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Abstract. Recently, we have developed the necessary and sufficient conditions under which
a rational function F (hA) approximates the semigroup of operators exp(tA) generated by
an infinitesimal operator A. The present paper extends these results to an inhomogeneous
equation u′(t) = Au(t) + f(t).
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1. Preliminaries

Let X be a (complex) Banach space and let A be an infinitesimal generator of a

continuous semigroup of operators U(t), t ∈ [0, T ] (for the relevant literature see, for

example, [1], [2], [4], [6]).

Let F be a rational function with poles in the right half-plane of the complex plane

and let it be regular at infinity. Further, let the coefficients of the polynomials in

the numerator and denominator of F be real and let F approximate the exponential

function with order p, i.e., let

(1.1) exp(z) = F (z) +O(zp+1) for z → 0,

where p is a positive integer.

The approximation of the given semigroup U(t) will be meant in the following

sense: Divide the interval [0, T ] into N subintervals [tj , tj+1] of the length h = T/N

*The research was supported by the Academy of Sciences of the Czech Republic, Institu-
tional Research plan No. AV0Z10190503.
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by mesh points 0 = t0 < t1 < . . . < tN = T and define the sequence {uj, j =

0, 1, . . . , N} ⊂ X by the recurrence

(1.2) uj+1 = F (hA)uj , j = 0, . . . , N − 1, u0 = η.

Further, suppose that

lim
h→0
jh→t

uj = U(t)η

holds for any η ∈ X and any t ∈ [0, T ]. Then we say that the rational function F ap-

proximates the semigroup U(t) or, alternatively, that the method (1.2) is convergent

on the class of abstract differential equations of the form

(1.3) u′(t) = Au(t), t ∈ [0, T ],

with the initial condition

(1.4) u(0) = η ∈ X .

The following theorem was proved in [5].

Theorem 1.1. A rational function F with its poles in the right half-plane, regular

at infinity and satisfying (1.1) with some p > 1 generates the convergent method (1.2)

if and only if there exists a constant M = M(t) such that

(1.5) ‖F j(hA)‖ 6 M

for any sufficiently small h and for any j satisfying 0 6 jh 6 t. Moreover, if

η ∈ D(Ap+1) then the convergence is of order hp.

The aim of this paper is to generalize these results to the case of a nonhomogeneous

equation.

2. Main result

Let us investigate the differential equation of the form

(2.1) u′(t) = Au(t) + f(t), t ∈ [0, T ],

with the initial condition

(2.2) u(0) = η ∈ X .
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Here, A is an infinitesimal generator of a continuous semigroup of operators U(t) as

in Section 1 and the function f := [0, T ] → X is continuous. It is well known that if

we suppose, moreover, that the initial value η lies in D(A) then the classical solution

of the problem (2.1)–(2.2) exists and is given by

(2.3) u(t) = U(t)η +

∫ t

0

U(t− τ)f(τ) dτ.

However, (2.3) has sense for any η ∈ X even though the function u(t) need not

be differentiable in the general case. Nevertheless, we will suppose it to be the

generalized solution of the problem (2.1)–(2.2).

In the nonhomogeneous case, we will not construct the approximations of the solu-

tion of (2.1)–(2.2) directly from a rational function F approximating the exponential

as was described in Section 1 but we will use the so-called selfstarting block methods

as they were introduced in [3]. For the readers’ convenience, the definition and basic

properties of such methods will be summarized in Appendix.

Apply now the SB-method (3.5) to the problem (2.1)–(2.2). We obtain







ujk+1

...

u(j+1)k






=







ujk

...

ujk






+ hC







Aujk+1

...

Au(j+1)k






+ hC







fjk+1

...

f(j+1)k






(2.4)

+ h







d1Aujk

...

dkAujk






+ h







d1fjk

...

dkfjk






.

Let G ⊗ A be the tensor product of a matrix G (of order k) and the operator A,

i.e. G⊗ A := D(A) × . . .× D(A) → X × . . .×X defined by

(2.5) G⊗A =







g11A . . . g1kA
...

. . .
...

gk1A . . . gkkA






.

This notation allows to rewrite (2.4) in the form

(I − hC ⊗A)







ujk+1

...

u(j+1)k






(2.6)

= (I + hD ⊗A)







ujk

...

ujk






+ hC







fjk+1

...

f(j+1)k






+ h







d1fjk

...

dkfjk






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where D is the diagonal matrix with the components of the vector d on the diagonal.

The operator I − hC ⊗ A is generally unbounded. Thus, the question about the

solvability of (2.4) should be answered first.

