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Abstract. This paper is devoted to the investigation of quasilinear hyperbolic equations
of first order with convex and nonconvex hysteresis operator. It is shown that in the
nonconvex case the equation, whose nonlinearity is caused by the hysteresis term, has
properties analogous to the quasilinear hyperbolic equation of first order. Hysteresis is
represented by a functional describing adsorption and desorption on the particles of the
substance. An existence result is achieved by using an approximation of implicit time
discretization scheme, a priori estimates and passage to the limit; in the convex case it
implies the existence of a continuous solution.
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1. Introduction

We deal with the quasilinear hyperbolic equation with hysteresis

∂(u+ v)

∂t
+
∂u

∂x
= f, v = F(u) in Ω × [0, T ],(1.1)

u(x, 0) = u0(x),

u(α, t) = 0,

where α is a fixed real number. In what follows, we denote for simplicity Ω = (α,∞).

We study equation (1.1) as a model of adsorption-desorption. We assume a thin

tube x filled up with uniformly distributed substance. The symbol u denotes the

*This work was supported by the Grant Agency of the Czech Republic under grants
201/03/H152 and 201/02/P040.
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concentration of solution, v is concentration of the adsorbed species on the surface

of the particles. Here F(·) is a functional describing adsorption and desorption on
the particles of the substance.

Adsorption is the adhesion of molecules of a substance, such as a gas or liquid,

to the surface of another substance, such as a solid. This process creates a film of

molecules attracted to the surface (of the adsorbent). Desorption is the reverse of

adsorption. It is a surface phenomenon. It means that at some point x at time t the

concentration of the chemical in the solution is u(x, t) and the resulting concentration

v(x, t) is obtained on the output. The adsorption-desorption functional exhibits

hysteresis, i.e., the relations between u and v for the cases when u is increasing

or decreasing follow different curves. The motivation for our study comes from

applications in chemical and geological engineering (see [5], [14], [15]).

We investigate the smoothness of solutions of the initial value problem coupled

with a nonconvex generalized play operator and with a suitably restricted class of

hysteresis models, whose hysteresis loops are convex. This branch of hysteresis is

represented by a generalized play operator and a generalized Prandtl-Ishlinskii op-

erator in its convexity domain. We find out that they prevent formation of shocks.

On the other hand, the nonconvex hysteresis operators cause a discontinuity of the

solution.

If we consider the quasilinear hyperbolic equation of the first order without hys-

teresis, its typical feature is characteristics crossing. It means that the characteristic

curves with different values of solution meet. At these points we get discontinuity of

the solution. To overcome this lack of existence of a classical solution, the concept

of a weak solution is introduced. A weak solution may contain discontinuities, need

not be differentiable, and will require less smoothness for being considered a solution

than a classical solution. A moving discontinuity of the first kind is called a shock.

Its speed is given by the Rankine-Hugonoit condition. More details about quasilinear

hyperbolic equations of the first order one can find for example in [16].

If we expand our class of solutions to include weak solutions, we no longer have

uniqueness of the solution of the initial value problem. We need an additional cri-

terion for selecting the physically correct weak solution. This criterion is called an

entropy condition [16].

Geometrically, a shock satisfies the entropy condition if the characteristics enter

into the discontinuity curve. The main result of the paper is a theorem showing that

for hysteresis models satisfying convexity of hysteresis loops we obtain existence of

a smooth solution, and shocks do not occur. The result is proved by the method

of implicit time discretization. Equation (1.1) can be set in the form of the Cauchy

problem [17] and has one and only one integral solution in the sense of the nonlinear

semigroup theory [8], [17]. Such solution satisfies an entropy condition [6]. The
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smoothness of solution which follows from the existence theorem implies that this is

actually a strong solution (in a sense of nonlinear semigroup theory [17]), thus an

integral solution which satisfies the entropy condition [6].

We conclude with some examples. We compute the exact solution for the classical

play and a slightly modified generalized play operator using the method of charac-

teristics. In order to preserve continuity for classical play operator we have to use

the method of rarefaction waves. If we do not employ it we obtain a discontinuous

solution which does not satisfy the entropy condition. The same approach is used for

the investigation of a modified nonconvex generalized play operator. In this case we

get a discontinuous solution, i.e., the characteristics with different values of solution

cross.

The paper is organized as follows. In Section 2 we briefly introduce the concept of

hysteresis, define a generalized play operator (see [2], [9], [17]), Prandtl-Ishlinskii op-

erator of play type [10] and give some special examples considered later. In Section 3

the proof of the existence result is led through three steps: approximation, a priori

estimates and limit procedure. We compute in Section 4 an explicit solution with a

classical play operator. It is continuous and no shocks occur, because all loops are

convex. We describe each solution’s region and characteristics in detail and sketch

them. Section 5 is devoted to a special example of a generalized play operator which

is nonconvex. It is shown that here a continuous solution does not exist.

2. Hysteresis operators

Hysteresis is a phenomenon in which the response of a physical system to an

external influence depends not only on the present magnitude of the influence but

also on the previous history of the system. Hysteresis operators are characterized by

two main properties—memory effect and rate independence.

