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Nonlocal systems of BVPs with

asymptotically superlinear boundary conditions

Christopher S. Goodrich

Abstract. In this paper we consider a coupled system of second-order boundary
value problems with nonlocal, nonlinear boundary conditions, and we examine
conditions under which such problems will have at least one positive solution. By
imposing only an asymptotic growth condition on the nonlinear boundary func-
tions, we are able to achieve generalizations over existing works and, in particular,
we allow for the nonlocal terms to be able to be realized as Lebesgue-Stieltjes in-
tegrals possessing signed Borel measures. We conclude with a numerical example
to illustrate the use of one of our two main results.

Keywords: coupled system of second-order boundary value problems, nonlocal
boundary condition, nonlinear boundary condition, superlinear growth, positive
solution

Classification: Primary 34B10, 34B15, 34B18; Secondary 47H07, 47H10

1. Introduction

In this paper we consider a system of nonlocal boundary value problems with
nonlinear boundary conditions. In particular, we consider the nonlinear system
of boundary value problems

(1.1)

x′′(t) = −a1(t)g1(x(t), y(t)), t ∈ (0, 1),

y′′(t) = −a2(t)g2(x(t), y(t)), t ∈ (0, 1),

x(0) = 0 = y(0),

x(1) = H1

(
φ1(x) + ε10x

(
ξ10
)
, φ2(y) + ε20y

(
ξ10
))
,

y(1) = H2

(
φ1(x) + ε10x

(
ξ20
)
, φ2(y) + ε20y

(
ξ20
))
,

where ε10, ε
2
0 > 0 are constants, which shall be specified later, ξ10 , ξ

2
0 ∈ (0, 1)

are fixed, φ1, φ2 : C([0, 1]) → R are linear functionals, which capture the nonlocal
nature of the boundary conditions, andH1, H2 : R2 → R are continuous functions,
which capture the nonlinear nature of the boundary conditions. We also assume
that the nonlinearities g1, g2 : [0,+∞) × [0,+∞) → [0,+∞) are continuous
functions. The nonlocal terms here are quite general since they are realized as
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Lebesgue-Stieltjes integrals — that is,

(1.2) φ1(x) :=

∫

[0,1]

x(t) dα1(t) and φ2(y) :=

∫

[0,1]

y(t) dα2(t),

with α1, α2 ∈ BV ([0, 1]). Since it may be assumed without loss that, in fact, α1,
α2 ∈ NBV ([0, 1]), we get that associated to each of α1, α2 there exists a unique
Borel measure, say µα1 and µα2 , respectively. In our context, importantly, these
measures may be signed .

Here we study the existence of at least one positive solution to problem (1.1).
To accomplish this task, we use the perturbation terms in (1.1) — namely, ε10x(ξ

1
0),

ε20y(ξ
1
0), ε

1
0x(ξ

2
0), and ε20y(ξ

2
0) — as well as a new condition on the nonlinear

functions H1 and H2. These novelties reveal, in a way that shall be delineated
momentarily, that many of the restrictions previous authors have imposed on the
various terms appearing in other problems similar to (1.1) are, in fact, unnecessary
in our setting. Our principal condition on these functions is to require that, for
each i = 1, 2,

(1.3) lim
z1+z2→+∞

Hi (z1, z2)

z
p∞i
1 + z

q∞i
2

= +∞

holds for some p∞i , q∞i ∈ (0, 1] with at least one of p∞i and q∞i , for each i = 1, 2,
able to be taken equal to unity. In particular (cf., Remark 3.2), condition (1.3)
implies that each of H1 and H2 may enjoy asymptotically superlinear growth in
at least one of the two coordinate directions (cf., Remark 3.3). We will even give
an existence result associated to the somewhat more relaxed condition

(1.4) lim sup
z1+z2→0+

Hi (z1, z2)

z1 + z2
< ρi,

for each i = 1, 2, with ρi a positive constant to be selected later; importantly,
the result associated to condition (1.4) will even be applicable in the unperturbed
case — i.e., ε10 = ε20 = 0. It should be pointed out that, in fact, Yang [16], [17]
introduced an asymptotic condition similar to (1.4), though in the context of a
slightly different problem. Regardless, Yang imposes a number of other hypotheses
— such as complicated conditions on the equivalent of our nonlinearities g1 and
g2 as well as the assumption that the equivalent of µα1 and µα2 be positive —
with which we completely dispense here.

In any case, to place problem (1.1) in an appropriate context, we remark that
it is, in fact, most closely related to recent papers both of Kang and Wei [10]
and of Infante and Pietramala [7]. Regarding [10], Kang and Wei considered a
problem very similar to (1.1). However, they were forced to assume that each of
the measures µα1 and µα2 was positive. Moreover, regarding their equivalent of
the nonlinearities g1 and g2 appearing in (1.1), they assumed that these functions
satisfied very strict growth conditions. On the other hand, regarding [7], a similar
problem to (1.1) was considered, a principal difference being that the equivalent of



Nonlocal systems of BVPs with asymptotically superlinear BCs 81

H1 and H2 were functions of a single variable only — for instance, H1(x). In any
case, the authors there assumed that each of the measures µα1 and µα2 was posi-
tive. Furthermore, they assumed that the nonlinear boundary nonlinearities (i.e.,
the equivalent of H1 and H2) satisfied uniformly linear growth — that is, there
were 0 ≤ α < β such that αz ≤ H(z) ≤ βz, for all z ≥ 0. This latter condition
is somewhat restrictive, and we remove it completely in this work. Finally, our
techniques even allow for the nonlinearities g1 and g2 to have completely different
limiting behavior — cf., point (5) below.

