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A NOTE ON TOPOLOGICAL GROUPS AND THEIR REMAINDERS

Liang-Xue Peng, Yu-Feng He, Beijing
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Abstract. In this note we first give a summary that on property of a remainder of a non-
locally compact topological group G in a compactification bG makes the remainder and the
topological group G all separable and metrizable.
If a non-locally compact topological group G has a compactification bG such that the

remainder bG \ G of G belongs to P, then G and bG \ G are separable and metrizable,
where P is a class of spaces which satisfies the following conditions:
(1) if X ∈ P, then every compact subset of the space X is a Gδ-set of X;
(2) if X ∈ P and X is not locally compact, then X is not locally countably compact;
(3) if X ∈ P and X is a Lindelöf p-space, then X is metrizable.
Some known conclusions on topological groups and their remainders can be obtained

from this conclusion. As a corollary, we have that if a non-locally compact topological
group G has a compactification bG such that compact subsets of bG \ G are Gδ-sets in
a uniform way (i.e., bG\G is CSS), then G and bG\G are separable and metrizable spaces.
In the last part of this note, we prove that if a non-locally compact topological group G

has a compactification bG such that the remainder bG \G has a point-countable weak base
and has a dense subset D such that every point of the set D has countable pseudo-character
in the remainder bG \G (or the subspace D has countable π-character), then G and bG \G

are both separable and metrizable.
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1. Introduction

All spaces in this note are Tychonoff spaces unless stated otherwise, a “compactifi-

cation” is a “Hausdorff compactification”. A remainder of a space X is the subspace

bX \ X of a compactification bX of X .

Research supported by Beijing Natural Science Foundation (Grant No. 1102002), by the
National Natural Science Foundation of China (Grant No. 10971185), and by Natural
Science Foundation of BJUT.
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In 1958, M.Henriksen and J.R. Isbell [15] showed that a space X is of countable

type if and only if the remainder in any (or in some) compactification ofX is Lindelöf.

In recent years, there are many results on topological groups and their remainders. In

2005, A.V. Arhangel’skii [2] showed that if a non-locally compact topological group

G has a compactification bG such that the remainder bG\G has a Gδ-diagonal, then

G is metrizable. In 2007, A.V. Arhangel’skii [3] obtained that both G and bG \ G

are separable and metrizable if G is a non-locally compact topological group and

has a compactification bG such that the remainder bG \ G has a Gδ-diagonal. Some

other results on a topological group and its remainder can be found in [4], [5], [6],

[7], and [18].

Most of the known results on topological groups and their remainders study the

relationship between properties of topological groups and their remainders. In this

note, we give a summary on what property of a remainder of a non-locally compact

topological group G in a compactification bG makes the remainder bG \G and G all

separable and metrizable. The following is a result on it.

If a non-locally compact topological group G has a compactification bG such that

the remainder bG\G belongs toP, then G and bG\G are separable and metrizable,

where P is a class of spaces which satisfies the following conditions:

(1) if X ∈ P, then every compact subset of the space X is a Gδ-set of X ;

(2) ifX ∈ P andX is not locally compact, thenX is not locally countably compact;

(3) if X ∈ P and X is a Lindelöf p-space, then X is metrizable.

Some known conclusions on topological groups and their remainders can be ob-

tained from this conclusion. As a corollary, we have that if a non-locally compact

topological group G has a compactification bG such that compact sets of bG \G are

Gδ-sets in a uniform way (i.e., bG \G is CSS), then G and bG \G are separable and

metrizable spaces.

In [7] Arhangel’skii showed that if G is a non-locally compact topological group,

and the remainder of G in a compactification bG is the union of a finite collection of

hereditarily D-spaces each of which is first countable (of countable π-character) at

a dense set of points, then G is metrizable. In [21] Peng proved that a space with

a point-countable weak base is a D-space. So we will study the property of a non-

locally compact topological group G which has a compactification bG such that the

remainder bG \ G has countable tightness and is the union of a finite collection of

spaces with point-countable weak bases. The following question appears in [19].

Let G be a non-locally compact topological group, if the remainder Y = bG \ G

of G in a compactification bG of G has a point-countable weak base, are G and bG

separable and metrizable ([19, Question 5.2])?

In the last part of this note, we prove that if a non-locally compact topological

group G has a compactification bG such that the remainder bG \ G has a point-
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countable weak base and has a dense subset D such that every point of the set D has

countable pseudo-character in the remainder bG\G (or the subspace D has countable

π-character), then G and bG \ G are both separable and metrizable; if a non-locally

compact topological group G has a compactification bG such that the remainder

bG \ G has countable tightness and is the union of a finite collection {Xi : i 6 n} of

spaces such that Xi has a point-countable weak base and has a dense subspace Di

which has countable π-character for each i 6 n, then G is metrizable.

The set of all positive integers is denoted by N, and ω is N ∪ {0}. In notions and

terminology we will follow [11], [13], and [26].

2. On remainders of metrizable spaces

Recall that a space X is of countable type if every compact subset P of X is con-

tained in a compact subset F ⊂ X that has a countable base of open neighborhoods

in X [1]. All metrizable spaces, and all locally compact Hausdorff spaces, as well as

all Čech-complete spaces are of countable type [1].