In this section we define the generalized play operator, the classical play operator

being a special example, and the Prandtl-Ishlinskii operator of play type.

2.1. Generalized play operator. Let γl, γr : R → [−∞,∞] be continuous and

nondecreasing functions with

γr(u) 6 γl(u) ∀u ∈ R.

Let u be a continuous piecewise linear function [0, T ] → R (namely, a function whose

graph is a polygonal), and let v0 ∈ [γr(u(0)), γl(u(0))] be given. For any t ∈ [0, T ],

let t0 = 0 < t1 < . . . < tN = T be such that u is linear (or, more precisely, affine) in
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[ti−1, ti] for i = 1, 2, . . . Then we set recursively

(2.1) P(u(t)) = v(t) =























min{γl(u(0)),max{γr(u(0)), v0}}
if t = 0,

min{γl(u(t)),max{γr(u(t)), v(ti−1)}}
if t ∈ (ti−1, ti], i = 1, 2, . . .

The mapping P that associates v with u according to the above rule is called gener-
alized play (Fig. 1) [9, § 2].

u

v

γl

γr

Figure 1. Generalized play.

The inequality (proved in [9, § 2])

|P(u1)(t) − P(u2)(t)| 6 L max
06s6t

|u1(s) − u2(s)| ∀ t ∈ [0, T ]

implies that P can be extended to a Lipschitz continuous mapping C([0, T ]) →
C([0, T ]), provided both γr and γl are Lipschitz continuous with a constant L.

Now we mention some special examples which we will consider later.

(1) We assume a special example of a generalized play operator, where γr(u) = u−r,
γl(u) = u + r for a given parameter r > 0. Then P is called the classical play
operator (Fig. 2) and denoted as Pr.

u

v

Figure 2. Classical play operator.
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(2) We consider a special example of a generalized play operator (Fig. 3). The left

hysteresis boundary curve is given by the function

γl(u) =











u+ 1 if − 2 6 u 6 0,

1 if u > 0,

−1 if u 6 −2

and the right boundary curve is given by

γr(u) =











u− 1 if 0 6 u 6 2,

1 if u > 2,

−1 if u 6 0.

1− 1

1−

1

u

v

γrγl

Figure 3. As example of generalized play.

An alternative definition of the classical play operator is given in the following

way: For a given input function u ∈ C0([0, T ]) and initial condition x0
r ∈ [−r, r], we

define the output v := Pr(x
0
r , u) ∈ C0([0, T ]) ∩BV (0, T ) of the play operator

Pr : [−r, r] × C0([0, T ]) → C0([0, T ]) ∩BV (0, T )

as the solution of the Stieltjes integral variational inequality

∫ T

0

[u(t) − v(t) − y(t)] dv(t) > 0 ∀ y ∈ C0([0, T ]), max
06t6T

|y(t)| 6 r,(2.2)

|u(t) − v(t)| 6 r ∀ t ∈ [0, T ],

v(0) = u(0) − x0.

Let us consider now the whole family of play operators Pr parameterized by r,

r > 0, which can be interpreted as a memory variable. Accordingly, we introduce

the configuration space

Λ :=
{

λ ∈ W 1,∞(0,∞);
∣

∣

∣

dλ(r)

dr

∣

∣

∣
6 1 a.e. in (0,∞)

}

,
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as well as its subspaces

ΛR := {λ ∈ Λ; λ(r) = 0 for r > R}, Λ0 :=
⋃

R>0

ΛR.

Elements λ ∈ Λ are called memory configurations, see [10]. For a given λ ∈ Λ, it is

convenient to define the initial condition x0
r by the formula

x0
r := Qr(u(0) − λ(r)),

where Qr : R → [−r, r] is the projection

Qr(x) := sign(x)min{r, |x|} = min{r,max{−r, x}}.

For any λ ∈ Λ, u ∈ C0([0, T ]) and r > 0 we set

(2.3) pr(λ, u) := Pr(x
0
r, u), p0(λ, u) = u.

Moreover, the operator pr : Λ × C0([0, T ]) → C0([0, T ]) is Lipschitz continuous in

the following sense:

Lemma 2.1. For every u,w ∈ C0([0, T ]), λ, µ ∈ Λ, and r > 0 we have

|pr(λ, u) − pr(µ,w)|∞ 6 max{|λ(r) − µ(r)|, |u − w|∞}.

2.2. Prandtl-Ishlinskii operator. The play operator can be used to construct

more complex hysteresis models such as the Prandtl-Ishlinskii operator of play type,

see [17].

Definition 2.1. Let a constant a > 0 and a function h ∈ BVloc(0,∞) be given

such that lim
s→0+

h(s) = a. We set

ϕ(r) :=

∫ r

0

h(s) ds for r > 0.