In addition to [7], [10], there have been many other recent works on nonlocal,
nonlinear boundary value problems — see, for example, [6], [8], [9], [16], [17].
While our work here is slightly less directly related to these, it is, nonetheless,
nontrivially connected to these other papers, and we provide here techniques
and insights not found in any of those other works. It is certainly important to
mention that the basic cone theoretic technique used in this paper is indebted
to the important paper of Infante and Webb [12]. Finally, we mention that our
results here complement certain of the results which we have recently given in [4].

In summary, we provide here the following generalizations over preceding works.

(1) We allow for each of µα1 and µα2 to be signed measures rather than merely
positive. This is an improvement over the preceding works, as intimated
above.

(2) We do not assume a uniform linear growth condition on either H1 or H2.
We instead assume either the asymptotic condition given in (1.3) together
with an assumption that these functions possess superlinear growth as
z1 + z2 → 0 or condition (1.4). In particular, this shows that superlinear
growth at (+∞,+∞) is allowable. More generally, one need not assume
a uniform linear growth condition as seems to appear in nearly all works
on this sorts of problems — cf., [6], [7], [8], [9] — since in our setting there
may be no β > 0 such that Hi(z1, z2) ≤ β(z1 + z2), for all z1, z2 ≥ 0.

(3) Specifically regarding Yang’s works [16], [17], we point out that our re-
sults here even provide some interesting generalizations of the methods
contained therein. In particular, while the results of [16], [17] concern
different problems than (1.1), those works do appear to be among the
only ones to consider an asymptotic condition with respect to the non-
linear boundary functions, at least to the best of the author’s knowledge.
A close examination of the proofs in those works, however, reveals that
they use in a very explicit way the positivity of the respective Stieltjes
measures. Lacking this positivity, as we do here, we must search for alter-
native approaches. Consequently, we feel that our results here represent
an interesting advancement over those presented in [16], [17].

(4) We believe that our techniques even allow H to be only eventually posi-
tive, though we do not prove such a theorem here — see [3] for an exemplar
of this extension in a context somewhat different from this one.

(5) We show that the assumption of asymptotic superlinearity of the func-
tions H1 and H2 allows for neither g1 nor g2 to have any particular type
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of growth (e.g., sub- or superlinearity) as ‖(x, y)‖ → +∞. In particular,
this means that g1 and g2 can have completely different limiting behavior.
For example, g1 could be sublinear as ‖(x, y)‖ → +∞, whilst g2 is super-
linear as ‖(x, y)‖ → +∞. While Yang also allowed for mixed asymptotic
behavior of the nonlinearities in [16], a cursory examination of that paper
indicates that a number of complicated conditions are required to deduce
that result. By contrast, our conditions are quite simple and relatively
easy to check computationally.

2. Preliminaries

We consider in this work the space X := B×B, where B represents the Banach
space C([0, 1]) when equipped with the usual supremum norm, ‖ · ‖ := ‖ · ‖∞.
Note — see Dunninger and Wang [2] — that X becomes a Banach space when
equipped with the norm ‖(x, y)‖ := ‖x‖+‖y‖. It is then known that a fixed point
in X of
(2.1)
S(x, y)(t)

:= (T1(x, y), T2(x, y))

=

(
tH1

(
φ1(x) + ε10x

(
ξ10
)
, φ2(y) + ε20y

(
ξ10
))

+

∫ 1

0

G(t, s)a1(s)g1(x(s), y(s)) ds,

tH2

(
φ1(x) + ε10x

(
ξ20
)
, φ2(y) + ε20y

(
ξ20
))

+

∫ 1

0

G(t, s)a2(s)g2(x(s), y(s)) ds

)

is a solution of problem (1.1), where S : X → X and Ti : X → B, for each i = 1, 2.
Here G : [0, 1]× [0, 1] → R appearing in (2.1) is the Green’s function associated
to the two-point conjugate problem — that is,

(2.2) G(t, s) :=

{
t(1 − s), 0 ≤ t ≤ s ≤ 1,

s(1− t), 0 ≤ s ≤ t ≤ 1,

as is well known — see, for example, [11]. In the sequel, we shall assume that the
set [a, b] is a given fixed subinterval of (0, 1). With this declaration it is then well
known that there is a constant γ := mint∈[a,b]{t, 1− t} such that

(2.3) min
t∈[a.b]

G(t, s) ≥ γ max
t∈[0,1]

G(t, s) = γG(s, s),

for each s ∈ [0, 1]. Note that γ ∈ (0, 1). Finally, let us also recall as a preliminary
lemma Krasnosel’skĭı’s fixed point theorem — see [1].

Lemma 2.1. Let B be a Banach space and let K ⊆ B be a cone. Assume that
Ω1 and Ω2 are bounded open sets contained in B such that 0 ∈ Ω1 and Ω1 ⊆ Ω2.
Assume, further, that T : K∩ (Ω2 \Ω1) → K is a completely continuous operator.
If either

(1) ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω2; or
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(2) ‖Ty‖ ≥ ‖y‖ for y ∈ K ∩ ∂Ω1 and ‖Ty‖ ≤ ‖y‖ for y ∈ K ∩ ∂Ω2;

then T has at least one fixed point in K ∩ (Ω2 \ Ω1).

