four largest reverse Wiener indices
for n > 10.
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1. INTRODUCTION

Let G be a simple connected graph. The Wiener index W(G) of G is the sum
of distances between all unordered pairs of vertices of G [11], [20]. It is one of the
oldest graph invariants studied extensively and thoroughly both in chemistry, e.g.,
[16], [18], [19] and in mathematics (under different names), e.g., [6], [7], [8], [10], [17].

Balaban et al. [2] proposed a novel variant of the Wiener index named the reverse
Wiener index. For a connected graph G with n vertices, it is defined as [2]

AG) = %n(n —1)d - W(G),

This work was supported by the National Natural Science Foundation of China (Grant
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where d is the diameter of G. The reverse Wiener index found applications in QSPR
studies, see [2], [12]. Some mathematical properties of the reverse Wiener index have
been established in [3], [9], [13], [14], [15], [21], see [22], [23] for a survey.

We note that the study of the reverse Wiener index is equivalent to the study of
the difference between the diameter and the average distance [1], [4], [5].

A tree with exactly one vertex of degree at least three is said to be starlike.
Otherwise, it is non-starlike. A caterpillar is a tree such that deleting all the pendent
vertices (vertices of degree one) yields a path. A tree that is not a caterpillar is said
to be a non-caterpillar tree.

In [13], we determined the n-vertex trees with the k-th largest reverse Wiener
indices for all k up to |$n], where n > 5. In [14], we determined the n-vertex non-
caterpillar trees with the k-th largest reverse Wiener indices for all k up to | 3(n—3)],
where n > 8. All these extremal trees are starlike. Therefore it is of interest to study
the reverse Wiener indices of non-starlike trees.

In this paper, we determine the n-vertex non-starlike trees with the first four
largest reverse Wiener indices for n > 8, and the n-vertex non-starlike non-caterpillar
trees with the first four largest reverse Wiener indices for n > 10.

2. PRELIMINARIES

Let T be a tree with a vertex set V(T') and an edge set E(T). For e € E(T),
nr,1(e) and ny2(e) denote the number of vertices of T' lying on the two sides of the
edge e, respectively. It is well-known that [20], [6]

W(T): Z ’I’LT71(€)’I’LT72(6).

e€E(T)

Let v be a vertex of degree r + 1 in a tree T (which is not a star) with a unique
non-pendent neighbor v and pendent neighbors vy, vs,...,v,.. Let o(T;u,v) be the
tree obtained from T by removing edges vvi,vvs,...,vv, and adding new edges
uvy, Uvs, . . ., uv,.. We say that o(T;u,v) is a o-transformation of T at u and v.

U1
V2

o,
T o(T;u,v)
Figure 1. o-transformation applied to T' at v and v.
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Lemma 2.1. Let T be a tree and v a vertex of T' with a unique non-pendent
neighbor u and at least one pendent neighbor. Then

W (o(T;u,v)) < W(T).

Proof. Let v1,v9,...,v, be the pendent neighbors of v. Let n = |[V(T)].
Obviously, n > r + 3. It is easily seen that

W(T) = W(o(T;u,v)) = nra(uo)ng 2 (uv) — N (iu,0),1 (U0) N6 (T;0,0),2 (U0)
=(r+)n-r—-1)—-(mn-1)
=r(n—r—2)>0,

from which the result follows. O

For u,v € V(T), dr(u,v) denotes the distance between the vertices u and v in T
For u € V(T') and A C V(T), let dr(u|A) be the sum of all distances from u to the
vertices in A, i.e., dp(ulA) = Y. dr(u,v).

vEA

Let P, be the n-vertex path.

Lemma 2.2. Let Py 1 = vovr...vq. Then dp,.  (vi|Pay1) < dp,, (vj|Piy1) for
[i = 3l <5 = 3dl.

Proof. It is easily seen that

dd-l—l
de+1 vz|Pd+1 ZS+ZS_Z —di + —— ( )

which is symmetrical for ¢ = =d. O

1
2

Let G be a connected graph with a subgraph H. For u € V(G), the distance from
u to H is defined as the minimum distance between v and the vertices of H.