Before formulating the corresponding theorem, we recall that the resolventR(λ,A)

of A has to satisfy the inequality

(2.7) ‖R(λ,A)n‖ 6
M

(ℜ(λ) − ω)n

for n = 1, 2, . . . and for any λ for which ℜ(λ) > ω, and M , ω are real constants.

It is so since A is the infinitesimal generator of a strongly continuous semigroup of

operators, see, e.g., [1]. We also recall that the semigroup fulfills the inequality

(2.8) ‖U(t)‖ 6 M exp(ωt).

Further, realize that any matrix of the form I − zC is (at least for sufficiently

small z) nonsingular so that it is possible to write its inverse in the form

(2.9) (I − zC)−1 =
1

Q(z)







p11(z) . . . p1k(z)
...

. . .
...

pk1(z) . . . pkk(z)






,

where

(2.10) Q(z) = det(I − zC)

and pij(z) is the determinant of the matrix of order k − 1 obtained from the matrix

(I − zC) by omitting the jth row and ith column and multiplying by (−1)i+j . Note

that any pij(z) is a polynomial in z of degree at most k − 1.

Theorem 2.1. Let A have its spectrum in the half-plane ℜ(λ) 6 ω and let C have

its eigenvalues in the half-plane ℜ(λ) > 0. Then the operator (I − hC ⊗ A) has for

sufficiently small h a bounded inverse, and

(2.11) (I − hC ⊗A)−1 = M ≡







m11 . . . m1k

...
. . .

...

mk1 . . . mkk






,

holds, where

(2.12) mij = pij(hA)Q−1(hA)

and the polynomials pij(z) and Q(z) are given by (2.9) and (2.10), respectively.
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P r o o f. In this proof we use some results from the theory of functions of un-

bounded operators, see again, e.g., [1]. The degree of the polynomial Q is exactly k,

since C is regular. Moreover, there exists a constant λC > 0 such that all roots of Q

lie in the half-plane ℜ(λ) > λC , since the eigenvalues of C lie in the open right half-

plane. Without loss of generality we can suppose that ω > 0 and let us choose h0

in such a way that h0 < λC/ω. Then the spectrum of the operator hA lies in the

half-plane ℜ(λ) 6 h0ω < λC for any 0 < h 6 h0. Further, the degree of any of the

polynomials pij(z) is at most k−1 and the degree of the polynomial Q(z) is exactly k

as we have already said above. Consequently, the rational function pij(z)Q
−1(z) is

regular at the infinity, and it is also regular in the half-plane ℜ(λ) < λC , as fol-

lows from the properties of the roots of the polynomial Q. Thus, the operators

pij(hA)Q−1(hA) are correctly defined and they are bounded operators in X .

The definition of the functions p
(j)
i gives immediately that

(2.13)

k
∑

s=1

(δ
(s)
i − zcis)psj(z)Q

−1(z) = δ
(j)
i ,

where δ
(s)
i is the Kronecker symbol. Note that formula (2.13) is nothing else than

the commonly known Cramer’s rule. Since δ
(s)
i − zcis is a polynomial of degree 1

and since psj(z)Q
−1(z) has a root at the infinity, it follows that

(2.14)

k
∑

s=1

(δ
(s)
i I − cishA)psj(hA)Q−1(hA)x = δ

(j)
i x

for any x ∈ X , and the operators behind the summation sign are well-defined

bounded operators. But (2.14) gives immediately that

(2.15) (I − hC ⊗A)Mx = x

for any x ∈ X × . . .×X . In the similar way we prove that

(2.16) M(I − hC ⊗A)x = x

for any x ∈ D(A) × . . . × D(A). Now equations (2.15)–(2.16) complete the proof of

theorem. �

Supposing that C satisfies the assumptions of Theorem 2.1, we can rewrite (2.6)

in the form

(2.17) u(j+1)k = F (hA)ujk + qj , j = 0, 1, . . . ,
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where the rational function F is given by

(2.18) F (z) = P (z)Q−1(z),

the polynomial P by

(2.19) P (z) =

k
∑

s=1

pks(z)(1 + dsz)

and

(2.20) qj = h

k
∑

i=1

k
∑

s=1

cismkifjk+s + h

k
∑

i=1

dimkifjk.

Hence, if the matrix C has its eigenvalues in the right half-plane the correspond-

ing SB-method can be used even for the approximation of the generalized solution.

Naturally, the method must be understood in the form (2.17). The convergence

is controlled—as can be expected—by the behaviour of the powers of the opera-

tor F (hA). Before formulating the corresponding convergence theorem we prove an

auxiliary assertion.

