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Abstract. A multicone graph is defined to be the join of a clique and a regular graph.
Based on Zhou and Cho’s result [B. Zhou, H.H. Cho, Remarks on spectral radius and
Laplacian eigenvalues of a graph, Czech. Math. J. 55 (130 ) (2005), 781–790], the spectral
characterization of multicone graphs is investigated. Particularly, we determine a necessary
and sufficient condition for two multicone graphs to be cospectral graphs and investigate
the structures of graphs cospectral to a multicone graph. Additionally, lower and upper
bounds for the largest eigenvalue of a multicone graph are given.
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1. Introduction

In this paper, we are concerned only with undirected simple graphs (loops and

multiple edges are not allowed). All notions on graphs that are not defined here

can be found in [1]. For a graph G = (V (G), E(G)), let n(G), m(G), l(G) and

A(G) be respectively the order, size, line graph and adjacency matrix of G. We

denote det(λI − A(G)), the characteristic polynomial of G, by ϕ(G, λ) or sim-

ply ϕ(G). The adjacency spectrum of G, denoted by SpecA(G), is the multiset

of eigenvalues of A(G). Since A(G) is symmetric, its eigenvalues are real and set

λ1(G) > λ2(G) > . . . λn(G)(G). The maximum eigenvalue λ1(G) of G is called the

spectral radius of G and is often denoted by ̺(G). For a graph G and U ⊆ V (G),

G[U ] stands for the induced graph by U , and δ(G) is the minimum degree of G. Let

G1 ∪G2 denote the disjoint union of graphs G1 and G2, and kG1 the disjoint union

The research is supported by the NSFC (No. 11101232 and 10961023) and the NSFQH
(SRIPQHNU) (No. 2011-Z-929Q).

117



of k copies of G1. The join (or complete product) G1 ▽ G2 is the graph obtained

from G1 ∪ G2 by joining every vertex of G1 with every vertex of G2. A multicone

graph is defined to be the join of a clique and a regular (not necessarily connected)

graph. Let CP (k) denote the cocktail-party graph obtained from K2k by removing

k disjoint edges.

Two graphs G and H are said to be A-cospectral if the corresponding adjacency

spectra are the same. A graph G is said to be determined by the A-spectrum (or sim-

ply G is a DAS -graph) if there is no other non-isomorphic graph A-cospectral to it,

i.e., SpecA(H) = SpecA(G) implies G ∼= H . The background of the question “which

graphs are determined by their spectrum?” originates from Chemistry (in 1956,

Günthadr and Primas [7] raised this question in the context of Hückel’s theory). For

additional remarks on the topic we refer the readers to [3], [4]. A remarkable fact is

that there are many wonderful papers to studying cospectral graphs and introduc-

ing kinds of methods of constructing them (see [5], [8], [9], [11] for example). By

contrast, until now, determining what kinds of graphs are DAS-graphs is far from

resolved. For the multicone graphs, only few graphs are proved to be DAS-graphs

such as the complete graph Kn = Ka ▽ Kn−a. In this paper we focus on studying

under what conditions the multicone graph is a DAS-graph and determine the lower

and upper bounds of its spectral radius.

2. Basic lemmas and results

In this section, we cite some useful results which put way for obtaining our main

result.

Lemma 2.1 ([3]). Let G and H be two A-cospectral graphs. Then

(i) n(G) = n(H), m(G) = m(H) and ϕ(G) = ϕ(H).

(ii) G is k-regular if and only if H is k-regular.

(iii) G and H have the same number of closed walks of any length.

Lemma 2.2 ([1]). Let Gi be an ri-regular graph of order ni (i = 1, 2). Then

ϕ(G1▽G2, λ) =
ϕ(G1, λ)ϕ(G2, λ)

(λ − r1)(λ − r2)
[(λ − r1)(λ − r2) − n1n2].

Corollary 2.1. Let Gi be an ri-regular graph of order ni (i = 1, 2). If Hi is

A-cospectral to Gi (i=1,2), then H1 ▽ H2 is A-cospectral to G1 ▽ G2.

P r o o f. Since Hi is A-cospectral to Gi, hence Hi is also an ri-regular graph of

order ni (i = 1, 2). Then the result follows from Lemma 2.2. �
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Corollary 2.2. Let G = G1 ▽ G2, where Gi is an ri-regular graph of order ni

(i = 1, 2). If G is a DAS-graph, then Gi (i = 1, 2) is also a DAS-graph.

