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On noncompact perturbation

of nonconvex sweeping process

Myelkebir Aitalioubrahim

Abstract. We prove a theorem on the existence of solutions of a first order func-
tional differential inclusion governed by a class of nonconvex sweeping process
with a noncompact perturbation.

Keywords: nonconvex sweeping process, functional differential inclusion, uni-
formly ρ-prox-regular sets

Classification: 34A60, 34B15, 47H10

1. Introduction

The aim of this paper is to prove the existence of solutions of the following
nonconvex differential inclusions





ẋ(t) ∈ −Np
C(t)(x(t)) + F (t, T (t)x) a.e on [0, τ ];

x(t) = ϕ(t) ∀t ∈ [−a, 0];
x(t) ∈ C(t) ∀t ∈ [0, τ ],

(1.1)

where C is a nonconvex set-valued mapping, Np
C(t)(x(t)) denotes a prescribed

normal cone to the set C(t) at x(t), F is a set-valued mapping with nonconvex
and noncompact values, and ϕ is a continuous function.

The evolution problem (1.1) is generally called the sweeping process. It has
been introduced and studied by Moreau (without memory), in the setting where
all sets C(t) are assumed to be convex (see for example [9]). Note that, the
sweeping process is related to the modelization of elasto-plastic materials (see for
example [10] and [11]).

The differential inclusions (1.1), with C(t) convex or the complement of the
interior of a convex set, have been considered by several authors (see [4], [13] and
the references therein). Recently, using important properties of uniformly ρ-prox-
regular sets developed in [2] and [12], the existence of solutions of the sweeping
process with convex or nonconvex perturbation is established (see for example [6]
and [8]). Remark that, in all the cited papers, the compactness assumption on
the perturbation is widely used.

In this paper, our main purpose is to obtain the existence of solutions of (1.1),
in the case when C(t) is uniformly ρ-prox-regular and the perturbation F (·, ·) is
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nonconvex, noncompact, integrably bounded, measurable with respect to the first
argument and Lipschitz continuous with respect to the second argument.

2. Preliminaries and statement of the main result

Let H be a real separable Hilbert space with the norm ‖·‖ and the scalar prod-
uct 〈·, ·〉. For I a segment in R, we denote by C(I,H) the Banach space of continu-
ous functions from I to H equipped with the norm ‖x(·)‖∞ := sup{‖x(t)‖; t ∈ I}.
For a a positive number, we put Ca := C([−a, 0], H) and for any t ∈ [0, T ], T > 0,
we define the operator T (t) from C([−a, T ], H) to Ca with (T (t)(x(·)))(s) :=
(T (t)x)(s) := x(t + s), s ∈ [−a, 0]. For x ∈ H and r > 0 let B(x, r) := {y ∈
H ; ‖y − x‖ < r} be the open ball centered at x with radius r and B(x, r) be
its closure and put B = B(0, 1). For ϕ ∈ Ca and r > 0 let Ba(ϕ, r) := {ψ ∈
Ca; ‖ψ − ϕ‖∞ < r} be the open ball centered at ϕ with radius r and Ba(ϕ, r) be
its closure. For x ∈ H and for nonempty subsets A,B of H we denote dA(x)
or d(x,A) the real inf{‖y − x‖; y ∈ A}, e(A,B) := sup{dB(x);x ∈ A} and
H(A,B) = max{e(A,B), e(B,A)}. For measurability purpose, H (resp. Ω ⊂ H)
is endowed with the σ-algebra B(H) (resp. B(Ω)) of Borel subsets for the strong
topology and the segment I is endowed with Lebesgue measure and the σ-algebra
of Lebesgue measurable subsets. A multifunction is said to be measurable if its
graph is measurable. For more details on measurability theory, we refer the reader
to book of Castaing-Valadier [3].

We need first to recall some notations and definitions that will be used in all
the paper.

Let V : H → R∪{+∞} be a lower semicontinuous function and x be any point
where V is finite. The proximal subdifferential ∂pV (x) of V at x is the set of all
y ∈ H , for which there exist δ, σ > 0 such that for all x′ ∈ x+ δB

〈y, x′ − x〉 ≤ V (x′)− V (x) + σ‖x′ − x‖2.

Let S be a nonempty closed subset of H and x be a point in S. We recall
(see [5]) that the proximal normal cone of S at x is defined by Np

S(x) := ∂pψS(x),
where ψS(·) denotes the indicator function of S, i.e., ψS(x) = 0 if x ∈ S and +∞
otherwise.