Recall that a space X is a p-space [1], if in any (or in some) compactification

bX of X there exists a countable family {Un}n∈N of families Un of open subsets

of bX such that x ∈
⋂

n∈N

st(x, Un) ⊂ X for each x ∈ X . It was shown in [1] that

every p-space is of countable type, and that every metrizable space is of countable

type. A.V.Arhangel’skii [1] proved that a paracompact p-space is a preimage of

a metrizable space under a perfect mapping. A Lindelöf p-space is a preimage of

a separable and metrizable space under a perfect mapping. A mapping is said to be

perfect if it is continuous, closed and all fibers are compact.

Lemma 2.1 ([15]). A space X is of countable type if and only if the remainder

in any (or in some) compactification of X is Lindelöf.

Recall that a space X is said to have a Gδ-diagonal if the diagonal ∆X = {(x, x) :

x ∈ X} is the intersection of countably many of open subsets of X×X . A countably

compact space X with a Gδ-diagonal is metrizable [9].

Lemma 2.2 ([13]). A Lindelöf p-space with aGδ-diagonal is separable and metriz-

able.

Proposition 2.3. Let X be a locally separable meta-Lindelöf space, then X =
⊕

α∈Λ

Xα, where {Xα : α ∈ Λ} is a discrete family of open separable subspaces of X .
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Lemma 2.4 ([2, Theorem 2.1]). If X is a Lindelöf p-space, then any remainder

of X is a Lindelöf p-space.

By the proof of the last part of Theorem 5 in [3], we can get Theorem 2.5. To

assist the reader, we give a proof.

Theorem 2.5. If a nowhere locally compact locally separable metrizable space X

has a compactification bX such that every compact subset of the remainder bX \ X

is a Gδ-set of bX \ X and every Lindelöf p-subspace of the remainder bX \ X is

metrizable, then X and bX \ X are separable and metrizable.

P r o o f. Since X is a locally separable metrizable space, X =
⊕

α∈Λ

Xα by Propo-

sition 2.3, where Xα is separable and metrizable for each α ∈ Λ. If F is the set of all

accumulation points for the family {Xα : α ∈ Λ} in bX , then the set F is a closed

subset of bX and F ⊂ bX \ X . Thus F is a compact subset of bX .

Since every compact subset of the remainder bX \ X is a Gδ-set of bX \ X and

every Lindelöf p-subspace of the remainder bX \ X is metrizable, the subspace F is

a Gδ-set of bX \ X and is separable and metrizable.

Put F =
⋂
{On : n ∈ N}, where On is an open subset of bX \ X for each n ∈ N.

Denote M = (bX \ X) \ F =
⋃
{An : n ∈ N}, where An = (bX \ X) \ On for each

n ∈ N. Thus the set An is a closed subset of bX \X . X is a metrizable space, hence

X is of countable type. So bX \X is Lindelöf by Lemma 2.1. Thus the subspace An

is Lindelöf for each n ∈ N.

For each n ∈ N and for each y ∈ An, there exists an open subset Uy of bX such that

y ∈ Uy and Uy ∩F = ∅. So there exists my ∈ N such that Uy ∩X =
⋃
{Uy ∩Xαi

: i 6

my, αi ∈ Λ}. If we let P =
⋃
{Xαi

: i 6 my, αi ∈ Λ}, then Uy ∩ X ⊂ P . Since

Uy ∩ X = Uy and Uy ∩ X ⊂ P , Uy ⊂ P .

The set P is a separable and metrizable subspace of X , hence P \ P is a Lindelöf

p-space by Lemma 2.4. Thus P \ P is a separable and metrizable space, and so is

the set Uy ∩ (bX \ X). Thus the subspace An is Lindelöf and every point of An has

a neighborhood which has a countable base, hence the subspace An has a countable

network for each n ∈ N. The subspace (bX \ X) \ F has a countable network and

the subspace F has a countable network, so bX \ X has a countable network. Thus

bX \X is separable, hence the Souslin number of bX \X is countable. So the Souslin

numbers of bX and X are both countable. Thus X is separable and metrizable. So

bX \ X is a Lindelöf p-space by Lemma 2.4. In addition, bX \ X has a countable

network, so it has a Gδ-diagonal. Thus bX \ X is separable and metrizable by

Lemma 2.2. �
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Lemma 2.6. If X is a regular space andX has aGδ-diagonal, then every compact

subset of X is a Gδ-set of X .

P r o o f. X has a Gδ-diagonal, thus there is a sequence {Un : n ∈ N} of open

covers of X such that for any distinct points x and y of X there is n ∈ N such that

x 6∈ st(y, Un), where st(y, Un) =
⋃
{U : y ∈ U and U ∈ Un}. Let C be any compact

subset of X . In what follows we show that the set C is a Gδ-set of X .

For eachm ∈ N there are nm ∈ N and an open subset V (m, i) ofX for each i 6 nm

such that C ⊂
⋃
{V (m, i) : i 6 nm}, V (m, i) ∩ C 6= ∅, and there are U(m, i) ∈ Um

and some j 6 nm−1 such that V (m, i) ⊂ U(m, i) and V (m, i) ⊂ V (m − 1, j).