P r o o f. Let H1 be any graph such that ϕ(H1) = ϕ(G1). Then H1 is an r1-

regular graph of order n1. Set H = H1 ▽ G2. By Corollary 2.1 we have ϕ(H) =

ϕ(G). Since G is a DAS-graph, we have H ∼= G and so H1
∼= G1. Similarly, G2 can

be proved. �

Hong et al. [10] first proved the following theorem for the connected graph. Niki-

forov [12] showed it independently by a quite different method for a (not necessarily

connected) graph, and mentioned some extreme graphs. Zhou and Cho [13] proved

it for the unconnected case and completely characterized the extreme graphs.

Theorem 2.1 ([13]). Let G be a graph with order n and size m and let δ be the

minimal degree of vertices of G. Then

̺(G) 6
δ − 1

2
+

√

2m − nδ +
(δ + 1)2

4
,

and equality holds if and only if in one component of G each vertex is either of

degree δ or adjacent to all other vertices, and all other components are regular with

degree δ.

Furthermore, Zhou and Cho [13] deduced that the equality in Theorem 2.1 occurs

if and only if G is a graph of one of the following four types:

(i) a regular graph with the vertex degree δ;

(ii) a bidegreed graph in which every vertex is either of a degree δ or n−1 (δ < n−1);

(iii) the disjoint union of a complete graph with order at least δ + 2 and a regular

graph with the vertex degree δ;

(iv) the disjoint union of a connected bidegreed graph in which every vertex is either

of the degree δ or adjacent to all other vertices, and a regular with the vertex

degree δ.

In what follows, mainly the graphs of the second type are investigated. Let B(n−
1, δ) be the family of all bidegreed graphs of order n, size m, maximum degree

n − 1 and minimum degree δ (δ < n − 1). Obviously, for G ∈ B(n − 1, δ), G is

a connected graph containing a clique Kt (if G has t vertices of degree n − 1) as

its proper subgraph, and B = G[V (G) \ V (Kt)] is a (δ − t)-regular graph (clearly,

δ > t). Thus, G can be viewed as the join of Kt and B, where they are respectively

called the kernel denoted by ker(G) and the branch denoted by bra(G) of G. Thus,

G = ker(G) ▽ bra(G). Clearly, such a graph G is the so called multicone graph.
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Corollary 2.3. Let G be a multicone graph of order n with ker(G) = Kt and

bra(G) = B. If k = λ1(B), λ2(B), . . . , λn−t(B) are the eigenvalues of B, then the

eigenvalues of G are

λ2(B), . . . , λn−t(B),−1, . . . ,−1
︸ ︷︷ ︸

t−1

,
t + k − 1 ±

√

(t + k − 1)2 + 4t(n − k − t) − 4k

2
.

P r o o f. From Lemma 2.2 and ϕ(Kt) = (λ + 1)t−1(λ − t + 1) it follows that

ϕ(G) = ϕ(Kt ▽ B) =
ϕ(Kt)ϕ(B)

(λ − t + 1)(λ − k)
[(λ − t + 1)(λ − k) − t(n − t)](1)

=

n−t∏

i=2

(λ − λi(B))(λ + 1)t−1[λ2 − (t + k − 1)λ − (t(n − t − k) + k)],

which shows that the result holds. �

3. Spectral characterization of multicone graphs

In this section, spectral characterization of multicone graphs is investigated.

Lemma 3.1. Let G ∈ B(n − 1, δ), where δ < n − 1. Then δ 6∈ SpecA(G).

P r o o f. Suppose, without loss of generality, that G contains the kernel Kt1

(t1 > 1) and the k1-regular branch B1 of order n1. So, δ = k1+t1 and G = Kt1 ▽ B1.

From (1) it follows that

ϕ(G) =

n1∏

i=2

(λ − λi(B1))(λ + 1)t1−1[λ2 − (t1 + k1 − 1)λ − (t1(n1 − k1) + k1)].

Put f1(λ) = λ2−(t1+k1−1)λ−(t1(n1−k1)+k1). Thus, f1(k1+t1) = −t1(n1−k1−1).