Recall now that for a given ρ ∈]0,+∞], a subset S is uniformly ρ-prox-regular
(see [12]), or equivalently ρ-proximally smooth (see [5]), if and only if every
nonzero proximal normal to S can be realized by a ρ-ball, this means that for
all x̄ ∈ S and all ξ ∈ Np

S(x̄) \ {0} one has

〈
ξ

‖ξ‖ , x− x̄

〉
≤ 1

2ρ
‖x− x̄‖2

for all x ∈ S. We make the convention 1
ρ = 0 for ρ = +∞. Recall that for

ρ = +∞ the uniform ρ-prox-regularity of S is equivalent to the convexity of S.
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The following propositions summarize some important consequences of uniform
prox-regularity needed in the sequel.

Proposition 2.1 ([12]). Let S be a nonempty closed subset in H and x ∈ S.
The following assertions hold.

(i) ∂pd(x, S) = Np
S(x) ∩B.

(ii) Let ρ ∈]0,+∞]. If S is uniformly ρ-prox-regular, then for all x ∈ H
with d(x, S) < ρ one has ProjS(x) 6= ∅ and ∂Pd(x, S) = ∂Cd(x, S), where
∂Cd(x, S) is the Clarke subdifferential of d(·, S) at x. So, in such a case,
the subdifferential ∂d(x, S) := ∂Pd(x, S) = ∂Cd(x, S) is a closed convex
set in H .

(iii) If S is uniformly ρ-prox-regular, then for all xi ∈ S and all vi ∈ Np
S(xi)

with ‖vi‖ ≤ ρ (i = 1, 2) one has

〈v1 − v2, x1 − x2〉 ≥ −‖x1 − x2‖2.

As a consequence of (iii) we get that for uniformly ρ-prox-regular sets, the
proximal normal cone to S coincides with all the normal cones contained in the
Clarke normal cone at all points x ∈ S, i.e., NP

S (x) = NC
S (x). In such a case, we

put NS(x) := NP
S (x) = NC

S (x).

Proposition 2.2 ([2]). Let ρ ∈]0,+∞] and Ω be an open subset in H and let
C : Ω → 2H be a Hausdorff-continuous set-valued mapping. Assume that C has
uniformly ρ-prox-regular values. Then, the set-valued mapping given by (z, x) →
∂dC(z)(x) from Ω ×H (endowed with the strong topology) to H (endowed with
the weak topology) is upper semicontinuous, which is equivalent to the upper
semicontinuity of the function (z, x) → σ(∂dC(z)(x), p) for any p ∈ H . Here
σ(S, p) denotes the support function associated with S, i.e., σ(S, p) = sups∈S〈s, p〉.

Let us recall the following lemmas that will be used in the sequel.

Lemma 2.3 ([15]). Let Ω be a nonempty set in H . Assume that F : [a, b]×Ω →
2H is a multifunction with nonempty closed values satisfying:

• for every x ∈ Ω, F (·, x) is measurable on [a, b];

• for every t ∈ [a, b], F (t, ·) is (Hausdorff) continuous on Ω.

Then for any measurable function x(·) : [a, b] → Ω, the multifunction F (·, x(·)) is
measurable on [a, b].

Lemma 2.4 ([15]). Let G : [a, b] → 2H be a measurable multifunction and
y(·) : [a, b] → H a measurable function. Then for any positive measurable function
r(·) : [a, b] → R+, there exists a measurable selection g(·) of G such that for almost
all t ∈ [a, b]

‖g(t)− y(t)‖ ≤ d
(
y(t), G(t)

)
+ r(t).

Assume that the following hypotheses hold:

(H1) C : [0, b] → 2H is a set-valued map with nonempty compact values satis-
fying
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(a) for each t ∈ [0, b], C(t) is ρ-prox-regular for some fixed ρ ∈]0,+∞];
(b) there exists an absolutely continuous function v : [0, b] → R such

that
∣∣∣d(x,C(t)) − d(x,C(s))

∣∣∣ ≤ |v(t)− v(s)|

for all x ∈ H and s, t ∈ [0, b];

(H2) F : [0, b] × Ca → 2H is a set-valued map with nonempty closed values
satisfying
(i) for each ψ ∈ Ca, t 7→ F (t, ψ) is measurable;
(ii) there is a function m(·) ∈ L1([0, b],R+) such that for all t ∈ [0, b] and

for all ψ1, ψ2 ∈ Ca

H
(
F (t, ψ1), F (t, ψ2)

)
≤ m(t)‖ψ1 − ψ2‖∞;

(iii) for all bounded subset S of Ca, there exist two functions gS(·), pS(·) ∈
L1([0, b],R+) such that for all t ∈ [0, b] and for all ψ ∈ S

‖F (t, ψ)‖ := sup
y∈F (t,ψ)

‖y‖ ≤ gS(t) + pS(t)‖ψ‖∞.