Then the operator Fϕ : Λ0 × C0([0, T ]) → C0([0, T ]) defined by the formula

(2.4) Fϕ(λ, u) = au+

∫

∞

0

pr(λ, u) dh(r), λ ∈ Λ0, u ∈ C0([0, T ]),

where pr is the play operator (2.3), is called the Prandtl-Ishlinskii operator generated

by the function ϕ.
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It can be shown ([10]) that for every λ ∈ Λ0, u ∈ C0([0, T ]), and t ∈ [0, T ] there

exists R(t) < ∞ such that pr(λ, u)(t) = 0 for all r > R(t). The Stieltjes integral

in (2.4) is therefore always finite.

The following result can be found in [10, Section II.3].

Theorem 2.1. The operator Fϕ is

i) causal, i.e.,

(2.5)

{

∀u1, u2 ∈ C0([0, T ]), ∀ t ∈ [0, T ], ∀λ ∈ Λ0,

if u1 = u2 in [0, t], then [Fϕ(λ, u1)](t) = [Fϕ(λ, u2)](t);

ii) rate independent, i.e.,

(2.6)

{

∀u ∈ C0([0, T ]), ∀ t ∈ [0, T ], ∀λ ∈ Λ0, if s : [0, T ] → [0, T ] is an

increasing homeomorphism, then [Fϕ(λ, u ◦ s)](t) = [Fϕ(λ, u)](s(t));

iii) if the function h is nonnegative and monotone, then Fϕ is piecewise monotone

in the following sense:

(2.7)

{

∀u ∈ C0([0, T ]), ∀ [t1, t2] ⊂ [0, T ], ∀λ ∈ Λ0, if u is either nondecreasing

or nonicreasing in [t1, t2], then so is Fϕ(λ, u);

iv) locally Lipschitz continuous in the following sense: for all t ∈ [0, T ], for all

v1, v2 ∈ C0([0, T ]), for all λ1, λ2 ∈ ΛR, where R > 0 is given we have

(2.8)

{

|Fϕ(λ1, v1) −Fϕ(λ2, v2)|(t) 6 |h(0)||v1 − v2|(t)
+(Var[0,R(t)] h)max{‖λ1(r) − λ2(r)‖[0,R], ‖v1 − v2‖C0([0,t])}

where R(t) := max{R, ‖v1‖C0([0,T ]), ‖v2‖C0([0,T ])}.

We assume Prandtl-Ishlinskii operators of the play type, i.e., such that the func-

tion h is positive and nondecreasing in (0,∞). These operators fulfil the additional

hypothesis of convexity of the hysteresis loops, which can be described in the follow-

ing way: if the input u increases (decreases) in a suitable neighbourhood of 0, then

the input-output couple (u,Fϕ(u)) moves along the graph of some convex (concave)

nondecreasing function. The main result of this is the so called second order energy

inequality. If we set

v(t) := Fϕ(λ, u)(t), V (t) :=
1

2
v̇(t)u̇(t) a.e. in [0, T ],
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then this energy inequality can be summarized as

(2.9) v̈(t)u̇(t) − V̇ (t) > 0 in the sense of distributions.

In order to get the existence result we will need a discrete version of (2.9) which

can be proved directly from the geometrical properties of hysteresis loops. For the

precise statement of (2.9) and for more details on this topic, see [10].

For the purpose of dealing with partial differential equations we consider both the

input and the initial memory configuration λ that additionally depend on the space

variable x. If for instance λ(x, ·) belongs to Λ0 and u(x, ·) belongs to C0([0, T ]) for

(almost) every x, then we define

F(u)(x, t) := Fϕ(λ(x), u(x, ·))(t)(2.10)

:= au(x, t) +

∫

∞

0

pr(λ(x), u(x, ·))(t) dh(r).

3. An existence result

Let us set Q = Ω× (0, T ). We assume that u0 ∈ L2(Ω) is a given initial condition,

f ∈ L2(Q) is a given function. We keep an initial configuration λ ∈ L∞(Ω,ΛR) fixed

and write for simplicity F(u(x, ·)) instead of F(λ(x), u(x, ·)) in the sequel. We set
v0(x) = [F(u(x, ·))](0) a.e. in Ω. Let

F : M(Ω;C0([0, T ])) → M(Ω;C0([0, T ]))

be a hysteresis operator, where we denote byM(Ω;C0([0, T ])) the Fréchet space of

measurable functions Ω → C0([0, T ]).

P r o b l e m 3.1. We search for a function u ∈ M(Ω;C0([0, T ]))∩L2(Q) such that

F(u) ∈ L2(Q) and

∫ T

0

∫

Ω

(u + F(u))
∂ψ

∂t
dxdt+

∫ T

0

∫

Ω

u
∂ψ

∂x
dxdt(3.1)

= −
∫ T

0

∫

Ω

fψ dxdt−
∫

Ω

ψ(x, 0)[u0(x) + v0(x)] dx

for any ψ ∈ H1(Q) with ψ(·, T ) = 0 a.e. in Ω.
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I n t e r p r e t a t i o n. The variational equation (3.1) yields

∂

∂t
[u+ F(u)] +

∂u

∂x
= f in D′(Q) (in the sense of distributions),

whence
∂

∂t
[u+ F(u)] = f − ∂u

∂x
in L2(Q).