If k1 = n1 − 1, then B1 = Kn1
and so G = Kt1 ▽ Kn1

= Kt1+n1
which contradicts

the fact that G is a bidegreed graph. Thus, n1−k1−1 > 0, since the spectral radius

of a connected graph is at most its maximum degree (see [3, Theorem 1.1]). Hence,

δ is not a root of f1(λ). Note that δ > k1 > λi(Bi) for 2 6 i 6 n1. Consequently,

δ 6∈ SpecA(G). �

We next determine the structure of a graph A-cospectral to a multicone graph.

Theorem 3.1. Let G ∈ B(n − 1, δ) and let H be a graph with the minimum

degree δ(H) = δ, where δ < n − 1. If H is A-cospectral to G, then

(i) H ∈ B(n − 1, δ);

(ii) ker(H) = ker(G);

(iii) bra(H) and bra(G) have the same degree.
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P r o o f. If H is A-cospectral to G, then n(H) = n(G), m(H) = m(G) and

̺(H) = ̺(G) =
δ − 1

2
+

√

2m(G) − n(G)δ +
(δ + 1)2

4

=
δ(H) − 1

2
+

√

2m(H) − n(H)δ(H) +
(δ(H) + 1)2

4
,

which implies by virtue of Theorem 2.1 that H is a graph of types (i)–(iv). By

Lemma 3.1 we get δ 6∈ SpecA(G) = SpecA(H). Note that any graph of types (i), (iii)

and (iv) has an eigenvalue δ (since a δ-regular graph always has the eigenvalue δ).

So, H ∈ B(n − 1, δ). This proves (i).

In what follows, we proceed to adopt the notation used in Lemma 3.1, i.e., G =

Kt1 ▽ B1. Assume that H contains the kernel Kt2 . From (i) of the theorem we get

H ∈ B(n−1, δ), where δ = k1+t1. Then B2 = bra(H) is (k1+t1−t2)-regular branch

with order n2, and H = Kt2 ▽ B2. By (1) and ϕ(Kt2) = (λ + 1)t2−1(λ − t2 + 1) we

obtain

ϕ(H) =

n2∏

i=2

(λ− λi(B2))(λ + 1)t2−1[λ2 − (t1 + k1 − 1)λ− (t2(n1 − k1 − 1) + k1 + t1)].

Put f2(λ) = λ2− (t1 +k1−1)λ− (t2(n1−k1−1)+k1 + t1). Note that ̺(G) > λi(B1)

for 2 6 i 6 n1 and ̺(H) > λi(B2) for 2 6 i 6 n2. Therefore, f1(̺(G)) = 0 and

f2(̺(G)) = 0, which yields

(2) t1(n1 − k1 − 1) = t2(n1 − k1 − 1).

Recall that n1−k1 −1 > 0. From (2) we have t1 = t2, and so (ii) and (iii) holds. �

The theorem below determines a necessary and sufficient condition for two multi-

cone graphs to be A-cospectral. For λ ∈ SpecA(G), letmG(λ) denote the multiplicity

of the eigenvalue λ.

Theorem 3.2. Let G, H ∈ B(n − 1, δ), where δ < n − 1. Then H and G are

A-cospectral graphs if and only if mG(−1) = mH(−1) and bra(H) is A-cospectral

to bra(G).

P r o o f. Suppose that H and G are A-cospectral graphs. Then mG(−1) =

mH(−1). By Theorem 3.1 we obtain that ker(H) = ker(G), and both bra(H) and

bra(G) are regular graphs having the same degree (say, k). Without loss of generality,

set ker(G) = ker(H) = Kt and bra(G) = B1, bra(H) = B2 with orders n(Bi) = ni
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(i = 1, 2). From t + n1 = n(G) = n(H) = t + n2 we get n1 = n2. From (1) it follows

that

(3) ϕ(G) = ϕ(Kt ▽ B1) =
ϕ(Kt)ϕ(B1)

(λ − t + 1)(λ − k)
[(λ − t + 1)(λ − k) − tn1]

and

(4) ϕ(H) = ϕ(Kt ▽ B2) =
ϕ(Kt)ϕ(B2)

(λ − t + 1)(λ − k)
[(λ − t + 1)(λ − k) − tn2].