Lemma 2.3. Let T be a tree with Pj11 = vov1 ...vq as its subgraph. For u €
V(T), let h be the distance from u to Pyiq. If h > 1, then

dr(u|Pay1) = h(d + 1) + dr(vir|Pag1),

where vy € V(Pd+1) with h = dT(u, ’Ui/).
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i d—i'
Proof. Obviously, dr(vi|Piy1) = > s+ >, s. Then we have

s=1 1

h+i’ h+d—i’ i d—i’
dr(ulPay1) =Y s+ > s=@E+Dh+Y s+(d—i)h+ ) s
s=h s=h+1 s=1 s=1
= h(d + 1) + dr(vi'|Pat1),
as desired. O

Lemma 2.4. Let T be a tree with a diameter-achieving path P = vgv; ...vgq. Let
vs and vy with 0 < s < t < d be two vertices of degree at least three such that all
internal vertices (if any) of the path connecting them have degree two. Form a tree
T' by removing the edges outside P incident with vs to v; and a tree T"' by removing
the edges outside P incident with vy to vs. Then

min{W (T"), W(T")} < W(T).

Proof. Let ng or n; be the number of vertices of the tree containing vs or vy
resulting from T by deleting the edge vsvs+1 or vi_1v, respectively. Let a + 1 or
b+ 1 be the number of vertices of the tree containing vy or v resulting from 7" by
deleting edges vs_1vs and vsvsyq Or vi—1vy and vyvy41, respectively. Let ¢ = ¢ — s.
Let n = |V(T)|. Then n =ns +ny + ¢ — 1. It is easily seen that

Q
|
-

W(T)—-W(T") = [(ne+i)(n—ng—1) — (ne+a+i)(n—ny —a—1i)

= O

Q

Za(Znt—l-Zi—l—a—n):ac(2nt+c—1—|—a—n)

(2

0
= ac(ny — ns + a).

Similarly,
W(T) — W(T") = be(ns —ng + b).

Therefore W(T") < W(T) if ny = ng, and W(T") < W(T) if ng > ny. O

218



3. REVERSE WIENER INDICES OF NON-STARLIKE TREES

Let N'S,, 4 be the class of non-starlike trees with n vertices and diameter d, where
3 <d< n-—3. Let N, 4 be the tree obtained from the path Pyi1 = vov1...vq by
attaching n — d — 2 pendent vertices to v|4/2 and one pendent vertex to v|g/2)41-

VAR

o
Vo V1 Uid/2] Vld/2]+1 Vd—1 Ud

See Figure 2.

Figure 2. The tree N, 4.

Theorem 3.1. Let T € N'S,, 4, where 3 < d < n — 3. Then

d(d+1é(d+2) ””‘d_l)(HQ‘dH +d(d+1))

+2EJ F(n+1)(n—d—2)+2

W(T) >

with equality if and only if T = N, 4.
Proof. Note that W(Pst1) = 2d(d + 1)(d + 2). By Lemma 2.3, we have

W(Np,a) = W(Pas1) + (n —d = 2)(d+1+dn, ,(v4/2/|Pa+1))
n—d—2
Ly, aalPa) +2(" 75T 43002

= W(Pas1) + (n —d = 2)dn, ,(viay2)|Pat1) + dn, ,(V1a/2)+1|Pat1)
+(n—d-1)(d+1)+(n—-d)(n—d-2)

- st |3 3]+ 242

#[([5]+1) - allg] +1) + 25

_ddr)@d+) o, g gJ _derd(dH))
2

6
-I-ZLgJ—l-(n—l-l)(n—d—Z)—i-

Let T be a tree in NS, ¢ with a minimum Wiener index. We need only to show
that T'= N, 4. Let P = vyv; ... vq be a diameter-achieving path of T'.

Suppose that there exists a vertex in 7' (outside P), the distance from which to
P is at least two. Let u be such a vertex, the distance from which to P is maximal.
Then wu is pendent. Let wvw... be the shortest path from u to P. Note that
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o(T;w,v) € NSy, 4. By Lemma 2.1 we have W (o (T;w,v)) < W(T), a contradiction.
It follows that T is a caterpillar.

Since T' € N'S,, 4, there are at least two vertices on P of degree at least three.