Thus u + F(u) ∈ H1(0, T ;L2(Ω)). Hence, integrating by parts in time in (3.1), we

get

[u+ F(u)]|t=0 = u0 + v0 in L2(Ω), u(α, t) = 0 for t > 0.

Now we are ready to state and prove existence of a solution of Problem 3.1.

Theorem 3.1 (Existence). Assume that the operator F satisfies the hypothe-
ses (2.5)–(2.8). Moreover, let f ∈ W 1,1(0, T ;L2(Ω)), u0 ∈ H1(Ω), and u0(α) = 0.

Then Problem 3.1 has at least one solution such that

u ∈ W 1,∞(0, T ;L2(Ω)) ∩ L∞(Ω;H1(0, T )) ∩ L∞(0, T ;H1(Ω)),

F(u) ∈ H1(0, T ;L2(Ω)).

P r o o f. (i) Approximation. Let us fix m ∈ N , set k := T/m. For any

n = 1, . . . ,m let us consider u0
m(x) := u0(x), v

0
m(x) := v0(x) and fn

m(x) :=

k−1
∫ nk

(n−1)k
f(x, t) dt a.e. in Ω. We approximate our problem by an implicit time

discretization scheme.

P r o b l e m 3.2. To find un
m ∈ L2(Ω) for n = 1, . . . ,m such that, if um(x, ·)

is the linear time interpolate of um(x, nk) := un
m(x) for n = 1, . . . ,m a.e. in Ω,

vn
m(x) := [F(um)](x, nk) for n = 1, . . . ,m a.e. in Ω, then for any ψ ∈ L2(Ω)

(3.2)
1

k

∫

Ω

(un
m − un−1

m )ψ dx+
1

k

∫

Ω

(vn
m − vn−1

m )ψ dx+

∫

Ω

dun
m

dx
ψ dx =

∫

Ω

fn
mψ dx.

For any n ∈ {1, . . . ,m}, assume that u1
m, . . . , u

n−1
m ∈ L2(Ω) are known, and con-

sider the problem of determining un
m. For almost any x ∈ Ω, um(x, ·) is affine in

[(n − 1)k, nk]; therefore [F(um)](x, nk) depends only on um(x, ·)|[0,(n−1)k] which is

known, and on un
m(x) which must be determined. Hence, there exists a function

Fn
m : R× Ω → R such that

vn
m(x) = [F(um)](x, nk) := Fn

m(un
m(x), x) a.e. in Ω.

This allows us to introduce the operator F̃n
m : M(Ω) → M(Ω): w 7→ Fn

m(w(·), ·).
Working as in [17, Section IX.1], it is possible to show that F̃n

m : L2(Ω) → L2(Ω) is

strongly continuous and affinely bounded.
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Now, the main idea how to get the solution of Problem 3.2 is to rewrite (3.2) in

the following way:

(3.3)
un

m − un−1
m

k
+
vn

m − vn−1
m

k
+

dun
m

dx
= fn

m in D′(Ω)

with an initial condition

un
m(α) = 0.

If we separate the terms which are known from the ones we have to determine, the

equation (3.3) can be rewritten in the form

un
m + vn

m + k
dun

m

dx
= kfn

m + un−1
m + vn−1

m a.e. in Ω,

where the right-hand side of the previous equation is a known function. We can

use a standard procedure from ordinary differential equations to conclude that this

equation has one and only one solution in Ω.

(ii) A priori estimates. We fix any j ∈ {1, . . . ,m} and set

qn
m :=

un
m − un−1

m

k
, zn

m :=
vn

m − vn−1
m

k
for n = 1, . . . , j;

and we define

(3.4) q0m + z0
m := f0

m − du0
m

dx
∈ L2(Ω).

By taking the incremental ratio in time in (3.3), we have

(3.5)
qn
m − qn−1

m

k
+
zn

m − zn−1
m

k
+

dqn
m

dx
=
fn

m − fn−1
m

k
.

First of all, the fact that the operatorF is locally Lipschitz continuous (with Lipschitz
constant, say L) yields

(3.6) ∃ τ ∈ L2(Ω): |vn
m(x)| 6 L max

j=1,...,n
|uj

m(x)| + τ(x)

a.e. in Ω.

At this point, we claim that the following discrete version of the second order

inequality holds:

(qn
m − qn−1

m

k
+
zn

m − zn−1
m

k

)

(un
m − un−1

m )(3.7)

>
1

2
(qn

m + zn
m)qn

m − 1

2
(qn−1

m + zn−1
m )qn−1

m

a.e. in Ω, for any n = 2, . . . , j.
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For more details and the detailed proof, see [4]. Let us multiply (3.5) by kqn
m =

un
m − un−1

m , integrate in (α, β) for any β ∈ (α,∞) and then sum for n = 1, . . . , j.

First we have

[(qn
m − qn−1

m

k
+
zn

m − zn−1
m

k

)

+
dqn

m

dx

]

(un
m − un−1

m ) =
(fn

m − fn−1
m )

k
(un

m − un−1
m ),

(qn
m − qn−1

m

k
+
zn

m − zn−1
m

k

)

(un
m − un−1

m ) +
k

2

d(qn
m)2

dx
= (fn

m − fn−1
m )qn

m.