Suppose there is a point y ∈
⋂
{
⋃
{V (m, i) : i 6 nm} : m ∈ N} \ C. For each

m ∈ N and for each j 6 m there is imj 6 nj such that y ∈ V (j, imj ) ⊂ V (j, imj ) ⊂

V (j − 1, imj−1). Since {V (m, i) : i 6 nm} is a finite family for each m ∈ N, there is

im 6 nm such that y ∈ V (m, im) ⊂ V (m, im) ⊂ V (m − 1, im−1) for each m ∈ N by

König’s Lemma. Thus
⋂
{V (m, im) : m ∈ N} ∩ C =

⋂
{V (m, im) : m ∈ N} ∩ C 6= ∅.

Let x ∈
⋂
{V (m, im) : m ∈ N} ∩ C. Since the point y ∈ V (m, im) and V (m, im) ⊂

U(m, im) for each m ∈ N, y ∈ st(x, Um) for each m ∈ N. This contradicts y 6∈
⋂
{st(x, Um) : m ∈ N}.

So
⋂
{
⋃
{V (m, i) : i 6 nm}, m ∈ N} = C, hence C is a Gδ-set of X . �

By Lemma 2.2, Theorem 2.5, and Lemma 2.6, we get a corollary.

Corollary 2.7. Let X be a nowhere locally compact locally separable metrizable

space. If X has a compactification bX such that the remainder bX \ X has a Gδ-

diagonal, then both X and bX \ X are separable and metrizable.

Lemma 2.8 ([3, Proposition 4]). LetX be a nowhere locally separable metrizable

space and let bX be a compactification of X . If B =
⋃
{Bn : n ∈ ω} is a base of

X such that each family Bn is discrete in X , then Z =
⋃
{Fn : n ∈ ω} is dense in

Y = bX \ X and Fn is compact for each n, where Fn is the set of all accumulation

points for Bn in bX for each n.

Let us recall that a topological space X is homogeneous if for any two points

a, b ∈ X there exists a homeomorphism f : X → X such that f(a) = b.

Theorem 2.9. Let X be a nowhere locally compact homogeneous metrizable

space and let bX be a compactification of X such that every compact subset of the

remainder Y = bX \ X is metrizable, then X is locally separable.

P r o o f. Suppose X is not locally separable. Since X is homogeneous, the space

X is nowhere locally separable if X is not locally separable. X is a metrizable space,
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there exists a σ-discrete base B =
⋃
{Bn : n ∈ N} of X . For each n ∈ N, denote by

Fn the set of all accumulation points for Bn in bX . The set Fn is a closed subset of

bX and Fn ⊂ Y . The set Fn is a compact subset of bX \ X , so Fn is separable and

metrizable. Thus bX \ X is separable by Lemma 2.8. Thus the Souslin number of

bX and X are all countable, and hence X is separable. A contradiction. Thus X is

locally separable. �

3. A general result on topological groups and their remainders

By some known conclusions, we will give a more general result on the metrizable

property of a non-locally compact topological group G and its remainder.

By the proof of Case 2 of Theorem 4.19 in [2], we can get the following lemma.

Lemma 3.1. Let G be a non-locally compact topological group. If G is a para-

compact p-space and has a compatification bG such that every compact subset of

the remainder Y = bG \ G is metrizable, then G is a metrizable space.

Theorem 3.2. Let G be a non-locally compact topological group. If G is a para-

compact p-space and has a compatification bG such that every compact subset of the

remainder Y = bG \ G is metrizable, then G is a locally separable and metrizable

space.

P r o o f. G is a metrizable space by Lemma 3.1. By Proposition 1.1 in [26] every

topological group G is homogeneous. Thus G is a locally separable by Theorem 2.9.

�

Recall that a family U of non-empty open subsets of a space X is called a π-base

of a point x ∈ X , if for any non-empty open subset V of X there is U ∈ U such

that U ⊂ V . The π-character of x in X is defined by πχ(x, X) = min{|U | : U is

a π-base of the point x}. If sup{πχ(x, X) : x ∈ X} is countable, then X is called to

have countable π-character.

Lemma 3.3. Let Y be a dense subspace of a regular spaceX . If the subspace Y is

first countable (or has countable π-character), then every point of Y has a countable

open neighborhood base (or has a countable π-base) in X , and if x is an accumulation

point of a countable subset C of Y then the point x has a countable π-base in X .

P r o o f. We only prove the case of the space Y being first countable. The proof

of the case that Y has countable π-character is similar.
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For any y ∈ Y we let {Vn(y) : n ∈ N} be a countable open neighborhood base of

the point y in Y . For each n ∈ N there is an open neighborhood Un(y) of y in X

such that Un(y) ∩ Y = Vn(y). If O is an open neighborhood of the point y in X ,

then there is an open subset O1 of X such that y ∈ O1 ⊂ O1 ⊂ O by the regularity

property of X . So there is n ∈ N such that y ∈ Vn(y) ⊂ O1, hence Vn(y) ⊂ O1 ⊂ O.

Since Vn(y) = Un(y), the set Un(y) ⊂ O1 ⊂ O. Thus {Un(y) : n ∈ N} is a countable

open neighborhood base of the point y in X .