By ϕ(G) = ϕ(H) we get ϕ(B1) = ϕ(B2). This completes the proof of necessity.

Next we show the sufficiency. Set G = Kt1 ▽ B1 and H = Kt2 ▽ B2. Recall that

B1 and B2 are regular graphs. If B1 is A-cospectral to B2, by Lemma 2.1 they have

the same degree (say, k) and n1 = n2. By equalities (3) and (4) we have

ϕ(G) =

n1∏

i=2

(λ − λi(B1))(λ + 1)t1−1[λ2 − (t1 + k − 1)λ − (t1(n1 − k) + k)]

and

ϕ(H) =

n1∏

i=2

(λ − λi(B2))(λ + 1)t2−1[λ2 − (t2 + k − 1)λ − (t2(n1 − k) + k)].

Since ϕ(B1) = ϕ(B2), we have
n1∏

i=1

(λ−λi(B1)) =
n1∏

i=1

(λ−λi(B2)) and so mB1
(−1) =

mB2
(−1). Put gi(λ) = λ2− (ti +k−1)λ− (ti(n1 −k)+k). Thus, gi(−1) = −ti(n1 −

k − 1) (i = 1, 2). As proved in Theorem 3.1, n1 − k − 1 > 0 and hence gi(−1) < 0,

i.e., −1 is not a root of gi(λ) (i = 1, 2). Consequently, mG(−1) = t1 − 1 + mB1
(−1)

and mH(−1) = t2 − 1 + mB2
(−1) which indicates by virtue of mG(−1) = mH(−1)

that t1 = t2. Therefore, ϕ(G) = ϕ(H). �

The following theorem establishes a sufficient condition for the DAS-multicone

graphs.

Theorem 3.3. Let G ∈ B(n − 1, δ), where δ < n − 1. Then

(i) If G is a DAS-graph, so is bra(G).

(ii) LetH be any graphA-cospectral to G with δ(H) = δ. If bra(G) is a DAS-graph,

so is G.
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P r o o f. Since G = ker(G) ▽ bra(G), (i) follows from Corollary 2.2. Now we

show (ii). Let H be any graph A-cospectral to G. Since δ(H) = δ, from Theorem 3.1

it follows that ker(G) = ker(H) = Kt and that bra(G) = B1 and bra(H) = B2

are (δ − t)-regular graphs. By t + n(B1) = n(G) = n(H) = t + n(B2) we have

n(B1) = n(B2). By (1) we get that

ϕ(G) = ϕ(Kt ▽ B1) =
ϕ(Kt)ϕ(B1)

(λ − t + 1)(λ − δ + t)
[(λ − t + 1)(λ − δ + t) − tn(B1)]

and

ϕ(H) = ϕ(Kt ▽ B2) =
ϕ(Kt)ϕ(B2)

(λ − t + 1)(λ − δ + t)
[(λ − t + 1)(λ − δ + t) − tn(B1)].

From ϕ(G) = ϕ(H) we obtain that ϕ(B1) = ϕ(B2). Since B1 is a DAS-graph, then

B2
∼= B1 and thus H ∼= G. �

Theorem 3.3 provides a possible method how to construct the DAS-multicone

graphs. The crucial point is that we need to show that any graph H A-cospectral

to a multicone graph G must satisfy δ(H) = δ(G). Unfortunately, it is not a fact

in general. Here is a counterexample that G = K1 ▽ 9K1 with δ(G) = 1 and its

A-cospectral graph is H = 4K1∪K3,3 with δ(H) = 0. In fact, we have δ(G) > δ(H),

since the bound in Theorem 2.1 is a decreasing function of δ (see [10]). However,

some computer calculations shows that the following statement may be true:

Conjecture 1. Let G ∈ B(n − 1, δ), where 1 < δ < n − 1. Then any graph

A-cospectral to G has the minimum degree δ.

When δ = 2, there is a famous graph Fn,t with order n named friendship graph

which consists of t triangles intersecting in a single vertex and is well-known for

the friendship theorem (see [6], [15]). As a matter of fact, Fn,k = K1 ▽ tK2. The

authors [14] have proved it to be determined by the signless Laplacian spectrum and

proposed

Conjecture 2. The friendship graph is a DAS-graph.
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4. Bounds for the multicone graph

D. Cvetković et al. [2] introduced the generalized cocktail party graph, denoted

by GCP , which is isomorphic to a clique with independent edges removed. Note

that any vertex in GCP is of degree n − 1 or n − 2. The following lemma indicates

that the GCP is a special multicone graph.