3. Main result and numerical example

We begin by listing the various structural conditions we impose on the con-
stituent parts of problem (1.1). These conditions are the following.

H1: For each i, let Hi : R2 → [0,+∞) be a real-valued, continuous function.
Moreover, Hi : [0,+∞) × [0,+∞) → [0,+∞) — i.e., Hi is nonnegative
when restricted to [0,+∞)× [0,+∞).

H2: For each i, the functional φi(y) appearing in (1.1) is linear and, in par-
ticular, has the realization

(3.1) φi(y) :=

∫

[0,1]

y(t) dαi(t),

where αi : [0, 1] → R satisfies αi ∈ BV ([0, 1]).
H3: For each i, there is a constant εi1 ∈ [0, 12 ) such that the functional φi in

(1.1) satisfies the inequality

(3.2) |φi(y)| ≤ εi1‖y‖

for all y ∈ C([0, 1]).
H4: For each i, there are p∞i ∈ (0, 1] and q∞i ∈ (0, 1], where for each i at least

one of p∞i and q∞i is equal to unity, such that

(3.3) lim
z1+z2→+∞

Hi (z1, z2)

z
p∞i
1 + z

q∞i
2

= +∞

holds. Furthermore, for each i it holds that

(3.4) lim
z1+z2→0+

Hi (z1, z2)

z1 + z2
= 0.

H5: We find that

(3.5) lim
x+y→0+

g1(x, y)

x+ y
= 0 and lim

x+y→0+

g2(x, y)

x+ y
= 0.

H6: The constants ε10, ε
2
0, ε

1
1, and ε

2
1 satisfy

(3.6) 0 ≤ ε10 + ε20 + ε21 + ε21 <
1

2
.

H7: For each i, each of

(3.7)

∫

[0,1]

t dαi(t) ≥ 0
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and

(3.8)

∫

[0,1]

G(t, s) dαi(t) ≥ 0

holds, where the latter holds for each s ∈ [0, 1].

Let us make some brief remarks regarding certain of the preceding conditions.

Remark 3.1. Regarding conditions (H2)–(H3), we point out that a wide vari-
ety of functions satisfy these conditions. Indeed, consider the following pair of
functionals.

(3.9)

φi1(y) :=

∫

F

y(t) dt,

φi2(y) :=

n∑

k=1

aky (ξk) .

Since each of (3.9)1–(3.9)2 is linear, each satisfies (H2). On the other hand, so
long as m(F ) ≤ εi0, say, where m is the Lebesgue measure, then (3.9)1 satisfies
(H3). Provided that

∑n
k=1 |ak| ≤ εi0, then (3.9)2 satisfies (H3). Example 3.9

contains another example.

Remark 3.2. Regarding condition (H4) and specifically (3.3) therein, this is the
asymptotic superlinear condition which, in part, distinguishes our methods here
from others. On the other hand, (3.4) appearing in condition (H4) implies that H
is also superlinear as (x, y) → (0+, 0+). Some functions, H : [0,+∞)× [0,+∞)→
[0,+∞), satisfying condition (H4), then, are the following. (In each case, p∞i =
q∞i = 1, for each i.)

(3.10)

H (z1, z2) := zr11 + zr22 , r1, r2 > 1,

H (z1, z2) := (z1 + z2)
r
cos

(
1

z1 + z2 + 1

)
, r > 1,

H (z1, z2) :=

{
(z1 + z2)

2
, 0 ≤ z1 + z2 ≤ 1,

ez1+z2−1, z1 + z2 > 1.

It is easy to check that each of (3.10)1–(3.10)3 satisfies each part of condition (H4).
Furthermore, we should mention that each of the functions above cannot be

incorporated into the theory of either [7] or [10] due to the superlinear growth at
(+∞,+∞). In fact, such nonlinear boundary functions could not be incorporated
into any of the results given in [6], [8], [9], [10] for that matter. So, condition (H4)
allows for a vastly different variety of nonlinear boundary functions than other
recent works on these sorts of problems. Moreover, as shall be explicated in
the proof of Theorem 3.5, which is our first existence result, this asymptotic
superlinear growth condition also allows for the mixed growth of the nonlinearities
g1 and g2, as mentioned in Section 1.
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Remark 3.3. Also regarding condition (H4), we point out that this condition
allows forHi to have different types of growth in the different coordinate directions
(i.e., when either z1 = 0 or z2 = 0). For example, consider the continuous function
H : [0,+∞)× [0,+∞) → [0,+∞) defined by

(3.11) H (z1, z2) :=

{
(z1 + z2)

2 (
z21 +

√
z2
)
, 0 ≤ z1 + z2 ≤ 1,

z21 +
√
z2, z1 + z2 ≥ 1.

In the z1-coordinate direction, we find that H grows superlinearly as z1 + z2 →
+∞. On the other hand, in the z2-coordinate direction, we find that H grows
sublinearly as z1 + z2 → +∞. Finally, it holds that

(3.12) lim
z1+z2→0+

H (z1, z2)

z1 + z2
= 0 and lim

z1+z2→+∞
H (z1, z2)

z1 + z0.32

= +∞.

Remark 3.4. As remarked in Section 1, we believe that the conditions imposed
on Hi by condition (H4) may be changed in a manner similar to the argument
presented in [3]. But we leave such investigations for future work.