Let x be an accumulation point of a countable subset C of Y . If W is an open

neighborhood of the point x in X , then there are y ∈ C and n ∈ N such that

y ∈ Un(y) ⊂ W . So {Un(y) : n ∈ N, y ∈ C} is a countable π-base of the point x

in X . �

Recall that a point x of a space X is said to have countable pseudo-character in X

if the set {x} is the intersection of countably many open subsets of X . A space X is

said to have countable pseudo-character, if every point of X has countable pseudo-

character in X .

Lemma 3.4 ([4, Theorem 5.1]). Suppose that G is a topological group with a re-

mainder of countable pseudo-character. Then at least one of the following conditions

is satisfied:

(1) G is a paracompact p-space;

(2) the remainder bG \ G is first countable.

Lemma 3.5 ([6, Proposition 1.3]). Let G be a topological group. If some point

of G has a countable π-base, then G is metrizable.

Lemma 3.6. If a non-locally compact topological group G has a compatification

bG such that the remainder Y = bG \ G has countable pseudo-character, Y is not

locally countably compact, and every compact subset of Y is metrizable, then G is

a locally separable and metrizable space.

P r o o f. By Lemma 3.4 G is a paracompact p-space or the remainder bG \ G

is first countable. If G is a paracompact p-space, then G is a locally separable and

metrizable space by Theorem 3.2. Since Y is not locally countably compact, the

space Y is not countably compact. There is a countable infinite subset C ⊂ Y such

that C ∩ G 6= ∅. If the remainder bG \ G is first countable and x ∈ C ∩ G, then

the point x has a countable π-base in bG by Lemma 3.3, hence the point x has

a countable π-base in G. Thus G is metrizable by Lemma 3.5. So G is a locally

separable and metrizable space by Theorem 3.2 �
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Theorem 3.7. If a non-locally compact topological group G has a compactifi-

cation bG such that the remainder bG \ G belongs to P, then G and bG \ G are

separable and metrizable spaces, where P is a class of spaces which satisfies the

following conditions:

(1) if X ∈ P, then every compact subset of the space X is a Gδ-set of X ;

(2) ifX ∈ P andX is not locally compact, thenX is not locally countably compact;

(3) if X ∈ P and X is a Lindelöf p-space, then X is metrizable.

P r o o f. Since bG\G has propertyP, every compact subset of bG\G is a Gδ-set

of bG\G by the condition (1) and is metrizable by the condition (3). The remainder

Y = bG \ G is not locally compact, thus it is not locally countably compact by

the condition (2). By the condition (1) the remainder Y = bG \ G has countable

pseudo-character. So the conditions of Lemma 3.6 are satisfied, hence G is locally

separable and metrizable. Thus G and bG \ G are separable and metrizable spaces

by Theorem 2.5. �

A space X is said to have a locally Gδ-diagonal if every point x of X has a neigh-

borhood Vx which has a Gδ-diagonal.

Lemma 3.8. If X has a locally Gδ-diagonal, then every compact subset of X is

a Gδ-set of X .

P r o o f. Let C be any compact subset of X . For each x ∈ C there is an open

neighborhood Vx of x such that Vx has a Gδ-diagonal. The set C is compact, there

are some n ∈ N and a point xi for each i 6 n such that C ⊂
⋃
{Vxi

: i 6 n} = Y .

Since P = {Vxi
: i 6 n} is a finite open cover of the subspace Y and each element

of P has a Gδ-diagonal, the subspace Y has a Gδ-diagonal by Lemma 11 in [18].

Thus the set C is a Gδ-set of Y by Lemma 2.6, hence it is a Gδ-set of X . �

In what follows, we denote P by a class of spaces which satisfies the conditions

appearing in Theorem 3.7. By Lemma 2.2 and 2.6, we know that if a space X has

a Gδ-diagonal then X ∈ P. By Lemma 11 in [18] we know that if X is a regular Lin-

delöf space with a locally Gδ-diagonal then X has a Gδ-diagonal. Thus by Lemma 2.2

in this note we know that every Lindelöf p-space with a locally Gδ-diagonal is metriz-

able. If a space X has a locally Gδ-diagonal and X is not locally compact then X is

not locally countably compact. By these conclusions and Lemma 3.8 we have that

X ∈ P if X has a locally Gδ-diagonal.

Corollary 3.9 ([3, Theorem 5]). If a non-locally compact topological group G

has a compactification bG such that the remainder bG \ G has a Gδ-diagonal, then

G and bG \ G are separable and metrizable.
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Corollary 3.10 ([6, Theorem 2.17; 18, Theorem 12]). If a non-locally compact

topological group G has a compactification bG such that the remainder bG \ G has

a locally Gδ-diagonal, then G and bG \ G are separable and metrizable.

In 1973, H.Martin introduced the class of CSS spaces [20]. Let (X, T ) be a topo-

logical space and let C be the family of all non-empty compact subsets of X . If there

exists a function U : N× C −→ T such that:

(1) for every C ∈ C , C =
⋂
{U(n, C) : n ∈ N} and U(n + 1, C) ⊂ U(n, C) for

n ∈ N;

(2) if D ∈ C , C ∈ C , and C ⊂ D, then U(n, C) ⊂ U(n, D) for each n ∈ N.

Then X is called a c-semi-stratifiable (CSS) space.

It is obvious that every subspace of a CSS space is CSS.