We established the following result:

Theorem 2.5. If assumptions (H1) and (H2) are satisfied, then for all ϕ ∈ Ca
such that ϕ(0) ∈ C(0), there exist T > 0, r > 0, and a continuous function
x(·) : [−a, T ] → H , that is absolutely continuous on [−a, T ] such that x(·) is
solution of





ẋ(t) ∈ −NC(t)(x(t)) + F (t, T (t)x) a.e on [0,T];
x(t) = ϕ(t) ∀t ∈ [−a, 0];
x(t) ∈ C(t) ∀t ∈ [0, T ],

and satisfies

‖ẋ(t)‖ ≤ |v̇(t)|+ g(t) + p(t)(‖ϕ‖∞ + r), for almost all t ∈ [0, T ].

3. Proof of the main result

Fix ϕ ∈ Ca such that ϕ(0) ∈ C(0). Let r > 0 and g(·), p(·) ∈ L1([0, b],R+) be
such that

(3.1) ‖F (t, ψ)‖ ≤ g(t) + p(t)‖ψ‖∞ ∀(t, ψ) ∈ [0, b]×Ba(ϕ, r).

Let T1 > 0 be such that

(3.2)

∫ T1

0

(
2g(t) + 2p(t)(‖ϕ‖∞ + r) + |v̇(t)|

)
dt < inf

{r
2
,
ρ

2

}
.
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The idea of such T1 has been used in [7]. For ε > 0 set
(3.3)

η(ε) = sup

{
γ ∈]0, ε] :

∣∣∣∣∣
∫ t2
t1

(
|v̇(s)|+ 2g(s) + 2p(s)(‖ϕ‖∞ + r)

)
ds

∣∣∣∣∣ < ε,

and ‖ϕ(t1)− ϕ(t2)‖ < ε if |t1 − t2| < γ

}
.

Put

(3.4) T = min
{
T1,

1

2
η(
r

2
), b
}
.

We will used the following lemma to prove the main result.

Lemma 3.1. If assumptions (H1) and (H2) are satisfied, then for all n ∈ N∗ and
for all y(·) ∈ L1([0, T ], H), there exist a continuous mapping xn(·) : [−a, T ] → H ,
a step functions θn(·), θ̄n(·) : [0, T ] → [0, T ] and fn(·) ∈ L1([0, T ], H) such that

• fn(t) ∈ F (t, T (θn(t))xn), xn(θ̄n(t)) ∈ C(θ̄n(t)), for all t ∈ [0, T ];

• ‖fn(t)− y(t)‖ ≤ d(y(t), F (t, T (θn(t))xn)) +
1
n for all t ∈ [0, T ];

•
(
ẋn(t)− fn(t)

)
∈ −N

(
C(θ̄n(t)), xn(θ̄n(t))

)
for almost all t ∈ [0, T ];

• ‖ẋn(t)−fn(t)‖ ≤ |v̇(t)|+g(t)+p(t)(r+‖ϕ‖∞) for almost every t ∈ [0, T ].

Proof: Fix n ∈ N∗ and let y(·) : [0, T ] → H be a measurable function. Consider
a sequence (Pn)n of subdivisions of [0, T ]:

Pn =
{
0 = tn0 < tn1 < · · · < tni < · · · < tn2n = T

}

where tni = i T2n , 0 < i < 2n. Let us define a sequence (xn)n of approximate
solutions as follows. Set xn(s) = ϕ(s) for all s ∈ [−a, 0]. Put xn0 = ϕ(0) ∈ C(tn0 ).
In view of Lemma 2.4, there exists a function fn0 ∈ L1([0, tn1 ], H) such that fn0 (t) ∈
F (t, T (0)xn) and

‖fn0 (t)− y(t)‖ ≤ d
(
y(t), F (t, T (0)xn)