Now, let γ0 be the constant defined by

(3.13) γ0 := min {a, 1− b} ,

where γ0 ∈ (0, 1). Then the cone, K, we shall use in the sequel is then defined by
(3.14)

K :=

{
(x, y) ∈ X : x, y ≥ 0, min

t∈[a,b]
[x(t) + y(t)] ≥ γ0‖(x, y)‖, φ1(x), φ2(y) ≥ 0

}
,

which is a simple modification of a cone first introduced by Infante and Webb
[12]. Let us point out at this juncture that K does not contain only the neutral
element of X. Indeed, if we put, say, β1(t) := (t, 0), β2(t) := (0, t), and β3(t) :=
(β1 +β2)(t) = (t, t), then it is easy to see that β1,β2,β3 ∈ K so that K contains
infinitely many nontrivial elements of X.

In any case, with these preliminary observations, we now state and prove our
main result. We note, however, that in the statement of this theorem we assume
that p∞1 = p∞2 = 1. In other words, it is the numbers q∞1 , q∞2 that can be
potentially less than unity. We do this only for definiteness and ease of exposition
in the sequel.

Theorem 3.5. Assume that ξ10 , ξ
2
0 ∈ [a, b], where [a, b] is a fixed set satisfying

[a, b] ⋐ (0, 1) as in Section 2. Then there exists a number δ ∈ (0, 1) such that if
both q∞1 , q

∞
2 ∈ (1− δ, 1] and (H1)–(H7) hold, then problem (1.1) has at least one

positive solution.

Proof: To begin, as in (2.1) above, we consider the operator S : X → X defined
by

(3.15) S (x, y) (t) := (T1 (x, y) , T2 (x, y))
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where, for each i = 1, 2, we have that Ti : X → B is defined by

(3.16)

Ti(x, y) := tHi

(
φ1(x) + ε10x

(
ξi0
)
, φ2(y) + ε20y

(
ξi0
))

+

∫ 1

0

G(t, s)ai(s)gi (x(s), y(s)) ds.

We shall first argue that S : K → K. To this end, it is obvious that for (x, y) ∈ K,
it follows that Ti(x, y)(t) ≥ 0, for each t ∈ [0, 1] and i = 1, 2. We also note from
the definition of γ0 in (3.13) that

(3.17)

min
t∈[a,b]

Ti(x, y) ≥ γ0Hi

(
φ1(x) + ε10x

(
ξi0
)
, φ2(y) + ε20y

(
ξi0
))

+ γ max
t∈[0,1]

∫ 1

0

G(t, s)ai(s)gi(x(s), y(s)) ds

≥ γ0‖Ti (x, y) ‖.

We conclude that

(3.18) min
t∈[a,b]

[(T1(x, y)) (t) + (T2(x, y)) (t)] ≥ γ0‖S (x, y) ‖.

Finally, we observe that

(3.19)

φ1 (T1(x, y)) = H1

(
φ1(x) + ε10x

(
ξ10
)
, φ2(y) + ε20y

(
ξ10
)) ∫

[0,1]

t dα1(t)

+

∫

[0,1]

∫ 1

0

G(t, s)a1(s)g1(x(s), y(s)) ds dα1(t)

= H1

(
φ1(x) + ε10x

(
ξ10
)
, φ2(y) + ε20y

(
ξ10
)) ∫

[0,1]

t dα1(t)

+

∫ 1

0

[∫

[0,1]

G(t, s) dα1(t)

]
a1(s)g1 (x(s), y(s)) ds

≥ 0,

where the final inequality follows from assumption (H7). In a similar way, it
follows that φ2(T2(x, y)) ≥ 0. Thus, S : K → K, as claimed. Let us also point out
at this juncture that, by a standard argument involving the Arzela-Ascoli theorem
(recall here that Hi is assumed to be continuous, for each i = 1, 2), we find that
the operator S is completely continuous; we omit the details of this argument,
however.

Now, by condition (H5) we find that there is a number r1 > 0 such that

(3.20) g1(x, y) ≤ η1(x + y)
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whenever ‖(x, y)‖ ≤ r1 and where η1 > 0 satisfies

(3.21) η1 max

{∫ 1

0

G(s, s)a1(s) ds,

∫ 1

0

G(s, s)a2(s) ds

}
≤ 1

4
.

In addition, condition (H4) — i.e., equation (3.4) — implies the existence of a
number r∗1 > 0 such that, for each i = 1, 2,

(3.22)
Hi

(
φ1(x) + ε10x

(
ξi0
)
, φ2(y) + ε20y

(
ξi0
))

< η2
(
φ1(x) + ε10x

(
ξi0
)
+ φ2(y) + ε20y

(
ξi0
))

whenever

(3.23) φ1(x) + ε10x
(
ξi0
)
+ φ2(y) + ε20y

(
ξi0
)
< r∗1 ,

and where η2 > 0 is defined by

(3.24) η2 :=
1

8max {ε10, ε20, ε21, ε21}
.

Notice that

(3.25)

φ1(x) + ε10x
(
ξi0
)
+ φ2(y) + ε20y

(
ξi0
)

≤ ε11‖x‖+ ε21‖y‖+ ε10‖x‖+ ε20‖y‖
≤

[
max

{
ε11, ε

2
1

}
+max

{
ε10, ε

2
0

}]
‖(x, y)‖

≤ 2max
{
ε10, ε

2
0, ε

2
1, ε

2
1

}
‖(x, y)‖.