Lemma 3.11 ([8, Proposition 3.8]). If X is a CSS countably compact space, then

X is a compact metrizable space.

Lemma 3.12 ([8, Proposition 3.8]). If X is a CSS paracompact p-space, then X

is metrizable.

Lemma 3.13 ([23, Theorem 4]). If X =
⋃
{Xn : n ∈ N} and Xn is a closed CSS

subspace of X for each n ∈ N, then X is a CSS space.

Theorem 3.14. If a non-locally compact topological group G has a compactifi-

cation bG such that the remainder bG \G is a locally CSS space, then G and bG \G

are separable and metrizable spaces.

P r o o f. By Lemma 3.11 we know that if a locally CSS space X is not a locally

compact space then X is not locally countably compact. Every regular Lindelöf

locally CSS space is a CSS space by Lemma 3.13. Thus a Lindelöf locally CSS

p-space is metrizable by Lemma 3.12.

Let X be a locally CSS regular space and let F be a non-empty compact subset

of X . For each x ∈ F there is an open neighborhood Vx of x such that Vx is CSS.

There are n ∈ N and a point xi ∈ F for each i 6 n such that F ⊂
⋃
{Vxi

: i 6 n} ⊂
⋃
{Vxi

: i 6 n}. By Lemma 3.13 the subspace Y =
⋃
{Vxi

: i 6 n} is CSS. Thus the

set F is a Gδ-set of Y , hence it is a Gδ-set of X .

So a locally CSS space belongs to P. Thus G and bG \ G are separable and

metrizable spaces. �

Recall that a space X has a quasi-Gδ(2)-diagonal provided there is a sequence

{Un : n ∈ N} of collections of open subsets of X with the property that, given

distinct points x, y ∈ X , there is n ∈ N with x ∈ st2(x, Un) ⊂ X \ {y}.
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Proposition 3.15 ([23, Theorem 9]). If X has a quasi-Gδ(2)-diagonal, then X

is a CSS space.

By Theorem 3.14 and Proposition 3.15, we can obtain:

Corollary 3.16. If a non-locally compact topological group G has a compactifi-

cation bG such that the remainder bG \ G has a locally quasi-Gδ(2)-diagonal, then

G and bG \ G are separable and metrizable spaces.

In [3, Theorem 10], it was proved that if G is a non-locally compact topological

group and has a compactification bG such that the remainder bG \ G has a point-

countable base, then G and bG \ G are separable and metrizable. Every Lindelöf

p-space with a point-countable base is metrizable [14]. Every countably compact

space with a point-countable base is compact and metrizable [11]. We can get the

following proposition.

Proposition 3.17. If X is a space such that every point of X has an open

neighborhood which has a point-countable base, then the following conclusions hold:

(1) X has a point-countable base if X is meta-Lindelöf;

(2) X is metrizable if X is a Lindelöf p-space;

(3) a subset C of X is a Gδ-set of X if the set C is a compact subset of X ;

(4) X is not locally countably compact if X is not locally compact.

P r o o f. We just need to prove the item (3). Let C be a compact subset of X .

For each x ∈ C there is an open neighborhood Vx of x such that the subspace Vx

has a point-countable base. There are n ∈ N and a point xi ∈ C for each i 6 n

such that C ⊂
⋃
{Vxi

: i 6 n}. If Y =
⋃
{Vxi

: i 6 n}, then the subspace Y has

a point-countable base B. Thus C is metrizable. The subspace C is separable, since

C is compact and metrizable. Let D be a countable dense subset of C. Thus B′ =

{B : B ∈ B and B ∩ C 6= ∅} is countable. So C =
⋂
{
⋃

F : F ⊂ B′, C ⊂
⋃

F ,

and |F | < ω}, and hence C is a Gδ-set of X . �

By Proposition 3.17 and Theorem 3.7, we have:

Theorem 3.18. If G is a non-locally compact topological group and has a com-

pactification bG such that every point of the remainder bG \ G has a neighborhood

in bG \ G, which has a point-countable base, then G and bG \ G are separable and

metrizable.
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Corollary 3.19 ([3, Theorem 10]). If G is a non-locally compact topological

group and has a compactification bG such that the remainder bG \ G has a point-

countable base, then G and bG \ G are separable and metrizable.

4. Results on some remainders of topological groups with

point-countable weak bases

In this part, we will mainly discuss the properties of a non-locally compact topo-

logical group G which has a compactification bG such that the remainder bG \G has

a point-countable weak base and has a dense subset D such that every point of the

set D has countable pseudo-character in the remainder bG \ G (or the subspace D

has countable π-character).

Let us recall the definition of a weak base of a space X . A collection B =
⋃
{Bx : x ∈ X} is called a weak base [25] of X , if for any x ∈ X the following

conditions hold:

(1) for each x ∈ X , Bx is closed under finite intersections and x ∈
⋂

Bx;

(2) a subset U of X is open if and only if for any x ∈ U there is B ∈ Bx such that

x ∈ B ⊂ U .