If there are at least three vertices on P of degree at least three, then for two such
vertices with minimal distance, say vs and v; on P, by Lemma 2.4 we may relocate
the observed pendent edges (edges incident to the pendent vertices) outside P in
such a way that the edges which were previously attached at v, are now attached
at vy, or, conversely, to obtain a tree in N'S,, 4 with a Wiener index smaller than 7,
a contradiction.

Hence there are exactly two vertices, say v; and v; on P of degree at least three.
Suppose without loss of generality that 1 < i < |2d| and |i — 3d| < [j — 3d|. If
(i,7) # (3(d—1),4(d+ 1)) for odd d and (i, ) # (3d, 2d £ 1) for even d, then move
all the pendent neighbors of v; or v; outside P to v|4/2) Or v|4/2)41, respectively, to
obtain a tree T* € N'S,, 4. Let a or b be the number of pendent neighbors outside P
at v; or v;, respectively. By Lemmas 2.2 and 2.3,

W(T) = W(T*) = a[(d + 1 +dr(vi| P)) — (d + 1 + dr(v|ay2) | P))]
+0[(d+1+dr(vs|P)) = (d+ 1+ dr(via/2) 1] P))]
+ablj —i| —ab
= a(dr(vi|P) = dr(via/2)|P)) + b(dr (v;|P) — dr(vg/2)41]P))
+ab(|j —i| - 1) >0,
a contradiction. Hence (i,5) = (|3d], [3d] + 1) or (1d, 3d — 1). For the case (i, j) =
(%d, %d - 1), we may turn to the first case by relabeling the vertices of the path P

conversely. Hence T' has exactly two vertices v|4/2) and v|q/2)41 of degree at least
three on P. Then

W(T) =W(P)+a(d+1+dr(vg/2|P))

b
+b(d+1+ dT(ULd/2J+1|P)) + 2(;) + 2<2> + 3ab
= W(P) + adr(v|a2)|P) + bdr(v|aj2)+1|P)

+(a+b)(d+1)+a(a—1)+b(b—1)+3ab

= W(Pay1) + (a+ b)(gf - d{gJ + Ld; 1))

d
+2bbJ —bd+b+ (a+b)(a+b+d) +ab

DD g2 200

+(n—d—1)(n—1)+b(2gJ —d+1+a),
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which is minimal for fixed n and d if and only if

el —aen) {0 e

is minimal (for positive integers a and b with a +b=n—d — 1) if and only if b =1
if diseven and a =1or b =1if d is odd. Thus T'= N, 4. ([

Lemma 3.2. For 3 < d < n —4, we have A(N,, q) < ANy, q41)-
Proof. By Theorem 3.1,

A(Nn,dJrl) - A(Nn,d) = T - W(Nn,dJrl) + W(Nn,d)

—@ﬂ%f”(EH%J)

n(n—1) d d+1

N R R
n(n—1) d |2 d

>E = 5] -2 5 - (-2

~n(n—1) d12 (n—-2)d

B 2 + bJ 2

> 0,

from which the result follows. O

By Theorem 3.1 and Lemma 3.1, we have

Theorem 3.3. Let T' be an n-vertex non-starlike tree with n > 6. Then
A(T) < A(Npn—3)

with equality if and only if T' = Ny, 5,—3.

Let Ny n—3(7,7) be the tree formed from the path P,,_o = vov; ... v,—3 by attach-
ing a pendent vertex at vertices v; and v;, respectively, where 1 < ¢ < L%(n -3)]
and i < j < n—4. By symmetry, Ny n—3(4,7) = Npn—3s(n —3 —j,n —3 —1) for
|4(n —3)] < j < n—4 and thus, if n is even, then we may further restrict ¢ and
jasi < j < (n—4) orn—3—1<j<n—4. Similarly, if n is odd, then we
may further restrict i and j as (a) 1 < i < £(n —5), andi <j < 3(n—25)or
n—3-i<j<n—4,or()i=2%n-3)and i(n—3) < j < n-—4. Clearly,
Nopn-3=Npns([3(n—=3)],[3(n=3)] +1).
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It is easily seen that

W(Npn—3(i,§)) = W(Pa—2) +2(n — 2) +dn, . 4.7 (vi| Pa—2)
+dy, i) (V| Po2) +§ =i 42

=W(Pn_2)+2(n—2)+i2—(n—3)i+%(n—3)(n—2)
+j2—(n—3)j+%(n—3)(n—2)+]’—i+2
=W (P, 2)+i*—(n—2)i+j>—(n—4)j+n(n—3)+4,
and then

ANn3(i ) = %(n 1) (n—1)(n—3) — n(n—3)
—i?4+(n—2)i— 2+ (n—4)j —4.