So, in particular, if (x, y) ∈ K satisfies

(3.26) ‖(x, y)‖ < r∗1
2max {ε10, ε20, ε21, ε21}

,

then it follows that (3.22) holds.
So, set

(3.27) r∗∗1 := min

{
r1,

r∗1
2max {ε10, ε20, ε21, ε21}

}
.

Put

(3.28) Ωr∗∗1
:= {(x, y) ∈ X : ‖(x, y)‖ < r∗∗1 } .
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Then for each (x, y) ∈ K ∩ ∂Ωr∗∗1
, we have that

(3.29)
‖T1(x, y)‖

≤ H1

(
φ1 (x) + ε10x

(
ξ10
)
, φ2 (y) + ε20y

(
ξ10
))

+

∫ 1

0

G(s, s)a1(s)g1(x(s), y(s)) ds

≤ η2
(
φ1 (x) + ε10x

(
ξ10
)
+ φ2 (y) + ε20y

(
ξ10
))

+ η1

∫ 1

0

G(s, s)a1(s)(x(s) + y(s)) ds

≤ η2
(
φ1 (x) + ε10x

(
ξ10
)
+ φ2 (y) + ε20y

(
ξ10
))

+
1

4
‖(x, y)‖

≤ 1

4
‖(x, y)‖+ 1

4
‖(x, y)‖

=
1

2
‖(x, y)‖.

Thus, we conclude that

(3.30) ‖T1(x, y)‖ ≤ 1

2
‖(x, y)‖,

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
. A similar argument holds for the operator T2.

Consequently, we deduce that

(3.31) ‖S(x, y)‖ ≤ ‖(x, y)‖,

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
.

On the other hand, let us assume without loss of generality that p∞i = 1 for
each i so that q∞i ∈ (0, 1], for each i. Then condition (H4) — i.e., equation (3.3)
— implies the existence of a number r∗2 := r∗2(η3) > 0 such that

(3.32)
H1

(
φ1 (x) + ε10x

(
ξ10
)
, φ2 (y) + ε20y

(
ξ10
))

≥ η3

([
φ1(x) + ε10x

(
ξ10
)]

+
[
φ2(y) + ε20y

(
ξ10
)]q∞1 )

whenever

(3.33) φ1(x) + ε10x
(
ξ10
)
+ φ2(y) + ε20y

(
ξ10
)
≥ r∗2

for some number r∗2 . Note that by picking r∗2 sufficiently large, the same type
of estimate likewise holds for H2; we assume henceforth that this is so. Here, in
(3.32), we choose η3 to be the number

(3.34) η3 :=
1

t0γ0 min {ε10, ε20, ε20}
,

where t0 ∈ (a, b) is fixed but arbitrary; since (a, b) ⋐ (0, 1), it holds that t0 6= 0,
and so, η3 > 0. Importantly, η3 depends neither on q∞1 nor on q∞2 . Now, notice
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that for (x, y) ∈ K since φ1(x), φ2(y) ≥ 0 and ξ10 ∈ E, we may estimate

(3.35)

φ1 (x) + ε10x
(
ξ10
)
+ φ2(y) + ε20y

(
ξ10
)
≥ min

{
ε10, ε

2
0

} [
x
(
ξ10
)
+ y

(
ξ10
)]

≥ min
{
ε10, ε

2
0

}
min
t∈[a,b]

[x(t) + y(t)]

≥ γ0 min
{
ε10, ε

2
0

}
‖(x, y)‖.

Consequently, if (x, y) satisfies

(3.36) ‖(x, y)‖ ≥ r∗2
γ0 min {ε10, ε20}

,

then (3.32) holds.
We next interrupt to prove an easy lemma. Suppose that x, y ≥ 0 with x, y ≤

M for some M ≥ 1 and finite. Let q satisfy 0 < q ≤ 1. Choose the constant c
such that

(3.37) c := min
{
1,M q−1

}
;

note that −1 < q − 1 ≤ 0. Obviously, c ∈ (0, 1] since M ≥ 1 and q− 1 ≤ 0. Then
it follows that

(3.38) x+ yq ≥ c(x+ y),

for all (x, y) ∈ [0,M ]× [0,M ]. Indeed, we merely notice that, for (x, y) ∈ [0,M ]×
[0,M ]

(3.39) cx ≤ x

and

(3.40) cy ≤ yq,

since y 7→ yq−1 is decreasing for y > 0, whereupon adding (3.39)–(3.40) we
estimate

(3.41) cx+ cy ≤ x+ yq,

which evidently proves inequality (3.38).
Now continuing with the proof, let us put

(3.42) r∗∗2 := max

{
1, 2r∗∗1 ,

r∗2
γ0 min {ε10, ε20}

}
,

which is independent of each of q∞1 and q∞2 . Define Ωr∗∗2
by

(3.43) Ωr∗∗2
:= {(x, y) ∈ X : ‖(x, y)‖ < r∗∗2 } .
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Using estimate (3.38), then, and the fact that

(3.44)

∫ 1

0

G (t0, s) a1(s)g1(x(s), y(s)) ds ≥ 0,

we deduce that for each (x, y) ∈ K ∩ ∂Ωr∗∗2

(3.45)

(T1(x, y)) (t0) = t0H1

(
φ1(x) + ε10x

(
ξ10
)
, φ2(y) + ε20y

(
ξ10
))