Then

j
∑

n=1

∫ β

α

(qn
m − qn−1

m

k
+
zn

m − zn−1
m

k

)

(un
m − un−1

m ) dx+
k

2

j
∑

n=1

∫ β

α

d(qn
m)2

dx
dx

=

∫ β

α

(q1m + z1
m)q1m dx−

∫ β

α

(q0m + z0
m)q1m dx

+

j
∑

n=2

∫ β

α

(qn
m − qn−1

m

k
+
zn

m − zn−1
m

k

)

(un
m − un−1

m ) dx+
k

2

j
∑

n=1

∫ β

α

d(qn
m)2

dx
dx

(3.7)

>

∫ β

α

(q1m + z1
m)q1m dx+

1

2

j
∑

n=2

∫ β

α

[(qn
m + zn

m)qn
m − (qn−1

m + zn−1
m )qn−1

m ] dx

− 1

2

∫ β

α

|q1m|2 dx− 1

2
‖q0m + z0

m‖2
L2(Ω) +

k

2

j
∑

n=1

[qn
m(β)2 − qn

m(α)2]

(2.7)

>
1

2

∫ β

α

|qj
m|2 dx− 1

2
‖q0m + z0

m‖2
L2(Ω) +

k

2

j
∑

n=1

[qn
m(β)2 − qn

m(α)2].

On the other hand,

j
∑

n=1

∫ β

α

(fn
m − fn−1

m )qn
m dx 6

∥

∥

∥

∂f

∂t

∥

∥

∥

L1(0,T ;L2(Ω))
max

n=1,...,j

(
∫ β

α

qn
m(x)2 dx

)1/2

.

From the previous two chains of inequalities, together with (3.4), using compatibility

of the initial condition, we deduce

1

2

∫ β

α

|qj
m(x)|2 dx+

k

2

j
∑

n=1

qn
m(β)2 6

∥

∥

∥

∂f

∂t

∥

∥

∥

L1(0,T ;L2(Ω))
max

n=1,...,j

(
∫ β

α

qn
m(x)2 dx

)1/2

+
1

2
‖q0m + z0

m‖2
L2(Ω) +

k

2

j
∑

n=1

qn
m(α)2,

which yields the a priori estimate

(3.8)

∫

Ω

|qj
m|2 dx+ k

j
∑

n=1

|qn
m|2 6 constant (independent of m).
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(iii) Limit procedure. We denote by vm(x, ·) the linear time interpolate of
vm(x, nk) := vn

m(x) for n = 0, . . . ,m a.e. in Ω; moreover, we set ūm(x, t) := un
m(x) if

(n− 1)k < t 6 nk, for n = 1, . . . ,m a.e. in Ω and define fm in a similar way. Thus

(3.3) becomes

(3.9)
∂um

∂t
+
∂vm

∂t
+
∂ūm

∂x
= fm,

while (3.8) yields

‖um‖W 1,∞(0,T ;L2(Ω))∩L∞(Ω;H1(0,T )) 6 constant (independent of m),(3.10)

‖ūm‖L∞(0,T ;H1(Ω)) 6 constant (independent of m).

The a priori estimates we have found allow us to conclude that there exists u such

that, possibly taking m→ ∞ along a subsequence,

um → u weakly star in W 1,∞(0, T ;L2(Ω)) ∩ L∞(Ω;H1(0, T ))(3.11)

∩ L∞(0, T ;H1(Ω)),

ūm → u weakly star in L∞(0, T ;H1(Ω)).

Moreover, asH1(0, T ;L2(Ω)) = L2(Ω;H1(0, T )) ⊂ L2(Ω;C0([0, T ])) with continuous

injection, by (3.6) and by (3.10) we easily obtain

‖vm‖L∞(0,T ;L2(Ω)) 6 constant (independent of m);

this allows us to conclude that there exists v such that, possibly taking m → ∞
along a subsequence,

(3.12) vm → v weakly star in L∞(0, T ;L2(Ω)).

The three above formulas yield

‖um + vm‖H1(0,T ;L2(Ω))(3.13)

6 c‖um + vm‖L2(Q) +
∥

∥

∥

∂

∂t
(um + vm)

∥

∥

∥

L2(0,T ;L2(Ω))

6 c‖um‖L2(Q) + c
√
T‖vm‖L2(Ω;C0([0,T ]))

+
∥

∥

∥
fm − ∂ūm

∂t

∥

∥

∥

L2(0,T ;L2(Ω))
6 constant.

So, by taking m→ ∞ along a subsequence, we get

um + vm → u+ v weakly in H1(0, T ;L2(Ω)).
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Let us show that v = F(u). As a consequence of the estimate (3.10), we see that

∂u/∂x ∈ L∞(0, T ;L2(Ω)).