Recall that a space X is Fréchet if for any point x is the closure of a subset A of

X , there exists a sequence {xn}n∈N of A which converges to the point x. A space

X is sequential if a subset A of X is closed if and only if the set A contains all the

limit points of the convergent sequences of A. Let X be a topological space, for

a subset A ⊂ X , denote [A]ω =
⋃
{C : C ⊂ A and |C| 6 ω}. Recall that a space X

has countable tightness if for any point x in the closure of a subset A of X , there

is a countable subset C ⊂ A such that x ∈ C. We denote this by t(X) 6 ω. It is

well known that a Fréchet space is sequential and a sequential space has countable

tightness.

Lemma 4.1 ([25, Theorem 1.10]). If B =
⋃
{Bx : x ∈ X} is a weak base of

a Hausdorff Fréchet space X , then B∗ = {Bo : B ∈ B} is a base of X .

Lemma 4.2 ([21, Corollary 8]). If X is a countably compact Hausdorff space

with a point-countable weak base, then X is a compact metrizable space.

Lemma 4.3 ([17, Lemma 2.1]). If P =
⋃
{Px : x ∈ X} is a weak base of a

space X and F is a closed subset of X , then P ′ =
⋃
{P ′

x : x ∈ F} is a weak base of

the subspace F , where P ′

x = {F ∩ P : P ∈ Px} for each x ∈ F .
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Proposition 4.4. Let X be a T1-space and let A be a subset of X . If t(X) 6 ω,

then the set [A]ω is a closed subset of X ; if X is countably compact, then the set

[A]ω is countably compact.

P r o o f. Suppose t(X) 6 ω. If x ∈ [A]ω , then there is a countable subset

B ⊂ [A]ω such that x ∈ B. For each b ∈ B there is a countable set Cb ⊂ A such that

b ∈ Cb. So x ∈
⋃
{Cb : b ∈ B} ⊂ [A]ω. Thus [A]ω is a closed subset of X if t(X) 6 ω.

Suppose X is countably compact. For any infinite countable subset B of [A]ω,

there is a countable subset C ⊂ A such that B ⊂ C ⊂ [A]ω . Thus the set B has

an accumulation point in C, hence [A]ω is countably compact if X is countably

compact. �

Lemma 4.5. Let G be a non-locally compact topological group and let Y =

bG \ G be the remainder of G in a compactification bG of G such that Y = bG \ G

has countable tightness. If there is an open subset U of Y such that every closed

countably compact subset which is contained in U is compact and there is a subspace

M ⊂ Y such that U ⊂ M
Y
and M has a dense subspace D which has countable

π-character, then G is metrizable.

P r o o f. Let U0 be an open subset of bG such that U0 ∩ Y = U and let U1

be an open subset of bG such that U1 ⊂ U0, hence U1 ∩ Y ⊂ U . If D1 = U1 ∩ D,

then the set D1 is dense in the subspace U1. Denote [D1]ω =
⋃
{C : C ⊂ D1 and

|C| 6 ω}. By Proposition 4.4 the set [D1]ω is a countably compact subspace of

bG. Suppose [D1]ω ∩ G = ∅, then [D1]ω ⊂ U1 ∩ Y ⊂ U . By Proposition 4.4 the

set [D1]ω is closed in the subspace Y . Since [D1]ω ⊂ U , the set [D1]ω is compact.

Thus U1 = D1 ⊂ [D1]ω ⊂ Y . This contradicts U1 ∩ G 6= ∅, so [D1]ω ∩ G 6= ∅. If

x ∈ [D1]ω ∩ G, then there is a countable subset C ⊂ D1 such that x ∈ C.

The set U0 ∩ D is dense in U0, since U ⊂ M
Y
and D is a dense subset of M .

The subspace U0 ∩ D is an open subspace of D, the subspace U0 ∩ D has countable

π-character. Thus every point of U0∩D has a countable π-base in U0 by Lemma 3.3.

The point x ∈ C ⊂ U1 ⊂ U0. For each z ∈ C let Vz be a countable π-base of the

point z in U0. If B =
⋃
{Vz : z ∈ C}, then B is a countable family of open subsets

of U0. Thus {B ∩ G : B ∈ B} is a countable π-base of the point x in G. Thus G is

metrizable by Lemma 3.5. �

Corollary 4.6. Let G be a non-locally compact topological group and let Y =

bG \ G be the remainder of G in a compactification bG of G such that Y = bG \ G

has countable tightness. If there is a point y ∈ Y and an open neighborhood U(y) of

y in Y such that every closed countably compact subset which is contained in U(y)

is compact and U(y) has a dense subspace D which has countable π-character, then

G is metrizable.
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By the proof of Theorem 5.1 in [4], we have:

Lemma 4.7. If a non-locally compact topological group G has a compatification

bG such that the remainder Y = bG \ G has a point y which has countable pseudo-

character in Y , then G is a paracompact p-space or the point y has a countable open

neighborhood base in bG.

Theorem 4.8. Let G be a non-locally compact topological group and let Y =

bG \ G be the remainder of G in a compactification bG of G such that every com-

pact subset of Y is metrizable and Y has countable tightness. If there is a point

y ∈ Y and an open neighborhood U(y) of y in Y such that every closed countably

compact subset which is contained in U(y) is compact and there is a dense sub-

space D of U(y) such that every point of D has countable pseudo-character in Y (or

the subspace D has countable π-character), then G is locally separable and metriz-

able.