Let [a,b]? be the set of integers in the interval [a,b]. Let

L{Z:{(s,t): s € {—HT_GS,O}()’ tels+1,0°U {_5—’—1’”;4}0}

for even n > 6, and

USZ{(S,t): se [_n;57_1}07 te[s+1,—1]ou[—s,n;5}o}

u{.: te [1”7_5}0}

foroddn > 7.

For even n and (s, t) € US, let iy = $(n—4+2s), ji = 3(n—4+2t), and f(s,t) =
(s—1)2+12. For odd n and (s,t) € U, let iy = 1 (n—3+2s), j, = 3(n—3+2t), and
g(s,t) =s(s—1)+t(t +1). Clearly, Ny n—3 = Ny n—3(i0,j1). For (s,t) € U UUE,

A(Npn—3(is, ji)) = %(n +1)(n—1)(n—3)—n(n—-3)

— s+ (n = 2)is = 57+ (n = 4)jy — 4
(n+1)(n—1)(n—3) - n?
—(s—1)2 -t +1 for even n,

%(n +1D(n—=1)(n—-3)— %n2

—s(s=1)—t(t+1)+ % for odd n
$(n+1)(n—1)(n—3)— sn*+1— f(s,t) for even n,
B s(n+1)(n—1)(n—3)— in*+ 3 — g(s,t) for odd n.
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Lemma 3.4. Let T be an n-vertex non-starlike tree different from N, ,_3 with
diameter n — 3, where n > 8. If n is even and T # Ny n—3(i—1,50); Nnn—3(%0,72),
Nn,n—3(i—1aj2)7 then

A(Nn,n-3(i-1,370)) > AM(Nn,n—3(io, j2))
> A(Nn,n—3(i—1;j2))
> A(T),

while if n is odd and T 7£ Nn,n73(i717j1)) Nn,n73(i0;j2): Nn,n73(i72;j71): Nn,n73
(i—laj2)7 then

A(Nn’nfg(l',l,jl)) > A(Nn,n73(i0aj2)) = A(Nnxn*?’(i*%jfl))
> A(Nn,n73(i717j2))
> A(T).

Proof. Obviously, any n-vertex non-starlike tree with diameter n — 3 is of the
form N, n—3(is, jt), where (s,t) € US for even n and (s,t) € U for odd n.
Case 1. nis even. It is easily seen that

F0,1)=2< f(—1,0) =4 < f(0,2) =5 < f(—1,2) =S8,

Suppose that (s, t) # (0,1), (—1,0),(0,2), (—1,2). We have s € [-1(n—6), —2]° and
then f(s,t) >9+1t>> 8, ort € [3,4(n—4)]° and then f(s,t) > 9+ (s —1)® > 8.
Since A(Np n—3(is, Ji)) = %(n—l— 1(n—1)(n—3)— %nQ—i—l —f(s,t)and T # Ny, 3 =
Nnm,g(io,jl), Nn’nfg(ifl,jo), Nnm,g(io,jg), Nn’nfg(ifl,jg), we have

Case 2. nis odd. It is easily seen that
9(0,1) =2 < g(~1,1) =4 < g(0,2) = g(~2, 1) = 6 < g(—1,2) = .

Suppose that (s,t) # (0,1),(—1,1),(0,2), (—2,—1),(—1,2). We have (s,t) = (—2,2)
and then g(s,t) = 12 > 8, or s € [-3(n — 5),—3]° and then g(s,t) > 12 +
tt+1) > 8, ort € [3,4(n—5)]° and then g(s,t) > 12+ s(s — 1) > 8. Since
A(Nnn—s(is,ji)) = 2(n+1)(n = 1)(n —3) — $n? + 1 —g(s,t) and T # Ny 3 =
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Nn,n73(i0;jl)?Nn,nf?)(iflvjl)a Nn,n73(i07j2)7 Nn,n73(i727j71)7 Nn,n73(i717j2)7 we
have

> A Nn,n73(i0;j2)) - A(Nn,nf?)(if%jfl))
N, ,n73(i*17j2))

The result follows by combining Cases 1 and 2. O

Note that Ng3 (see Figure 3) is the only 6-vertex non-starlike tree, and N7 4,
N7.4(1,3), and N7 3 (see Figure 3) are all the 7-vertex non-starlike trees. It is easily
seen that A(N774) =38 > A(N774(]., 3)) =36 > A(N7’3) = 21.