Lemma 4.1. A graph G with order n is a GCP iff G = Kn−2k ▽ CP (k), where

k > 1 and n is even.

P r o o f. The sufficiency follows from the fact that CP (k) is a (2k − 2)-regular

graph. For the necessity, by the definition of GCP we know that G is a bidegreed

graph with vertex degree n− 1 or n− 2. Suppose that G has n− t vertices of degree

n − 1. Clearly, t > 2. Thus, G = Kn−t ▽ H , where H is a (t − 2)-regular graph.

Since the size m(H) = t(t − 2)/2 is an integer, t is even. Set t = 2k. Note that

the order n(H) 6= t and H is (t − 2)-regular. Therefore, H is obtained from Kt by

removing t/2 mutually disjoint edges. So, H = CP (k). �

Theorem 4.1. Let G be a graph with order n. If G has t vertices of degree n−1,

then
t − 1 +

√

(t − 1)2 + 4t(n − t)

2
6 ̺(G) 6

n − 3 +
√

(n − 1)2 + 4t

2
,

where the left and right equalities hold if and only if G is respectively Kt ▽ (n− t)K1

and Kt ▽ CP ((n − t)/2).

P r o o f. We first show the right inequality. Partition V (G) into V1 ∪ V2 such

that V1 = {v : d(v) = n−1} and V2 = {u : d(u) < n−1}. Then A(G) can be written

as

A(G) =

(
J − I J

J A(H)

)

,

where H = G[V2], and I and J denote respectively the identity matrix and the all

ones matrix. Since dH(u) 6 n−t−2, we have A(H)1 6 (n−t−2)1, where 1 denotes

the all one vector. Thus, ̺(G) does not exceed the Perron root of the 2 × 2 matrix

(
t − 1 n − t

t n − t − 2

)

.

A direct calculation gives the Perron root 1
2

(
n − 3 +

√

(n − 1)2 + 4t
)
.

It is easy to observe that the equality holds if and only if dH(u) = n − t − 2 for

u ∈ V2 and the vertex in V1 (or V2) has exactly n − t (or t) neighbors in V2 (or V1).

Thus, the degree of each vertex is at least n − 2. Hence G is a GCP and the result

follows from Lemma 4.1.

124



For the left inequality, consider dH(u) > 0 and note that ̺(G) is no less than the

Perron root of the 2 × 2 matrix

(
t − 1 n − t

t 0

)

.

Observe that the equality holds if and only if dH(u) = 0 for u ∈ V2 and the vertex

in V1 (or V2) has exactly n − t (or t) neighbors in V2 (or V1). Thus, H = (n − t)K1

and so G = Kt ▽ (n − t)K1. �

In what follows, let G be a multicone graph from Theorem 4.1. Then 1 6 t < n.

Let h(t) denote the right bound in the above theorem. The graph achieving h(t) is

G = Kt ▽ CP ((n − t)/2). Differentiating h(t) with respect to t we obtain h′(t) > 0.

So, h(t) is a strictly increasing function of t. Note that (n − t)/2 is an integer.

Hence, the maximum of t is n − 2 and so the maximum of h(t) is h(n − 2) and

G = Kn−2 ▽ CP (1). On the other hand, the graph achieving the left bound in

Theorem 4.1 is G = Kt ▽ (n− t)K1. Note that ̺(G) increases strictly if we increase

any element of A(G). Thus, ̺(K1 ▽ (n − 1)K1) is the minimum. So we have shown

Corollary 4.1. For any multicone graph G ∈ B(n − 1, δ),

√
n − 1 6 ̺(G) 6

n − 3 +
√

(n + 1)2 − 8

2
,

where the left and right equalities hold if and only if G is respectively K1 ▽ (n−1)K1

and Kn−2 ▽ CP (1).
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[1] D . Cvetković, M. Doob, H. Sachs: Spectra of Graphs. Theory and Applications. 3rd re-
vised a. enl. ed.. J. A. Barth Verlag, Leipzig, 1995.
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