P r o o f. If there is a dense subspace D of U(y) such that every point d of

D has countable pseudo-character in Y , then G is a paracompact p-space or every

point d of D has a countable open neighborhood base in bG by Lemma 4.7. If G

is a paracompact p-space, then G is a locally separable and metrizable space by

Lemma 3.2. If every point d of D has a countable open neighborhood base in bG,

then the subspace D has countable π-character. If the subspace D has countable

π-character, then G is metrizable by Corollary 4.6, hence G is a locally separable

and metrizable space by Lemma 3.2. �

Recall that a neighborhood assignment for a space X is a function ϕ from X to

the topology of the space X such that x ∈ ϕ(x) for any x ∈ X . A space X is called

a D-space if for any neighborhood assignment ϕ for X there exists a closed discrete

subset D of X such that X =
⋃
{ϕ(d) : d ∈ D} [10]. Every metrizable space is

a D-space.

Lemma 4.9 ([12], [22]). If X is a countably compact space that is the union of

a countable family of D-spaces, then X is compact.

Theorem 4.10. Let G be a non-locally compact topological group and let Y =

bG \ G be the remainder of G in a compactification bG of G such that Y = bG \ G

has countable tightness. If the remainder Y is the union of a countable family

{Xi : i ∈ N} of D-spaces such that for each i ∈ N there is a dense subspace Di of

Xi such that the subspace Di has countable π-character (or every point of Di has

countable pseudo-character in Y ), then G is a paracompact p-space.
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P r o o f. If there is a dense subspace Di of Xi such that every point of Di has

countable pseudo-character in Y for each i ∈ N, then G is a paracompact p-space or

every point y of Di has a countable open neighborhood base in bG by Lemma 4.7.

If every point y of Di has a countable open neighborhood base in bG for each

i ∈ N, then the subspace Di has countable π-character. In what follows, we show

that G is a paracompact p-space if there is a dense subspace Di in Xi such that the

subspace Di has countable π-character for each i ∈ N.

Since every closed subspace of a D-space is a D-space, every closed countably

compact subspace of Y is compact by Lemma 4.9.

If there is some i ∈ N and an open subset U of Y such that U ⊂ Xi
Y
, then G

is metrizable by Lemma 4.5, otherwise, Xi is a nowhere dense subset of Y for each

i ∈ N. For i ∈ N, assuming that there is an open subset Uj of bG for each j 6 i such

that Uj ⊂ Uj−1(U0 = bG), Uj ⊂ bG \
⋃
{Xm : m 6 j}, and Uj ∩ Y 6= ∅.

The set (Ui\Xi+1)∩Y 6= ∅, there is an open subset Ui+1 of bG such that Ui+1 ⊂ Ui

and Ui+1 ∩ Y 6= ∅. Thus Ui+1 ⊂ bG \
⋃
{Xm : m 6 i + 1}. So we have a sequence

{Ui : i ∈ N} of open subsets of bG such that Ui+1 ⊂ Ui and Ui ⊂ bG\
⋃
{Xm : m 6 i}.

Thus E =
⋂
{Ui : i ∈ N} =

⋂
{Ui : i ∈ N} 6= ∅, and E ⊂ G. Thus the family

{Ui ∩G : i ∈ N} is a countable base of open neighborhoods of the set E in G. Every

topological group that contains a non-empty compact subset with a countable base

of open neighborhoods is a paracompact p-space [24]. Thus G is a paracompact

p-space. �

In [21] Peng proved that every space with a point-countable weak base is a D-

space.

Corollary 4.11. Let G be a non-locally compact topological group and let Y =

bG \ G be the remainder of G in a compactification bG of G such that Y = bG \ G

has countable tightness. If the remainder Y is the union of a countable family

{Xi : i ∈ N} of spaces such that for each i ∈ N the space Xi has a point-countable

weak base and there is a dense subspace Di of Xi such that the subspace Di has

countable π-character (or every point of Di has countable pseudo-character in Y ),

then G is a paracompact p-space.

Theorem 4.12. Let G be a non-locally compact topological group and let Y =

bG\G be the remainder of G in a compactification bG of G such that Y = bG\G has

countable tightness. If the remainder Y is the union of a finite family {Xi : i 6 n}

of D-spaces such that for each i 6 n there is a dense subspace Di of Xi such that

the subspace Di has countable π-character, then G is metrizable.

P r o o f. Since every closed subspace of a D-space is a D-space, every closed

countably compact subspace of Y is compact by Lemma 4.9. Since the family {Xi :
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i 6 n} is finite and is a cover of bG \ G, there are an open subset U ⊂ Y and some

i 6 n such that U ⊂ Xi, hence G is metrizable by Lemma 4.5. �

Corollary 4.13. Let G be a non-locally compact topological group and let Y =

bG\G be the remainder of G in a compactification bG of G such that Y = bG\G has

countable tightness. If the remainder Y is the union of a finite family {Xi : i 6 n}

of spaces such that for each i 6 n the space Xi has a point-countable weak base

and there is a dense subspace Di of Xi such that the subspace Di has countable

π-character, then G is metrizable.

Lemma 4.14. Let G be a non-locally compact topological group, and bG be

a compactification of G such that the remainder bG \G has a point-countable weak

base and has a dense subset D such that every point of the set D has countable

pseudo-character in the remainder bG \ G (or the subspace D has countable π-

character), then G is locally separable and metrizable.