)
+

1

n

for all t ∈ [0, tn1 ]. By (H1), (3.1) and (3.2), we have

dC(tn1 )

(
xn0 +

∫ tn1

tn0

fn0 (s) ds

)
≤ dC(tn0 )

(
xn0 +

∫ tn1

tn0

fn0 (s) ds

)
+ |v(tn1 )− v(tn0 )|

≤
∫ tn1

tn0

‖fn0 (s)‖ ds+
∫ tn1

tn0

|v̇(s)| ds
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≤
∫ tn1

tn0

(
g(s) + p(s)‖ϕ‖∞ + |v̇(s)|

)
ds

≤ ρ

2
.

As C has uniformly ρ-prox-regular values, by Proposition 2.1, we have

ProjC(tn1 )

(
xn0 +

∫ tn1

tn0

fn0 (s) ds

)
6= ∅.

Then, one can choose a point xn1 in

ProjC(tn1 )

(
xn0 +

∫ tn1

tn0

fn0 (s) ds

)
.

Note that xn1 ∈ C(tn1 ) and

∥∥∥∥∥x
n
1 −

(
xn0 +

∫ tn1

tn0

fn0 (s) ds

)∥∥∥∥∥ = dC(tn1 )

(
xn0 +

∫ tn1

tn0

fn0 (s) ds

)

≤
∫ tn1

tn0

(
g(s) + p(s)‖ϕ‖∞ + |v̇(s)|

)
ds.

Remark that

‖xn1 − ϕ(0)‖ ≤
∥∥∥∥∥x

n
1 −

(
xn0 +

∫ tn1

tn0

fn0 (s) ds

)∥∥∥∥∥+
∫ tn1

tn0

‖fn0 (s)‖ ds

≤
∫ tn1

tn0

(
2g(s) + 2p(s)‖ϕ‖∞ + |v̇(s)|

)
ds

≤ r

2
.

Then xn1 ∈ B(ϕ(0), r). Now, set

xn(t) = xn0 +
α(t) − α(tn0 )

α(tn1 )− α(tn0 )

(
xn1 − xn0 −

∫ tn1

tn0

fn0 (s) ds

)
+

∫ t

tn0

fn0 (s) ds

for all t ∈ [tn0 , t
n
1 ], where

α(t) =

∫ t

0

(
|v̇(s)|+ g(s) + p(s)(r + ‖ϕ‖∞)

)
ds, ∀t ∈ [0, T ].
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So for all t ∈ [tn0 , t
n
1 ]

‖xn(t)− ϕ(0)‖ ≤ α(t)− α(tn0 )

α(tn1 )− α(tn0 )

∥∥∥∥∥x
n
1 − xn0 −

∫ tn1

tn0

fn0 (s) ds

∥∥∥∥∥+
∫ t

tn0

‖fn0 (s)‖ ds

≤ α(t) − α(tn0 ) +

∫ t

tn0

g(s) + p(t)‖ϕ‖∞ ds

≤
∫ t

tn0

(
|v̇(s)|+ 2g(s) + 2p(s)(r + ‖ϕ‖∞)

)
ds

≤ r

2

which is equivalent to xn(t) ∈ B(ϕ(0), r2 ) for all t ∈ [tn0 , t
n
1 ]. Now, we have

to estimate ‖(T (tn1 )xn)(s) − ϕ(s)‖ for each s ∈ [−a, 0]. If −tn1 ≤ s ≤ 0, then
tn1 + s ∈ [0, tn1 ]. Thus, by the fact that |s| ≤ tn1 ≤ T < η( r2 ), we have

‖(T (tn1 )xn)(s) − ϕ(s)‖ = ‖xn(tn1 + s)− ϕ(s)‖
≤ ‖xn(tn1 + s)− ϕ(0)‖ + ‖ϕ(s)− ϕ(0)‖
≤ r.

If −a ≤ s ≤ −tn1 , then tn1 + s ∈ [−a, 0] and

‖(T (tn1 )xn)(s)− ϕ(s)‖ = ‖ϕ(tn1 + s)− ϕ(s)‖
≤ r.