+

∫ 1

0

G (t0, s) a1(s)g1(x(s), y(s)) ds

≥ t0H1

(
φ1(x) + ε10x

(
ξ10
)
, φ2 (y) + ε20y

(
ξ10
))

≥ t0η3

([
φ1(x) + ε10x

(
ξ10
)]

+
[
φ2(y) + ε20y

(
ξ10
)]q∞1 )

≥ t0η3

[
ε10x

(
ξ10
)
+
(
ε20
)q∞1 [

y
(
ξ10
)]q∞1 ]

≥ t0η3

[
ε10x

(
ξ10
)
+ ε20

[
y
(
ξ10
)]q∞1 ]

≥ t0η3 min
{
ε10, ε

2
0

} [[
x
(
ξ10
)]

+
[
y
(
ξ10
)]q∞1 ]

≥ t0η3 min
{
ε10, ε

2
0

}
c1

[
x
(
ξ10
)
+ y

(
ξ10
)]

≥ t0η3 min
{
ε10, ε

2
0

}
γ0c1‖(x, y)‖

≥ c1‖(x, y)‖,

where we have used the lemma of the previous paragraph to get the third-to-last
inequality, and so, here c1 := min{1, (r∗∗2 )q

∞
1 −1}. We have also used both the fact

that ε20 ∈ [0, 12 ) and that q∞1 ∈ (0, 1] so that (ε20)
q∞1 ≥ ε20. In summary, it follows

that

(3.46) ‖T1(x, y)‖ ≥ c1‖(x, y)‖.

Likewise, for each (x, y) ∈ K ∩ ∂Ωr∗∗2
we deduce that for c2 := min{1, (r∗∗2 )q

∞
2 −1}

(3.47) ‖T2(x, y)‖ ≥ c2‖(x, y)‖.

We now conclude the argument by considering cases. If q∞1 = q∞2 = 1, then
from (3.37), it is obvious that c1 = c2 = 1. In this case we deduce from (3.46)–
(3.47) that

(3.48) ‖S(x, y)‖ ≥ 2‖(x, y)‖ > ‖(x, y)‖,

for each (x, y) ∈ K ∩ ∂Ωr∗∗2
. On the other hand, in case 0 < max {q∞1 , q∞2 } < 1,

then

(3.49) c1 := (r∗∗2 )
q∞1 −1

and c2 := (r∗∗2 )
q∞2 −1

.
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In order that c1 + c2 ≥ 1 be satisfied, at a minimum we must have that

(3.50) min
{
2

1
1−q∞

1 , 2
1

1−q∞
2

}
≥ r∗∗2 .

Evidently, since r∗∗2 is finite and (1 − q∞i )−1 → +∞ as q∞i → 1−, there exists
a δ > 0 sufficiently small such that for each q∞1 , q∞2 ∈ (1 − δ, 1] we have that
(3.50) holds. In this case, we again deduce that (3.48) holds with, say, the factor
2 replaced by 1. Importantly, we point out that r∗∗2 does not depend on q∞i for
either i. Consequently, we may, in inequality (3.50) above, freely increase q∞i , for
each i, without changing the previously selected and fixed value of r∗∗2 .

Finally, putting the preceding paragraphs together, we make two conclusions.
Firstly, if q∞1 = q∞2 = 1, then by Lemma 2.1 and inequality (3.48) we deduce the
existence of a function (x0, y0) ∈ K such that S(x0, y0) = (x0, y0), where x0(t),
y0(t) forms a positive solution of problem (1.1). Secondly, if q∞1 , q∞2 ≤ 1, then
there exists a δ > 0 sufficiently small such that if q∞1 , q∞2 ∈ (1−δ, 1], then problem
(1.1) still has at least one positive solution. And as these cases are exhaustive
this completes the proof. �

We now prove a second result that demonstrates an alternative approach to
problem (1.1). In particular, we begin by introducing the following condition.

H8: For each i = 1, 2, there is a constant ρi > 0 such that

(3.51) lim sup
z1+z2→0+

Hi (z1, z2)

z1 + z2
< ρi

holds, where ρi ∈ [0, 1
2max{ε11,ε21}

).

On the one hand, condition (H8) is certainly more general than condition (H4).
For instance, the continuous function H : [0,+∞) × [0,+∞) → [0,+∞) defined
by

(3.52) H (z1, z2) :=

{
(z1 + z2) cos

(
1

z1+z2

)
, z1 + z2 6= 0

0, z1 = z2 = 0

satisfies

(3.53) lim sup
z1+z2→0+

H (z1, z2)

z1 + z2
= 1

but limz1+z2→0+
H(z1,z2)
z1+z2

does not exist. On the other hand, in order to prove the
next result, we shall have to impose growth conditions on the nonlinearities g1
and g2 at infinity. Thus, we introduce condition (H9) below.

H9: We find that

(3.54) lim
x+y→+∞

g1(x, y)

x+ y
= +∞ and lim

x+y→+∞
g2(x, y)

x+ y
= +∞.
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With condition (H8) and (H9) in hand we state and prove the following theo-
rem. We first give two preliminary remarks.