Vg V1 Vg2 U3 Vg V1 Vg V3 V4 Vg VU1 V2 V3 V4 Vo U1 V2 VU3
Ne.3 N7.4 N74(1,3) N73

Figure 3. The non-starlike trees with 6 or 7 vertices.

Theorem 3.5. Let T be an n-vertex non-starlike tree with n > 8, and T #
Nn,n73-
(i) If n is even and T # Npn—3(3(n—16),2(n—4)), Nuyn_s(3(n—14),3n),
N3 (%(n —6), %n), then

(s (555 > A5 3))

(i) Ifn is odd and T # Ny 3 (3(n—5), (
Nn,n—3 (%(n - 7)) %(n - 5)); Nn,n—3 (%(n - 5)’ %

S
|
—
~—
~—

A<Nn’n73(n;5’n;1)) oA Nn,n,3<n_3,n+1
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Proof. Note that

R L U B LT M)
(

6

(n_2)(n_3)(n_4)+3VL_4J2_3(71_4)VL;4J+2VL;4J

_ Fn—2)(n—=3)(n—4)+3n(n—2)+6 for even n,
%(n =2)(n—3)(n—4)+ %n(n —-2)+ % for odd n.

We have

—1(n?+2n+16) + f(s,t) for even n,
1
1

A Ny —A Npp—: is; ] =
(Nanma) = A0 n—s i, 3e)) { (n?+2n +13) + g(s,t) for odd n.

Then

(n? +2n+16) + f(—1,2) for even n,
(n?+2n+13) + g(— 1,2) for odd n
(82+2x8+4+16)+8 <0 for even n,
(924+2x9+13)+8<0 for odd n,

A(Npn—4a) = A(Npn—3(i-1,72)) = {

it

ie, A(Npn—a) < A(Nyn—3(i—1,72)). Now the result follows from Lemma 3.2. O

J>I>—t J>I>—t J>|>—A J>|>~

4. REVERSE WIENER INDICES OF NON-STARLIKE NON-CATERPILLAR TREES

Let NSC,,.q be the class of non-starlike non-caterpillar trees with n vertices and
diameter d, where 4 < d < n — 4. Let Nn,d be the tree obtained from the path
Pyi1 = vovr ...vq by attaching n — d — 4 pendent vertices and a path P» to the
vertex v|4/2) and attaching one pendent vertex to the vertex v 4/2)11, see Figure 4.

|

o
Vo U1 Uld/2) Yld/2]+1 Vd—1 Ud

Figure 4. The tree de.
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Theorem 4.1. Let T € NSC,, 4, where 4 < d < n — 4. Then

wiry> MEDEL2 (2] - g 2]+ 241D

+2§J Y+ )n—d—1)—2

with equality if and only if T = Nn,d.

Proof. By direct calculation, we have

W(Npa) = W(Pag1) + [2(d+1) + dg (v[ay2)| Pas1)]
+ (n —d— 3)(d +1+ dl\N/n,d(Uld/QJ |Pd+1))
n—d—3
+(d+1+ dﬁn,d(vtd/2J+1|Pd+1)) + 2( 9 )
Y3(n—d—4)+1+3(n—d—3)+4
=W(Pa1) + (n —d —=2)dg,  (viajz)|Par1) +dg, (vjas2)41|Par1)

+(n—d)d+1)+(n—d)(n—d—4)+3(n—d—3)+5

di2 o d) dd+1)

-d5]+=57)

ZW(Pd+1)+(TL—d—2)({§J 5 —

(5] +) - a((5]+ )+ 75
+n?—nd—4
S SRR ISR

+2gJ+(n+1)(n—d—1)—2.