Therefore, T (tn1 )xn ∈ Ba(ϕ(·), r).
We reiterate this process for constructing sequences (fni (·))i, (xni )i satisfying,

for all 0 ≤ i ≤ 2n − 1 and for all t ∈ [tni , t
n
i+1], the following assertions:

(3.5) fni (t) ∈ F (t, T (tni )xn), x
n
0 ∈ C(tn0 ), x

n
i+1 ∈ C(tni+1) ∩B(ϕ(0), r),

(3.6) xn(t) ∈ B(ϕ(0), r), T (tni )xn ∈ Ba(ϕ(·), r),

(3.7) ‖fni (t)− y(t)‖ ≤ d
(
y(t), F (t, T (tni )xn)

)
+

1

n
,

(3.8) xni+1 ∈ ProjC(tni+1)

(
xni +

∫ tni+1

tni

fni (s) ds

)
,

(3.9)

∥∥∥∥∥x
n
i+1−

(
xni +

∫ tni+1

tni

fni (s) ds

)∥∥∥∥∥ ≤
∫ tni+1

tni

(
|v̇(s)|+g(s)+p(s)(r+‖ϕ‖∞)

)
ds,
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(3.10) xn(t) = xni +
α(t)− α(tni )

α(tni+1)− α(tni )

(
xni+1−xni −

∫ tni+1

tni

fni (s) ds

)
+

∫ t

tni

fni (s) ds.

Now, we define the functions θn(·), θ̄n(·) : [0, T ]→ [0, T ] and fn(·)∈L1([0, T ], H)
by setting for all t ∈ [tni , t

n
i+1[

θ̄n(t) = tni+1, θ̄n(T ) = T, fn(t) = fni (t),

and for all t ∈]tni , tni+1]

θn(t) = tni , θn(0) = 0.

We claim that xn(·) is absolutely continuous. Indeed, for all 0 ≤ i ≤ 2n − 1 and
for all t and s in [tni , t

n
i+1], s < t, one has

xn(t)− xn(s) =
α(t)− α(s)

α(tni+1)− α(tni )

(
xni+1 − xni −

∫ tni+1

tni

fni (s) ds

)
+

∫ t

s

fni (s) ds.

Then, by (3.1) and (3.9) we get

‖xn(t)− xn(s)‖ =
α(t)− α(s)

α(tni+1)− α(tni )

∥∥∥∥∥x
n
i+1 − xni −

∫ tni+1

tni

fni (s) ds

∥∥∥∥∥

+

∫ t

s

(
g(τ) + p(τ)(‖ϕ‖∞ + r)

)
dτ

≤ α(t)− α(s) +

∫ t

s

(
g(τ) + p(τ)(‖ϕ‖∞ + r)

)
dτ.

Hence

‖xn(t)− xn(s)‖ ≤
∫ t

s

|v̇(τ)| + 2g(τ) + 2p(τ)(r + ‖ϕ‖∞) dτ.(3.11)

By addition this last inequality holds for all s, t ∈ [0, T ] with s < t. Hence xn(·)
is absolutely continuous. Remark that for all 0 ≤ i ≤ 2n− 1 and for almost every
t in [tni , t

n
i+1],

(3.12) ẋn(t) =
α̇(t)

α(tni+1)− α(tni )

(
xni+1 − xni −

∫ tni+1

tni

fni (s) ds

)
+ fn(t).

Then, by (3.9) we obtain for almost every t ∈ [0, T ]

‖ẋn(t)− fn(t)‖ ≤ |v̇(t)|+ g(t) + p(t)(‖ϕ‖∞ + r).

Observe that by construction, we have fn(t) ∈ F (t, T (θn(t))xn) and

‖fn(t)− y(t)‖ ≤ d
(
y(t), F (t, T (θn(t))xn)

)
+

1

n
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for all t ∈ [0, T ]. Also, by construction and the relation (3.8), we have for almost
every t ∈ [0, T ]

(
ẋn(t)− fn(t)

)
∈ −N

(
C(θ̄n(t)), xn(θ̄n(t))

)
.

Then the proof is complete. �

Proof of the Theorem. In view of Lemma 3.1, we can define inductively
sequences (fn(·))n≥1 ⊂ L1([0, T ], H), (xn(·))n≥1 ⊂ C([−a, T ], H) and
(θn(·))n≥1, (θ̄n(·))n≥1 ⊂ S([0, T ], [0, T ]); where S([0, T ], [0, T ]) denotes the space
of step functions from [0, T ] into [0, T ]; such that

(1) fn(t) ∈ F (t, T (θn(t))xn), xn(θ̄n(t)) ∈ C(θ̄n(t)), for all t ∈ [0, T ];

(2) ‖fn+1(t)−fn(t)‖ ≤ d(fn(t), F (t, T (θn+1(t))xn+1))+
1

n+1 for all t ∈ [0, T ];

(3) (ẋn(t)− fn(t)) ∈ −N(C(θ̄n(t)), xn(θ̄n(t))) for almost all t ∈ [0, T ];

(4) ‖ẋn(t)−fn(t)‖ ≤ |v̇(t)|+g(t)+p(t)(‖ϕ‖∞+ r) for almost every t ∈ [0, T ].

