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Abstract. In this paper we establish a continuity result for local minimizers of some
quasilinear functionals that satisfy degenerate elliptic bounds. The non-negative function
which measures the degree of degeneracy is assumed to be exponentially integrable. The
minimizers are shown to have a modulus of continuity controlled by log log(1/|x|)−1. Our
proof adapts ideas developed for solutions of degenerate elliptic equations by J.Onninen,
X. Zhong : Continuity of solutions of linear, degenerate elliptic equations, Ann. Sc. Norm.
Super. Pisa Cl. Sci. (5) 6 (2007), 103–116.

Keywords: regularity, quasilinear functionals, calculus of variations

MSC 2010 : 49N60

1. Introduction

In this paper we investigate the continuity of minimizers of variational integrals

with quadratic growth. More precisely, we consider functionals of the form

F(u, Ω) =

∫

Ω

f(x,∇u) dx,

where Ω is a domain in R
2 and u : Ω → R. We assume that f : Ω × R

2 → R is

a Carathéodory function such that for almost every x ∈ Ω and every ξ ∈ R
2,

(1.1)
|ξ|2

K(x)
6 f(x, ξ)

and

(1.2) f(x, 0) = 0.
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We will also assume that the function K : Ω → [1, +∞) belongs to the exponential

class Exp(Ω); i.e., for some λ > 0,

(1.3)

∫

Ω

exp
(K(x)

λ

)

dx < ∞.

By a local minimizer of the functional F we mean a (non-trivial) function u ∈
W 1,p

loc (Ω) for some p > 1, such that for all ϕ ∈ W 1,p
loc (Ω) with supp(ϕ) ⊂⊂ Ω,

F(u, supp(ϕ)) 6 F(u + ϕ, supp(ϕ)).

If u is a local minimizer, then hypotheses (1.1) and (1.3) will give us higher reg-

ularity: we will show that |∇u| ∈ L2(log L)−1 locally. We will then use this to

establish our main result, which is the continuity of minimizers.

Theorem 1. Let u ∈ W 1,1
loc (Ω) be a local minimizer of the functional F . If

conditions (1.1)–(1.3) are satisfied, then u is continuous. More precisely, if the ball

Br0 = B(x0, r0) is compactly contained in Ω, then there exist constants C1 = C1(λ)

and C2 = C2(K, λ) such that for all r,

(1.4) r 6

√

T

2π

exp
(−1

2
log

( T

2π(r0/e3)2

)2)

<
r0

e3
,

and for all x, y ∈ Br,

|u(x) − u(y)|2 6
C1

log log(C2r−2)

∫

Br0

f(z,∇u(z)) dz.

The continuity of minimizers was proved in [1] when u ∈ W 1,2(BR,R2). In the

related case of degenerate elliptic equations, the continuity of solutions of Lu =

divA(x)∇u(x) = 0 has been considered under the assumption that

|ξ|2
K(x)

6 〈A(x)ξ, ξ〉 6 |ξ|2

for all ξ ∈ R
2 and for almost every x ∈ Ω. If K is essentially bounded, then A is

uniformly elliptic (see [2]) and in this case Morrey [4], [5] proved that the solutions

are Hölder continuous. More recently, Onninen and Zhong [6] have shown that weak

solutions of this equation (again when n = 2) are continuous if
√

K(x) satisfies

condition (1.3) for some λ > 1. Our approach is modeled on theirs. They were

able to use properties of the elliptic equation that are not available in our more

general setting to replace K by
√

K; it is an open question whether minimizers are

continuous with this weaker hypothesis.
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2. Preliminary results

To prove Theorem 1 we need two preliminary results. First, we establish the higher

integrability mentioned above.

Lemma 2. Given our hypotheses on F and K, if / u ∈ W 1,1
loc (Ω) is a local mini-

mizer of F , then u ∈ W 1,p
loc (Ω), 1 < p < 2.

P r o o f. By the Sobolev embedding theorem, u ∈ L2
loc(Ω). Further, by our

hypotheses and Hölder’s inequality in the scale of Orlicz spaces, for any bounded set

Ω′ ⊂ Ω,

‖∇u‖L2(log L)−1(Ω′) = ‖∇uK−1/2K1/2‖L2(log L)−1(Ω′)

6 C‖∇uK−1/2‖L2(Ω′)‖K‖Exp(Ω′).

By (1.3), the second norm on the right-hand side is finite. By (1.1) and the fact

that u is a local minimizer, the first norm is finite as well. Hence, for any p < 2,

u ∈ W 1,p
loc (Ω). �

Next we recall the definition of weakly monotone functions due to Manfredi [3].