Let T be a tree in NSC,, ¢ with minimum Wiener index. We need only to show
that T' = Nn,d. Let P = vgv; ...vq be a diameter-achieving path of T

Suppose that there exists a vertex in T (outside P), the distance from which
to P is at least three. Let w be such a vertex, the distance from which to P is
maximal. Then w is pendent. Let wwvu... be the shortest path from w to P.
Note that o(T;u,v) € NSCp 4. By Lemma 2.1, we have W (o (T;u,v)) < W(T),
a contradiction. Thus the maximal distance from the vertices outside P to P is two.
Suppose that there are at least two vertices of degree at least two outside P. For any
such vertex, say z, with 2z’ denoting its neighbor on P, we have o(T’; 2, 2) € NSCy, 4
and by Lemma 2.1, W(o(T; %', 2)) < W(T), a contradiction. It follows that there is
exactly one vertex, say x, of degree at least two outside P.

Let s be the number of pendent neighbors of z. If s > 1, we obtain a tree
T € NSC,, 4 from T by moving s — 1 pendent neighbors of z to its neighbor on P.
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Obviously n — s > 3. Then

W(T)-W({T")=(s+1)(n—s—1)—2(n—2)
=(s—1)(n—-s—-3)>0,

a contradiction. Thus the only vertex outside P of degree at least two has degree
two.

If there are at least three vertices of degree at least three on P, then for two
such vertices with minimal distance, by Lemma 2.4 we obtain a tree in N'SC,, 4 with
a Wiener index smaller than 7', a contradiction. It follows that there are exactly two
vertices, say v; and v;, of degree at least three on P. Note that there is exactly one
vertex x outside P having degree two, and all other vertices outside P are pendent.
Suppose without loss of generality that = is a neighbor of v;. Let a or b be the
number of pendent neighbors of v; or v;, respectively, outside P, where a > 0 and
b>1.

If |i — d| > |j — id|, then by moving all the pendent neighbors (if such exist)
outside P of v; to v; and the pendent neighbor of x to a pendent neighbor of v;, we
obtain a tree T3 € NSC,, 4, and by Lemma 2.2, it is easily seen that

W(T) = W(Th) = (a + 1)(dr(vi| P) — dr(v;|P)) + (a + 1)(b = 1)]i — j[ > 0,

a contradiction. Thus |i — 3d| < [j — 3d|.
If b > 2, then by moving all but one pendent neighbors of v; outside P to v;, we
have a tree Th € NSC,, 4, and by Lemma 2.2, it is easily seen that

W(T) = W(Tz) = (b= 1)(dr(v;|P) — dr(vi| P)) + (a + 1)(b = 1)]i — j| > 0,

a contradiction. Thus b = 1, i.e., v; has n—d—4 pendent neighbors and one neighbor
x of degree two (outside P), and v; has exactly one pendent neighbor (outside P).
Then

W(T)=W(P)+ [2(d + 1) + dr(v;| P)]
+(n—=d-3)(d+ 14 dpr(v|P))

+(d+1+dT(Uj|P))+2(n_;l_3)

+3n—d—4)+1+n—-d-3)(Ji —j|+2)+ (i — j| +3)

= W(Pyy1) + (n — d — 2)dr(v;|P) + dr(v;| P)
+(n—-d)(d+1)+(n—d)(n—d—4)+2(n—d—-3)+4
+(n—d-2)i—jl,
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which is minimal for fixed n and d if and only if
F(i,j) = (n — d = 2)dp (vi| P) + dp (v |P) + (n — d = 2)]i — j

is minimal. By Lemma 2.2, if d is even, F'(i,j) is minimal if and only if ¢ = %d

and j = 1d £ 1, while if d is odd, F(i, ) is minimal if and only if i = 1(d + 1) and

j=2%(d¥1). Thus T = N, 4. O
Lemma 4.2. For 4 < d <n — 5, we have A(de) < A(ﬁn,d_l’_l).

Proof. As in the proof of Lemma 3.1, we have

AFier) = A) = "2 W (R 1) + W)
s R R

dt1
+(n-2)| =] +2d-nd+2>0,

from which the result follows. O
By Theorem 4.1 and Lemma 4.1, we have

Theorem 4.3. Let T be an n-vertex non-starlike non-caterpillar tree with n > 8.
Then

AT) < ANy j—a)
with equality if and only if T = Nn,n,zl.