The space

{

z ∈ L1(Ω × (0, T ));
∂u

∂x
∈ L∞(0, T ;L2(Ω)),

∂u

∂t
∈ L∞(0, T ;L2(Ω))

}

is compactly embedded in C0(Ω̄× [0, T ]). Hence, we have, passing to a subsequence,

um → u uniformly in C0(Ω̄ × [0, T ]).

Using the continuity of the operator F(u), we deduce

F(um) → F(u) uniformly in [0, T ], a.e. in Ω.

As vm(x, ·) is the linear time interpolate of vm(x, nk) = [F(um)](x, nk) for n =

0, . . . ,m a.e. in Ω, we have

vm −F(um) → 0 uniformly in [0, T ], a.e. in Ω.

Therefore by (3.12) we conclude v = F(u) a.e. in Q.

Hence, taking m→ ∞ in (3.9), we get

∂u

∂t
+
∂v

∂t
+
∂u

∂x
= f.

This completes the proof. �

R em a r k 3.1. The assumptions of Theorem 3.1 are satisfied e.g. by the play

operator (see [10, Sections II.1, II.2]) and the Prandtl-Ishlinskii operator (see [10,

Section II.3]).

R em a r k 3.2. The Problem 3.1 corresponding to a generalized play operator

or a generalized Prandtl-Ishlinskii operator can be set in the form of an abstract

Cauchy problem [17]. For such a system we dispose of the notion of an integral

solution in the sense of nonlinear semigroup theory [17]. Our weak solution (u, v)

has the regularity

u ∈W 1,∞(0, T ;L2(Ω))∩L∞(Ω;H1(0, T ))∩L∞(0, T ;H1(Ω)), v ∈ H1(0, T ;L2(Ω)).

Hence, (u, v) coincides with the strong solution and therefore with the integral solu-

tion of the Cauchy problem which satisfies the entropy condition. This condition is

proved in [7] and can be stated as follows.
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Let us denote by Lγ the hysteresis region, i.e., the subset of R
2 of admissible

pairs (u, v) such that v = F(u, v0) for arbitrary v0.

Theorem 3.2 (Entropy condition). Assume that u0 ∈ L2(Ω). Then the solution

of Problem 3.1 satisfies

(3.14)

∫ ∫

Q

[

(|u − θ| + |v − θ̂|)∂ϕ
∂t

+ |u− θ|∂ϕ
∂x

+ sign(u − θ)fϕ
]

dxdt > 0

for all ϕ ∈ C∞

0 (Q) such that ϕ > 0 and this holds for all (θ, θ̂) ∈ Lγ .

4. Example 1

We study the partial differential equation

(4.1)
∂(u+ v)

∂t
+
∂u

∂x
= 0,

with the initial conditions

u(x, 0) = u0(x), v(x, 0) = v0(x), x ∈ (α,∞),

and the boundary condition

u(α, t) = 0.

Here v = Pr(·) is a classical play operator defined in Section 2.
The equation can be rewritten as

ut + ux +











0 if u− 1 < v < u+ 1

ut if v = u+ 1 decreasing

ut if v = u− 1 increasing











= 0.

We obtain the following equation from the definition of the play operator:

a) v = u−1, v is increasing. The values of vt are then allowed to take any positive

value and vt = ut.

b) v = u+1, v is decreasing. The values of vt are then allowed to take any negative

value and vt = ut.

c) u− 1 < v < u+ 1, then vt = 0 because v is constant.
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For an explicit example, let us take the initial conditions

u(x, 0) = u0(x) ≡











x for − 3 6 x 6 0,

−6 − x for − 6 < x < −3,

0 for x 6 −6,

v(x, 0) = v0(x) ≡



































0 for − 1 6 x 6 0,

x+ 1 for − 3 6 x < −1,

1
3x− 1 for − 9

2 6 x < −3,

−x− 7 for − 6 6 x < − 9
2 ,

−1 for x < −6.

In order to compute the exact solution, we use the method of characteristics. If

our original equation is ut + κux = 0, then the solution subject to the above initial

condition would preserve its shape and travel with speed κ and u(x, t) = u0(x− κt).

In our case, with different values of κ, the characteristics must cross. The solution

itself remains continuous.

The computations:
∂u

∂t
+ κ

∂u

∂x
= 0.

We consider the characteristics:

dt

ds
= 1,

dx

ds
= κ,

d

ds
(κt− x) = 0,

u(x, t) = u0(x− κt).

Characteristics are in the form: x− κt = k.

We describe the solution in detail. Results are summed up in a table (Tab. 1)

and in a graph (Fig. 4). The solution is described in different regions where the

characteristics are changing.

The initial condition is increasing for x ∈ [−3, 0].

A: We are here inside the hysteresis loop. This means v = 0, vt = 0 and we have

the equation ut + ux = 0, i.e., κ = 1 in the above computation. The solution is

determined by the initial condition u0(x, t). So u = u0(x− t) = x− t. This will

be our solution until u = −1, because then we hit the left hysteresis boundary

curve and therefore the equation will be changed. Thus t < x+1. The boundary

for the region A is 0 < t < x+ 1.