Definition 3. A function u ∈ W 1,p
loc (Ω), 1 < p < ∞, is weakly monotone if for

every compact subset Ω′ of Ω and for all constants m 6 M such that

(m − u)+, (u − M)+ ∈ W 1,p
0 (Ω′),

we have that for a.e. x ∈ Ω′,

(2.1) m 6 u(x) 6 M.

Lemma 4. Let u ∈ W 1,p
loc (Ω), 1 < p < 2, be a local minimizer of the functional F .

If conditions (1.1)–(1.3) are satisfied, then u is weakly monotone.

P r o o f. Let Ω′ ⊂⊂ Ω and let m, M be a pair of constants such that m 6 M

and

(m − u)+ =

{

0, u > m,

m − u, u < m

and

(u − M)+ =

{

u − M, u > M,

0, u 6 M

are both in W 1,p
0 (Ω′).
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We first prove the second inequality in (2.1). By condition (1.2) and the fact that

u is a local minimizer of the functional F , we have that
∫

Ω′

f(x,∇u) dx 6

∫

Ω′

f(x,∇u −∇(u − M)+) dx

=

∫

Ω′∩{x : u6M}

f(x,∇u) dx 6

∫

Ω′

f(x,∇u) dx.

It follows immediately that

(2.2)

∫

Ω′∩{x : u>M}

f(x,∇u) dx = 0.

By conditions (1.1) and (2.2) we therefore have

0 6

∫

{x : u>M}

|∇u|2
K(x)

dx 6

∫

Ω′∩{x : u>M}

f(x,∇u) dx = 0.

Hence,

|{x : u > M}| = 0,

and so u(x) 6 M for a.e. x ∈ Ω′. The proof of the first inequality in (2.1) is essentially

the same, and so we have the desired result. �

As a consequence of the previous two lemmas we get the following inequality.

Proposition 5. Given our hypotheses on F and K, if u ∈ W 1,1
loc (Ω) is a local

minimizer of F and if Br0 = B(x0, r0) is compactly contained in Ω, then for almost

every t ∈ (0, r0) and almost every x, y ∈ Bt = B(x0, t),

(2.3) |u(x) − u(y)| 6

∫

∂Bt

|∇u(z)| dσ.

Proposition 5 is stated without proof in [6]. A slightly different inequality is proved

in [3, proof of Theorem 1], with the L1 norm on the right-hand side of (2.3) replaced

by an Lp norm. But the argument readily adapts to the case p = 1.

3. Proof of theorem 1

Our proof requires an inequality that is a special case of a result in [6, Lemma 2.1].

For brevity, fix λ > 0 as in (1.3) and let

T = T (K, λ) =

∫

Ω

exp
(K(x)

λ

)

dx < ∞.
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Lemma 6. Given Ω and K as in the hypotheses of Theorem 1, and given any

ball B(x0, r0) ⊂ Ω, then for all r, 0 < r < r0/e3,

2π

∫ r0

r

dt
∫

∂B(x0,t)
K(z) dσ

> F (r) − F
(r0

e3

)

,

where

F (s) =
1

2λ
log log

( T

2πs2

)

.

P r o o f of Theorem 1. Fix a ball Br0 = B(x0, r0) that is compactly contained

in Ω. By Proposition 5 and Hölder’s inequality, for almost every t ∈ (0, r0) and

x, y ∈ Bt,

|u(x) − u(y)|2 6

(
∫

∂Bt

|∇u(z)|K(z)−1/2K(z)1/2 dσ

)1/2

6

(
∫

∂Bt

K(z) dσ

)
∫

∂Bt

|∇u(z)|2
K(z)

dσ.

Thus, by condition (1.1),

2π

|u(x) − u(y)|2
∫

∂Bt
K(z) dσ

6 2π

∫

∂Bt

f(z,∇u(z)) dσ.

Now integrate both sides of this inequality with respect to the variable t over the

interval (r, r0), where r satisfies (1.4). Then for almost every x, y ∈ Br,

(3.1) 2π |u(x) − u(y)|2
∫ r0

r

dt
∫

∂Bt
K(z) dσ

6 2π

∫

Br0

f(z,∇u(z)) dz.

Now by Lemma 6,

(3.2)
[

F (r) − F
(r0

e3

)]

|u(x) − u(y)|2 6 2π

∫

Br0

f(z,∇u(z)) dz.

A straightforward computation shows that r satisfies 1
2F (r) > F (r0/e3). Hence, if

we combine (3.1) and (3.2) we get

|u(x) − u(y)|2 6
2π

1
2F (rt)

∫

Br0

f(z,∇u(z)) dz

=
8πλ

log log(1
2Te6/πr2)

∫

Br0

f(z,∇u(z)) dz

=
C1

log log(C2r−2)

∫

Br0

f(z,∇u(z)) dz.

�
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