Let Nn,n_4(i,j) be the tree formed from the path P, 3 = vgv1 ...v,_4 by attach-

ing a path on two vertices and a pendent vertex at vertices v; and vj;, respectively,

where 2 < 7 < L%(n —4)],1 <j<n-5and j # i. By symmetry, if n is even
and i = 1(n — 4), then we may restrict ourselves to $(n —4) < j < n—5. Clearly,

Npp—a = ]\7%"_4(&(71 —4)],[4(n —4)] +1). It is easily seen that

W (Npna(i,§) = W(Pa_3) +4(n —3) +2d st (Vi Paa)
+ dﬁm_m’j) (vj|Pres) +2|i — j| +6

=W(P,—3) + g(n —3)(n —4) +4n — 6 + 2[i2 — (n — 4)i]
+ 5% = (n—4)j] +2/i — I,
and then
A(Rnoaid)) = £(n = 4)(2n® ~ Tn+21) —dn + 6
—2[i® = (n = 4)i] = [j* = (n — 4)j] = 2}i — j|.
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Let

cg:{(s,t): se [—n—_g,—1]0, te [—n_6,n_6}0, s;«ét}

2 2
u{(o,t): te [1,”56}0}

for even n > 8, and

— 0 — — 570
sz{(s,t): s € {_n 9,0} , te [_n2 7,%5} , s;«ét}
for odd n > 9.

For even n and (s,t) € CS, let iy = 1 (n—4+2s), ji = 3(n— 4+2t) and fa(s,t) =
252 +12+42|s—t|. For odd n and (s,t) € C2, let is = l(n 5+2s), jy = 5(n—5+2t),
and gy(s,t) = 2s(s — 1) + t(t — 1) + 2|s — t|. Clearly, Ny ,,_4 = Nn,n,4(i0,j1). For
(s,t) e CoUCE,

A(Npn—a(ig, ji)) = =(n —4)(2n* —Tn +21) —4n+6

—2[i2 — (n — 4)is] — [j7 — (n — 4)ji) — 2|is — i

CDI'—‘

L(n—4)(2n® —Tn+21) + 2n? — 10n + 18
—252 — 2 — 2|s — ] for even n,

) L —4)2n® —Tn+21) + 3n% — 100 + 82
—2s(s—1) —t(t—l)—2|s—t| for odd n

F(n—4)(2n? —Tn+21) 4+ 3n? — 10n + 18
—fa(s, t) for even n,

| L —4)@2n® —Tn+21) + 3n% — 100+ 82
—ga(s, 1) for odd n.

Lemma 4.4. Let T be an n-vertex non-starlike non-caterpillar tree with diameter
d=n—4, wheren > 10 and T 75 Nnn 4. If n is even, and T # Nnn 4(i-1,Jo),
Non-a(i=1,51), Nun-a(io,j2), Npn-a(i—1,7-2), then

A(Npn—a(i-1,50)) > A(Nnn—a(i-1,51))
> A( n,n—4(Z0a.72)) = A(ﬁn,n—4(i—1vj—2))
> A(T),

Whl]e 1fn jS Odd and T 75 j\vfn,n_4(i0,j_1), Nn,n—4(i05j2)7 j\vfn,n_4(i_1,j0), Nn,n—4

(i—laj1)7 then

ANy n—alio, j-1)) > AMNpn—alio, j2)) = AN n-a(i-1, jo))
> A( —4(i-1,71))
> AT ).
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Proof. Obviously, any n-vertex non-starlike non-caterpillar tree with diameter
d =n — 4 is of the form Nn’n74(is,jt), where (s,t) € C;, for even n and (s,t) € Cg
for odd n.

Case 1. nis even. It is easily seen that

f2(0,1) =3 < fa(=1,0) =4 < fa(=1,1) =7 < f2(0,2) = fa(~1,-2) = 8.