B: The same situation as above, but now we hit the left boundary curve of the play

operator and stay there (u = −1, v = 0). We are above the line t = x + 1 and
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the solution is determined by the continuity of the solution. The boundaries

are determined by x+ 1 < t.

In regions A and B, κ is equal to one, u values are decreasing and v remains

constant. In these cases the play operator does not play any role yet.

C: Now we start considering the play operator. This means v = u+ 1, vt = ut and

we have the equation ut + 1
2ux = 0, i.e., κ = 1

2 in the above computations. The

solution is determined by the initial condition: u(x, t) = u0(x − κt) = x − 1
2 t

and it must satisfy u < −1. So x − 1
2 t < −1 ⇒ 2x + 2 < t. Because u is

decreasing in t, we move on the left boundary curve of the play operator and so

v(x, t) = u(x, t)+1 = x− 1
2 t+1. The boundaries are determined by 2x+2 < t.

The initial condition is decreasing for x ∈ (−6,−3). So we have to move inside

the hysteresis loop. When we stay inside the loop, then κ = 1.

D: We are inside the hysteresis loop again, so κ = 1. The solution is determined by

the initial condition: u(x, t) = u0(x− t) = −6− (x− t) = −6−x+ t. We search

for a continuous solution, i.e. the regions C and D have to be divided by a line

on which both solutions coincide. This means x− 1
2 t = t−6−x and t = 4+ 4

3x,

v(x, t) = x− 2
3x− 2 + 1 = −1 + 1

3x. The boundaries are given by
4
3x+ 4 < t.

F: Now we move on the right boundary curve of the play operator, so κ = 1
2 .

The solution is u(x, t) = u0(x − 1
2 t) = −6 − x + 1

2 t, v(x, t) = u(x, t) − 1 =
1
2 t− 7− x. We search for a continuous solution. The boundaries are calculated

from u(x, t) = −6 − x + 1
2 t < 0 ⇒ t < 12 + 2x and from the continuity of

v(x, t) : −1 + 1
3x = 1

2 t− 7 − x⇒ t = 12 + 8
3x. The boundaries are determined

by 8
3x+ 12 < t < 2x+ 12.

When we are in the region D, we move inside the hysteresis loop and compute only

the lower bound of this region. Then we move to the right boundary curve of the

region F, and compute the lower and upper bounds. But there is a problem, because

we assume that the lower bound of the region F is the upper one of the region D,

hence the continuity is broken. If we try to find a continuous solution, we have to

try to fit a new region E between D and F.

E: In order to preserve continuity of the solution, we calculate the missing boundary

lines from the equation bt− bx + c = u. We replace t by one known boundary

line, i.e. t = 8
3x + 12. Hence, we get 5

3bx + 12b + c = 1
3x. We deduce from

the equation that 12b + c = 0 and 5
3b = 1

3 . Then we express the coefficient b,

i.e., b = 1
5 . After inserting it into the equation we have c = − 12

5 , so that

u(x, t) = −bx+ bt+ c = 1
5 (t− x− 12).

We search for a continuous solution. Therefore, the regions E and C have to be

divided by a line on which both solutions coincide. This means 1
5 (t − x − 12) =

x− 1
2 t⇒ t = 12

7 x+ 24
7 .
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Consequently, the regions E and D have to be divided by a line on which both

solutions coincide. This means 1
5 (t− x− 12) = −6 − x+ t⇒ t = x+ 9

2 .

Therefore, the regions E and B have to be divided by a line on which both solutions

coincide. This means 1
5 (t− x− 12) = −1 ⇒ t = x+ 7.

For x 6 3
2 the value of v(x, t) = 1

3x − 1 is the same as in the region D. For
3
2 < x 6 5 we get the value of v(x, t) from the continuity between the regions E and

C, i.e. from the continuous line t = 12
7 x+ 24

7 . So v(x, t) = x− 1
2 (12

7 x+ 24
7 )+1 = x

7 − 5
7 .

For x > 5 the value of v(x, t) = 0 is the same as in the region B for x 6 5.

Now we use continuity of the solution to obtain an upper boundary line of the

region E. Hence, bt− bx+ c = 0, i.e., 1
5 t− 1

5x− 12
5 = 0 ⇒ t = x+ 12.

The boundaries are determined by x + 9
2 < t < 8

3x + 12, x 6 0, x + 9
2 < t <

x+ 12, 0 < x 6 3
2 ,

12
7 x+ 24

7 < t < x+ 12, 3
2 < x 6 5, x+ 7 < t < x+ 12, x > 5.

G: We stop when u(x, t) = 0. Then v(x, t) =























−1 if x 6 0,

−1 + 1
3x if 0 < x 6 3

2 ,

x
7 − 5

7x if 3
2 < x 6 5,

0 if x > 5.
The boundaries are determined by 2x+ 12 < t, x 6 0, x+ 12 < t, x > 0.

We present obtained results summed up in Tab. 1 and Fig. 4.

1

2

3

4

5

6

7

8

9

10

11

12

6− 5− 4− 3− 2− 1− 0 1 2 3 4 5 6 7 x

t

A

B

CD

E

F

G

Figure 4. Regions of solution in u(x, t) plane.