For all t ∈ [0, T ], there exists 0 ≤ i ≤ 2n − 1 such that t ∈ [tni , t
n
i+1]. By (H1) and

(3.11), we have

d(xn(t), C(t)) ≤ ‖xn(t)− xn(t
n
i )‖ + d(xn(t

n
i ), C(t))

≤
∫ t

tni

(
|v̇(s)|+ 2g(s) + 2p(s)(‖ϕ‖∞ + r)

)
ds+ |v(t) − v(tni )|.

The right term of the above inequality converges to 0 if n → +∞. This and the
compactness of C(t) ensure that the set {xn(t), n ≥ 1} is relatively compact in H .
Moreover, from (4) we deduce

‖ẋn(t)‖ ≤ |v̇(t)|+ 2g(t) + 2p(t)(‖ϕ‖∞ + r)

for almost every t ∈ [0, T ]. Then, by Arzela-Ascoli’s theorem (see [1]), we can
select a subsequence, again denoted by (xn(·))n which converges uniformly to an
absolutely continuous function x(·) on [0, T ], moreover ẋn(·) converges weakly to
ẋ(·) in L1([0, T ], H). Also, since all functions xn(·) agree with ϕ(·) on [−a, 0], we
can obviously say that xn(·) converges uniformly to x(·) on [−a, T ], if we extend
x(·) in such a way that x(·) ≡ ϕ(·) on [−a, 0]. Additionally, observe that xn(θ̄n(t))
converges uniformly to x(t) on [0, T ]. Indeed, by (3.11) for all t ∈ [0, T ], we have

‖xn(θ̄n(t)) − x(t)‖ ≤ ‖xn(θ̄n(t)) − xn(t)‖ + ‖xn(t)− x(t)‖

≤
∫ θ̄n(t)

t

(
|v̇(s)|+ 2g(s) + 2p(s)(r + ‖ϕ‖∞)

)
ds

+ ‖xn(t)− x(t)‖.

The right term of the above inequality converges to 0, it follows xn(θ̄n(·)) con-
verges uniformly to x(·) on [0, T ]. Therefore, as d(xn(t), C(t)) converges to 0 on
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[0, T ], we conclude that x(t) ∈ C(t) for all t ∈ [0, T ]. On the other hand, for
t ∈ [0, T ] and y ∈ C(t), we have by (H1)

dC(θ̄n(t))(y) ≤ |v(θ̄n(t))− v(t)|;

thus

sup
y∈C(t)

dC(θ̄n(t))(y) ≤ |v(θ̄n(t))− v(t)|.

By the same way we can prove that

sup
y∈C(θ̄n(t))

dC(t)(y) ≤ |v(θ̄n(t))− v(t)|.

Hence

H
(
C(θ̄n(t)), C(t)

)
≤ |v(θ̄n(t)) − v(t)|,

consequently, C(θ̄n(t)) converges to C(t).

Claim 3.2. T (θn(t))xn converges to T (t)x in Ca.

Proof: Let us denote the modulus continuity of a function ψ(·) defined on an
interval I of R by

ω(ψ(·), I, η) := sup

{
‖ψ(t)− ψ(s)‖; s, t ∈ I, |s− t| < η

}
.

Let ε > 0 and let t, t′ ∈ [0, T ], assume that 0 ≤ t′ − t < η( ε2 ). By (3.3) and
(3.11), we have

‖xn(t)− xn(t
′)‖ ≤

∫ t′

t

(
|v̇(s)|+ 2g(s) + 2p(s)(‖ϕ‖∞ + r)

)
ds

≤ ε

2
.

Hence

ω
(
xn(·), [0, T ], η(

ε

2
)
)
≤ ε

2
.

Also for t, t′ ∈ [−a, 0] such that |t′ − t| < η( ε2 ), we have by (3.3)

‖ϕ(t)− ϕ(t′)‖ < ε

2
.