Remark 3.6. We note that condition (H8) is more closely related to certain of
the conditions given by Yang [16], [17], to which was alluded in Section 1. In
particular, however, we note that unlike the results Yang gives, which admittedly
were for a slightly different problem than (1.1), we do not require complicated
conditions on the nonlinearities g1 and g2. Indeed, conditions (H5) and (H9) are
quite straightforward and standard. Moreover, the measures here are signed. So,
we consider these observations to be both interesting and noteworthy.

Remark 3.7. We also note, as will become clear in the statement and proof of
Theorem 3.8 in the sequel, that with this particular assumption — namely (H8)
— we may dispense with the perturbation terms appearing in (1.1). In particular
and importantly, then, we may set ε10 = ε20 = 0.

Theorem 3.8. Suppose that conditions (H1)–(H3) and (H5)–(H9) hold. In ad-
dition, suppose that ε10 = ε20 = 0. Then the unperturbed problem (1.1) has at
least one positive solution.

Proof: Due to the assumptions given in the statement of this theorem, it is still
the case that T : K → K and that T is a completely continuous operator. So, we
proceed directly to the cone theoretic part of the argument.

To this end, let ρi <
1

2max{ε11,ε21}
be given, for each i = 1, 2. Evidently, we may

select k ∈ N sufficiently large such that

(3.55) 0 ≤ ρi <
2k − 1

2k+1 max {ε11, ε21}
<

1

2max {ε11, ε21}

holds for each i. Moreover, for each i, select the number ηi > 0 such that

(3.56) ηi

∫ 1

0

G(s, s)ai(s) ds ≤
1

2k+1

holds. Condition (H5) implies the existence of a number r1 > 0 such that
gi(x, y) ≤ ηi(x+ y) for all 0 ≤ x+ y < r1 and for each i. On the other hand, from
condition (H8), we may select a number 0 < ε < min{ρ1, ρ2} sufficient small such
that

(3.57) Hi (z1, z2) < (ρi − ε) (z1 + z2)

holds whenever 0 ≤ z1 + z2 < r∗1 for some number r∗1 > 0, for each i = 1, 2. In
addition, since (3.55) holds, for each i, it evidently holds that

(3.58) 0 < ρi − ε <
2k − 1

2k+1 max {ε11, ε21}
.
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Now, condition (H3) implies that

(3.59) φ1(x) ≤ ε11‖x‖ and that φ2(y) ≤ ε21‖y‖.

Consequently, for each (x, y) ∈ K satisfying

(3.60) 0 ≤ ‖(x, y)‖ < min {r1, r∗1} ,

it follows that

(3.61)
φ1(x) ≤ ε11‖x‖ ≤ ε11‖(x, y)‖ <

1

2
r∗1 and that

φ2(y) ≤ ε21‖y‖ ≤ ε21‖(x, y)‖ <
1

2
r∗1 .

Now, select r∗∗1 > 0 such that

(3.62) r∗∗1 < min {r1, r∗1}

and put Ωr∗∗1
:= {(x, y) ∈ K : ‖(x, y)‖ < r∗∗1 }. Then upon combining (3.59)–

(3.62), we may estimate

(3.63) Hi (φ1(x), φ2(y)) < (ρi − ε) (φ1(x) + φ2(y)) ,

for each (x, y) ∈ K ∩ ∂Ωr∗∗1
and i = 1, 2. So, combining all of these estimates, we

deduce that

(3.64)

‖T1(x, y)‖ ≤ H1 (φ1(x), φ2(y)) +

∫ 1

0

G(s, s)a1(s)g1(x(s), y(s)) ds

≤ (ρ1 − ε) (φ1(x) + φ2(y)) +
1

2k+1
‖(x, y)‖

≤ 2k − 1

2k+1 max {ε11, ε21}
(
ε11‖x‖+ ε21‖y‖

)
+

1

2k+1
‖(x, y)‖

≤ 2k − 1

2k+1 max {ε11, ε21}
max

{
ε11, ε

2
1

}
(‖x‖+ ‖y‖) + 1

2k+1
‖(x, y)‖

=
2k − 1

2k+1 max {ε11, ε21}
max

{
ε11, ε

2
1

}
‖(x, y)‖+ 1

2k+1
‖(x, y)‖

=
1

2
‖(x, y)‖.

Similarly, we deduce that

(3.65) ‖T2(x, y)‖ ≤ 1

2
‖(x, y)‖

whence

(3.66) ‖S(x, y)‖ ≤ ‖(x, y)‖,
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for each (x, y) ∈ K ∩ ∂Ωr∗∗1
.

On the other hand, select the number η3 > 0 to satisfy

(3.67) η3 max

{∫

[a,b]

γ20G(s, s)a1(s) ds,

∫

[a,b]

γ20G(s, s)a2(s) ds

}
≥ 1

2
.

Then by condition (H9), we have that

(3.68) gi(x, y) ≥ η3(x+ y),

for all x+ y ≥ r2 and for each i = 1, 2. Put

(3.69) r∗2 := max

{
r2
γ0
, 2r∗∗1

}
.