P r o o f. A space with a point-countable weak base is sequential, hence it has

countable tightness. Thus the remainder bG \ G has countable tightness. If every

point of D has countable pseudo-character in Y , then G is a paracompact p-space

or every point y of D has a countable open neighborhood base in bG by Lemma 4.7.

By Lemma 4.2 and Lemma 4.3 every compact subset of bG\G is metrizable. Thus

G is locally separable and metrizable if G is a paracompact p-space by Lemma 3.2. If

every point y of D has a countable open neighborhood base in bG, then the subspace

D has countable π-character. If the subspace D has countable π-character in Y , then

G is metrizable by Corollary 4.13. Since G is metrizable and every compact subset

of bG \ G is metrizable, G is locally separable and metrizable by Lemma 3.2. �

We recall that a space is aM -space if and only if it is the inverse image of a metric

space by a quasi-perfect map.

Lemma 4.15 ([16, Corollary 13]). Let f : X → Y be a closed map such that X

has a point-countable weak base. If Y is a M -space, then Y is metrizable.

By Lemma 4.15, we have:

Corollary 4.16. If X is a Lindelöf p-space with a point-countable weak base,

then X is metrizable.
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Theorem 4.17. Let G be a non-locally compact topological group, and bG be

a compactification of G such that the remainder Y = bG \ G has a point-countable

weak base and has a dense subset D such that every point of the set D has countable

pseudo-character in the remainder bG \ G (or the subspace D has countable π-

character), then G and bG \ G are separable and metrizable.

P r o o f. G is locally separable and metrizable by Lemma 4.14.

If Y is a Fréchet space, then Y has a point-countable base by Lemma 4.1. Thus

G and bG \ G are separable and metrizable by Corollary 3.19.

Suppose Y is not a Fréchet space, there exists a subset A of Y such that the

set B =
⋃
{C ∪ {xC} : C is a convergence sequence of A which converges to the

point xC} is not a closed subset of Y . Since Y has a point-countable weak base,

the space Y is a sequential space. Since the set B is not a closed subset of Y , there

exists a sequence {yn}n∈N of B such that the sequence {yn}n∈N converges to a point

y 6∈ B. For each n ∈ N the point yn ∈ B, so there exists a sequence {ynk}k∈N of A

such that {ynk}k∈N converges to the point yn. The point y /∈ B, then there is no

subsequence of {ynk : n, k ∈ N} converging to the point y, otherwise y ∈ B.

G is locally separable and metrizable, hence G =
⊕

α∈Λ

Gα by Proposition 2.3, where

{Gα : α ∈ Λ} is a discrete family of separable and metrizable subspaces of G.

Denote by F the set of all accumulation points for {Gα : α ∈ Λ} in bG. Thus

F ⊂ Y and F is a compact subset of Y . Since Y has a point-countable weak base,

the subspace F has a point-countable weak base by Lemma 4.3 and F is metrizable

by Lemma 4.2.

If {ynp
}p∈N is a subsequence of the sequence {yn}n∈N, then {ynp

}p∈N converges

to y. Thus the point y is in the closure of {ynpk : p ∈ N, k ∈ N}. So the point y is

in the closure of {ymk : m ∈ N1, k ∈ N} if the subset N1 of N is infinite.

Denote L = {m : m ∈ N and |{k : ymk ∈ F, k ∈ N}| = ω}. Suppose |L| = ω, then

the point y is in the closure of the set {ymk : m ∈ L and ymk ∈ F}. Thus y ∈ F .

The set F is metrizable, so there is a sequence of the set {ymk : m ∈ L and ymk ∈ F}

converging to the point y. A contradiction. Thus |L| < ω.

Without loss of generality, we assume {ynk : k ∈ N, n ∈ N} ⊂ Y \ F . Then there

exists an open subset Unk of bG such that ynk ∈ Unk and Unk ∩F = ∅ for each k ∈ N

and for each n ∈ N. Thus |{α : Unk ∩ Gα 6= ∅, α ∈ Λ}| < ω. If U =
⋃
{Unk : n,

k ∈ N}, then U is an open subset of bG. The set U intersects with at most countably

many Gα. We denote by U∩G =
⋃
{U∩Gαi

: i ∈ N}. If we letM =
⋃
{Gαi

: i ∈ N},

then M is separable and U ∩G ⊂ M . Since G = bG, U ∩ G = U . Thus U ⊂ M . The

setM is a closed subset of G, soM \M ⊂ bG\G, henceM \M = M ∩(bG\G). The

setM \M has a point-countable weak base by Lemma 4.3. SinceM is separable and

metrizable, M \ M is a Lindelöf p-space. M \ M has a point-countable weak base,
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thus it is metrizable by Corollary 4.16. Since y ∈ M \M , there exists a subsequence

of {ynk : n, k ∈ N} which converges to y. Thus y ∈ B. This contradicts y /∈ B.

Thus Y is a Fréchet space, hence G and bG \G are separable and metrizable. �

By the proof of Theroem 4.17, we have:

Theorem 4.18. Let X be a locally separable and metrizable space. If bX is

a compactification of X such that every Lindelöf p-subspace of the remainder bX \X

is metrizable, then the remainder bX \ X is a Fréchet space.
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