Then

ω
(
ϕ(·), [−a, 0], η(ε

2
)
)
≤ ε

2
.



On noncompact perturbation 75

Now, let t ∈ [0, T ]. Since θn(t) converges to t, there exists n0 ∈ N such that for
all n ≥ n0, |θn(t)− t| < η( ε2 ). Then, for all n ≥ n0

‖T (θn(t))xn − T (t)xn‖∞ = sup
−a≤s≤0

‖xn(θn(t) + s)− xn(t+ s)‖

≤ ω
(
xn(·), [−a, T ], η(

ε

2
)
)

≤ ω
(
ϕ(·), [−a, 0], η(ε

2
)
)
+ ω

(
xn(·), [0, T ], η(

ε

2
)
)

≤ ε,

hence ‖T (θn(t))xn − T (t)xn‖∞ converges to 0 as n → +∞. Therefore, since the
uniform convergence of xn(·) to x(·) on [−a, T ] implies that T (t)xn converges to
T (t)x uniformly on [−a, 0], we deduce that

(3.13) T (θn(t))xn converges to T (t)x in Ca.

On the other hand, from (1) and (2) we deduce

‖fn+1(t)− fn(t)‖ ≤ H
(
F (t, T (θn(t))xn), F (t, T (θn+1(t))xn+1)

)
+

1

n+ 1

≤ m(t)‖T (θn(t))xn − T (θn+1(t))xn+1‖∞ +
1

n+ 1
.

(3.14)

By (3.13), ‖T (θn(t))xn − T (θn+1(t))xn+1‖∞ converges to 0, thus the right term
of the relation (3.14) converges to 0. Hence (fn(t))n≥1 is a Cauchy sequence and
(fn(·))n≥1 converges pointwise to f(·). Moreover, observe that by (1),

d
(
f(t), F (t, T (t)x)

)
≤ ‖f(t)− fn(t)‖+H

(
F (t, T (θn(t))xn), F (t, T (t)x)

)

≤ ‖f(t)− fn(t)‖+m(t)‖T (θn(t))xn − T (t)x‖∞.

Since fn(t) converges to f(t) and by (3.13) the last term converges to 0. So that
f(t) ∈ F (t, T (t)x) for all t ∈ [0, T ].

Now, we can apply Castaing techniques (see for example [14]). The weak
convergence of ẋn(·) to ẋ(·) in L1([0, T ], H) and the Mazur’s Lemma entail

ẋ(t)− f(t) ∈
⋂

n

c̄o
{
ẋm(t)− fm(t) : m ≥ n

}
, for a.e. on [0, T ].

For any t ∈ [0, T ] and y ∈ H

〈y, ẋ(t)− f(t)〉 ≤ inf
n

sup
k≥n

〈y, ẋk(t)− fk(t)〉.

By (3) and (4), one has

(
ẋn(t)− fn(t)

)
∈ −N

(
C(θ̄n(t)), xn(θ̄n(t))

)
∩
(
|v̇(t)|+ g(t) + p(t)(‖ϕ‖+ r)

)
B
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for almost all t ∈ [0, T ]. Hence, by Proposition 2.1 we get

(
ẋn(t)− fn(t)

)
∈ −

(
|v̇(t)|+ g(t) + p(t)(‖ϕ‖+ r)

)
∂dC(θ̄n(t))(xn(θ̄n(t))).

In view of Proposition 2.2, we deduce

〈y, ẋ(t)− f(t)〉

≤
(
|v̇(t)|+ g(t) + p(t)(‖ϕ‖ + r)

)
lim sup
n→∞

σ
(
y,−∂dC(θ̄n(t))(xn(θ̄n(t)))

)

≤
(
|v̇(t)|+ g(t) + p(t)(‖ϕ‖ + r)

)
σ
(
y,−∂dC(t)(x(t))

)
.

So, the convexity and the closedness of the set ∂dC(t)(x(t)) ensure

(
ẋ(t)− f(t)

)
∈ −

(
|v̇(t)|+ g(t) + p(t)(‖ϕ‖+ r)

)
∂dC(t)(x(t)) ⊂ −NC(t)(x(t)).

Finally, we have for almost all t ∈ [0, T ], ẋ(t) ∈ −NC(t)(x(t)) + F (t, T (t)x) and
for all t ∈ [0, T ], x(t) ∈ C(t). The proof is complete. �
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