183



region description u(x, t) v(x, t)

A 0 < t < x+ 1 x− t 0

B x+ 1 < t < 2x+ 2, x 6 5 −1 0

x+ 1 < t < x+ 7, x > 5

C 2x+ 2 < t < 4
3x+ 4, x 6 3

2 x− 1
2 t x− 1

2 t+ 1

2x+ 2 < t < 12
7 x+ 24

7 , x >
3
2

D 4
3x+ 4 < t < 9

2 + x −6 − x+ t −1 + 1
3x

E x+ 9
2 < t < 8

3x+ 12, x 6 0 1
5 (t− x− 12) −1 + 1

3x

x+ 9
2 < t < x+ 12, 0 < x 6 3

2 −1 + 1
3x

12
7 x+ 24

7 < t < x+ 12, 3
2 < x 6 5 x

7 − 5
7

x+ 7 < t < x+ 12, x > 5 0

F 8
3x+ 12 < t < 2x+ 12 −6 − x+ 1

2 t −7 − x+ 1
2 t

G 2x+ 12 < t, x 6 0 0 −1, x 6 0

x+ 12 < t, x > 0 −1 + 1
3x, 0 < x 6 3

2
x
7 − 5

7 ,
3
2 < x 6 5

0, x > 5

Table 1. Computations of solution.

5. Example 2—discontinuity

Now we consider a special example of a generalized play operator. The initial

condition is for simplicity

u(x, 0) = u0(x) = x and v(x, 0) = x− 1, x ∈ (α,∞).

The equation (4.1) can be rewritten for this operator as

ut + ux +



































0 if u− 1 < v < u+ 1

ut if v = u+ 1 decreasing

ut if v = u− 1 increasing

0 if v = 1

0 if v = −1



































= 0.

We obtain this equation from the definition of the operator:

a) v = u − 1, −1 < v < 1, v is increasing. The values of vt are then allowed to

take any positive value and vt = ut.
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b) v = u + 1, −1 < v < 1, v is decreasing. The values of vt are then allowed to

take any negative value and vt = ut.

c) u− 1 < v < u+ 1, then vt = 0 because v is constant.

d) v = 1, then vt = 0 because v is constant.

e) v = −1, then vt = 0 because v is constant.

The initial condition is increasing for x ∈ (−∞,∞).

A: We are here inside the hysteresis loop. This means v = 0, vt = 0 and we have

the equation ut + ux = 0, i.e., κ = 1 in the above computations. Therefore,

t = x+ k are characteristics and the solution is constant on them. The solution

is determined by the initial condition u(x, t) = u0(x − t) = x − t. This will

be our solution as long as −1 < u < 1, because then we hit the right or left

hysteresis boundary curve and therefore the equation will be changed. Thus

x− 1 < t < x+ 1. The characteristics are t = x+ k.

B: The same situation as above, but now we hit the left boundary curve of the play

operator and stay there (u = −1, v = 0). We are above the line t = x + 1 and

the solution is determined by the continuity of the solution. The boundaries

are determined by x+ 1 < t.

In our cases A, B, κ is equal to one, v remains constant. In these cases the

play operator does not play any role yet.

C: Now we start considering the play operator. This means v = u + 1, vt = ut

and we have the equation ut + 1
2ux = 0, i.e., κ = 1

2 in the above computations.

Thus t = 2x + k are characteristics. The solution is determined by the initial

condition: u(x, t) = x − 1
2 t and it must satisfy u < −1. So x − 1

2 t < −1 and

2x+ 2 < t. We move on the left hysteresis boundary curve of the play operator

and so v(x, t) = u(x, t) + 1 = x− 1
2 t+ 1. But v can be maximally equal to −1.

So if we set −1 = x − 1
2 t + 1, then t = 4 + 2x is the time when v reaches the

value −1.

We first assume the equation with κ = 1
2 , so u = x− 1

2 t. Secondly, we consider

the equation with κ = 1. So we have u = x− t, the characteristics are t = x+k.

For x ∈ (−∞,∞) some values of t = 2x+ 4 belong to the interval [0,∞). If we

try to find a line where both solutions coincide we find out x = 0, i.e., such a

line does not exist. Thus v(x, t) is equal to −1 in this interval. When we sketch

the characteristics of our two equations (t = 2x+k, t = x+k), we find out that

the latter ones assume higher values of the solution than the former and that

they cross. Thus the solution must be discontinuous (see Fig. 5).

The consequence of the nonconvexity of this type of the play operator is its

discontinuity.
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1

2

3

4

2− 1− 0 1 2 3 x

t

x−1x+1
x+22x+2

2x+4

A

B

C

Figure 5. Characteristics intersect.

Now we can compare the results achieved. Assuming a hysteresis operator with

nonconvex hysteresis curves we get the discontinuous solution. So the convexity of

the hysteresis loop is broken down and a shock arises. Hence, it is necessary to

consider the convex hysteresis model to get a continuous solution.
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