Then since H1(z1, z2) ≥ 0, for all (z1, z2) ∈ [0,+∞)× [0,+∞), we deduce that

(3.70)

min
t∈[a,b]

(T1(x, y)) (t) ≥ η3

∫

[a,b]

γ0G(s, s)a1(s)[x(s) + y(s)] ds

≥ ‖(x, y)‖η3
∫

[a,b]

γ20G(s, s)a1(s) ds

≥ 1

2
‖(x, y)‖,

whence

(3.71) ‖T1(x, y)‖ ≥ 1

2
‖(x, y)‖,

for each (x, y) ∈ K ∩ ∂Ωr∗2 . Similarly,

(3.72) ‖T2(x, y)‖ ≥ 1

2
‖(x, y)‖,

so that ‖S(x, y)‖ ≥ ‖(x, y)‖, for (x, y) ∈ K ∩ ∂Ωr∗2 . Consequently, we may invoke
Lemma 2.1 to deduce the existence of at least one positive solution to prob-
lem (1.1). �

We conclude with an explicit numerical example together with some final re-
marks.
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Example 3.9. Consider the boundary value problem

(3.73)

−x′′(t) = (2t+ 1)g1(x(t), y(t)),

−y′′(t) = e−3t+1g2(x(t), y(t)),

x(0) = H1

(
φ1(x) +

1

40
x

(
1

2

)
, φ2(y) +

1

300
y

(
2

5

))
,

y(0) = H2

(
φ1(x) +

1

40
x

(
1

2

)
, φ2(y) +

1

300
y

(
2

5

))
,

x(1) = 0 = y(1),

where we make the following declarations:
(3.74)

H1 (z1, z2) := (z1 + z2)
3
,

H2 (z1, z2) := z1.11 ez1 + z22e
z2 ,

φ1(x) :=
1

8
x

(
1

3

)
− 1

40
x

(
1

2

)
− 1

12
x

(
3

5

)
+

1

2

∫

[ 1320 ,
3
4 ]
x(s) ds,

φ2(y) := − 1

300
y

(
2

5

)
+

1

15
y

(
9

20

)
− 1

100
y

(
11

20

)
+

1

10

∫

[ 35 ,
7
10 ]
y(s) ds,

g1(x, y) :=

{
(x+ y)2, x+ y ≤ 1,√
x+ y, x+ y ≥ 1,

g2(x, y) := (x+ y)3.

Interestingly, note that g1 is sublinear as x+ y → +∞, whereas g2 is superlinear.
Furthermore, let us observe at this juncture that on account of the definitions
of φ1 and φ2 given in (3.74), we may recast the boundary conditions at t = 0
in (3.73) in the somewhat simpler form

(3.75)
x(0) = H1 (ψ1(x), ψ2(y)) = [ψ1(x) + ψ2(y)]

3
,

y(0) = H2 (ψ1(x), ψ2(y)) = (ψ1(x))
1.1 eψ1(x) + (ψ2(y))

2 eψ2(y),

where we have put ψ1(x) := φ1(x) +
1
40x(

1
2 ) and ψ2(y) := φ2(y) +

1
300y(

2
5 ).

Incidentally, though we do not show this explicitly, let us also remark that it is
easy to show that the Stieltjes measures µα1 and µα2 are signed for this problem.

It is now easy to check that each of conditions (H1)–(H7) is satisfied. In
particular, note that we may select ε11 := 17

60 , ε
2
1 := 9

100 , ε
1
0 := 1

40 , and ε
2
0 := 1

300 .

Moreover, we note that
∫
[0,1]

t dα1(t) =
17

1200 ≥ 0 and that
∫
[0,1]

t dα2(t) =
89

3000 ≥
0. In any case, we conclude that we may invoke Theorem 3.5 to deduce that
problem (3.73) has at least one positive solution. Likewise, problem (3.75) has at
least one positive solution, too.
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Remark 3.10. We note that problem (3.73) could not be addressed by any existing
results. This is true for a variety of reasons, among which are the following:
problem (3.73) involves a system of equations; it imposes no growth conditions
on g1 and g2 for (x, y) large in norm; it allows for each of H1 and H2 to have
superlinear growth as x + y → +∞; and it allows for each of φ1 and φ2 to
be have associated signed Borel measures. In short, we are not aware that any
results in the existing literature can be applied to problem (3.73). And this is the
advantage of the asymptotic conditions (H4) and (H8), which we have introduced
in this work.

Remark 3.11. Observe that Example 3.9 demonstrates that it is not necessary for
the function H2(z1, z2) to be able to be realized in the form

(3.76) H2 (z1, z2) = H̃ (z1 + z2) ,

for some function H̃ . Indeed, while such a decomposition is an easy way in
which to satisfy condition (H4), the function H2(z1, z2) = z1.11 ez1 +z22e

z2 in (3.74)
cannot be realized in this simpler form. Of course, the functions H1, g1, and g2
need not be able to be realized as a function of z1 + z2 either. The point is that
condition (H4) can still be satisfied in spite of this. In fact, for example, to ensure
that (3.3) in condition (H4) is satisfied, it is enough, for instance, that

(3.77) Hi (z1, z2) ≥ (z1 + z2)
α

holds for z1 + z2 sufficiently large and for some α > 1. Evidently, (3.77) does not

require that Hi satisfy (3.76) for some H̃ . Furthermore, note that an additional
example of this sort was provided in both (3.10)1 and (3.11).

Remark 3.12. We have elected not to give an example of Theorem 3.8 since its
application would proceed in a very similar manner to Example 3.9. Nonetheless,
we emphasize that in the case of Theorem 3.8, we may take the perturbation
terms in (1.1) equal to zero and, hence, in this case we are recovering solutions to
the unperturbed (i.e., ε10 = ε20 = 0) problem (1.1).

Acknowledgments. The author would like to thank the anonymous referee for
his or her careful reading of this paper. The referee’s comments and questions
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