Suppose that (s,t) # (0,1),(-1,0),(-1,1),(0,2),(—=1,—2). Since 2|s — t| > 2, we
have (s,t) = (—1,2) and then f5(—1,2) =12 > 8, or s € [—1(n — 8),—2]° and then
fa(s, t) > 1041t > 8, ort € [-3(n —6),—3]° and then fg(s t) > 11+ 252 > 8, or
t€[3,1(n—6)]% and then f5(s,t) > 1142s? > 8. Since A(Npn-4) = (n—4)(2n? -
7n+21)+3n2—10n+18 fa(s,t) and T # Npps = Ny 4(10,31),Nn,n_4(z’_1,j0),
Nn,n 4(iz1, 1), Nnn 4(i0, j2), Nnn a(i—1,j—2), we have

N ,n74(i0aj2)) - A(Nn’n,4(i,1,j,2))

Case 2. nis odd. It is easily seen that
gg(O, 1) =2< 92(0, —1) =4< 92(0,2) = gg(—l,O) =6< gg(—l, 1) =8.

Suppose that (s,t) # (0, 1), (0,—-1),(0,2),(—1,0),(—1,1). Since 2|s —t| > 2, we have
(s,t) = (—1,2) and then go(—1,2) = 12 > 8, or s € [—3(n — 9),—2]° and then
g2(s,t) = 144t(t—1) > 8, ort € [-3(n—7),—2]° and then gs(s,t) = 6+2s(s—1)+
2|s—t| > 8,ort € [3,2(n—5)]° and then ga(s, t) > 6+2s(s — 1) +2|s —t| > 8. Since
A(Nnn-a) = &(n— 4)(2n —Tn+21)+3n2 =100+ — o (s, t) and T # Ny n—a(io, ),

Nn,n—4(lo,3—1), Nn,n—4(207.72)7 Nn,n—4(l—1,j0), Nn,n—4(i—1,j1), we have

A(Npn-a(io, j1)) > A(Nnp—alio, j-1))

> ANy n-a(io, j2)) = ANpn—ali-1, jo))
(
(

The result follows by combining Cases 1 and 2. O

Note that Ng}4 (see Figure 5) is the only 8-vertex non-starlike non-caterpillar tree,
and N9,5, ]\7975(27 1), ]\7975(2,4), and N9,4 (see Figure 5) are all the 9-vertex non-
starlike non-caterpillar trees. It is easily seen that A(]\~fg75) = 86 > A(Ng75(2, 1)) =
84 > A(No5(2,4)) = 82 > A(Ng4) = 58.
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Vg V1 V2 V3 Vg Vg VU1 V2 V3 Vg4 Vs Vo VU1 V2 V3 Vg 7Us
Ng 4 Ny 5 Ny5(2,1)

v V1 Vg Vg U v V1 Vg V4
0 3 5 0 3
No 5(2,4) Nog 4

Figure 5. The non-starlike non-caterpillar trees with 8 or 9 vertices.

Theorem 4.5. Let T be an n-vertex non-starlike non-caterpillar tree withn > 10,
and T # Ny, p—a.
(i) If n is even and T' # Nnn 4 (3(n—6),3(n—4)), Nyn_a(3(n—6),2(n—2)),
Nn,n 4(%(71_4);% ); n,n— 4(% —6),
4

AFaea (57 57)) > A (T (P57 5))
> A(Wunea(575))
=A(Fona ("5 5))
> A(T);

(ii) Ifn is odd and T # Npp—a (3(n—5
Noyn-a (3(n=7),3(n = 5)), No—a (2(n —7), 1(n — 3)), then

A e ("2 >

Proof. Note that

W(Nn,n75): (n—=3)(n—4)(n—5) +4Hn_5J2—(n—5)VL—_5H +2Ln;5J

6 2 2
+2(n—4)(n—5)+4(n+1)—-2
= S = 3)(n—)(n—5) +nln—3) +12
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Then

(n? + 2n + 24) + fa(s,t) for even n,
(n? +2n + 21) + ga(s,t) for odd n.

A(Nn,nfE)) - A(Nn,nfél(isvjt)) = { -

NN

Thus

1 1
A(Non—5) = A(Nnn-a(i-1,-2)) = =7 (n°+2n+24)+8 < —2(10°+20+24) +8 < 0

for even n, and

1
A(Nn,nfE)) - A(Nn7n,4(i,1,j1)) - —Z(TLQ +2n + 21) +8
1
< —1(112+22+21)+8<0

for odd n. Then A(N, pn—5) < A(Nyn—a(i—1,j—2)) for even n and A(N,, n,—5) <

A(Npn—4a(i—1,71)) for odd n. Now the result follows from Lemma 4.2. O
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