Lemma 2.1. Let an SB-method of order p > 1 be given and let the corresponding

matrix C have its eigenvalues in the right half-plane of the complex plane. Further,

let (1.5) be satisfied. Finally, let f(t) be continuous in [0, T ] and define ∆(h) by

(2.21) ∆(h) = sup
nh6t
06τ6t

‖[Fn(hA) − Un(h)]f(τ)‖.

Then

(2.22) lim
h→0

∆(h) = 0.

P r o o f. Suppose that (2.22) is not true. Then there exist ε0 > 0 and se-

quences {hk}, {nk}, and {τk} satisfying

(2.23) hk → 0, nkhk 6 t, τk 6 t

such that

(2.24) ‖[Fnk(hkA) − Unk(hk)]f(τk)‖ > ε0
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holds for k = 1, 2, . . .. Passing if necessary to subsequences, we can assume here that

nkhk → t0, τk → t1 for k → ∞. Under these assumptions we have

(2.25) ‖[Fnk(hkA) − Unk(hk)]f(t1)‖ >
1

2
ε0, k = 1, 2. . . . .

This estimate follows from the definition of supremum, since f(t) is continuous and

‖Fn(hA) − Un(h)‖ is bounded (see (2.7) and (1.5)). On the other hand,

‖[Fnk(hkA) − Unk(hk)]f(t1)‖(2.26)

6 ‖[Fnk(hkA) − U(t)]f(t1)‖ + ‖[U(t) − U(nkhk)]f(t1)‖ → 0

in virtue of Theorem 2.1 and the continuity of U(t). Thus, we have a contradiction

proving the lemma. �

Now we have all ready to prove the convergence theorem for the approximation of

problem (2.1)–(2.2).

Theorem 2.2. Let an SB-method of order p > 1 be given and let the corre-

sponding matrix C have its eigenvalues in the right half-plane of the complex plane.

Further, let (1.5) be satisfied. Finally, let ujk be the approximate solution of the

problem (2.1)–(2.2), where f(t) is continuous, f(t) ∈ D(A) for t ∈ [0, T ] and Af(t) is

also continuous (cf. (2.17)–(2.20)). Then

(2.27) lim
h→0
jh→t

ujk = u(t).

P r o o f. If we take into account (2.17) we can write the approximation ujk in

the form

(2.28) ujk = F j(hA) +

j−1
∑

ν=0

F j−1−ν(hA)qν ,

where qj are given by (2.20). From Theorem 1.1 we know that F
j(hA)η → U(t)η

for h→ 0 and jh→ t. So it remains to prove that

(2.29)

j−1
∑

ν=0

F j−1−ν(hA)qν →

∫ t

0

U(t− τ)f(τ) dτ.

To achieve this let us investigate the operators qj . Begin with the obvious identity
k
∑

r=1
mkr(δ

(i)
r I − crihA) = δ

(i)
k I (see (2.16)) and rewrite it in the form

(2.30) mki = hA

k
∑

r=1

crimkr + δ
(i)
k I.
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After substituting (2.30) into (2.20), we obtain

qν = h2A

k
∑

i=1

k
∑

s=1

cis

k
∑

r=1

crimkrfνk+s + h

k
∑

i=1

k
∑

s=1

cisδ
(i)
k fνk+s(2.31)

+ h2A

k
∑

i=1

di

k
∑

r=1

crimkrfνk + h

k
∑

i=1

diδ
(i)
k fνk

= h2A

k
∑

i=1

k
∑

r=1

crimkr

( k
∑

s=1

cisfνk+s + difνk

)

+ h

( k
∑

s=1

cksfνk+s + dkfνk

)

.

The continuity of f implies that

(2.32) fνk+s = fνk + ϕs,

where

(2.33) ‖ϕs‖ = o(1) for h→ 0.

Observing now that the norms of the operators mkr are uniformly bounded (note

that mkr = pkr(hA)Q−1(hA) and the degree of pkr is less than the degree of Q(z))

and that the function ‖Af(t)‖ is continuous and, therefore, also bounded, we obtain

from (2.31)–(2.33) that

(2.34) qν = h

( k
∑

s=1

cks + dk

)

fνk + ψν ,

where

(2.35) ‖ψ‖ = o(h).

But
k
∑

s=1
cks + dk = 1 since the order of the method used is at least 1 and, hence,

(2.34) implies that

(2.36) qν = hfνk + ψν .

The substitution of (2.35) in the left-hand part of (2.29) gives

(2.37)

j−1
∑

ν=0

F j−1−ν(hA)qν = h

j−1
∑

ν=0

F j−1−ν(hA)fνk + o(1).
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Obviously,

h

j−1
∑

ν=0

F j−1−ν(hA)fνk −

∫ tjk

0

U(tjk − τ)f(τ) dτ(2.38)

= h

j−1
∑

ν=0

F j−1−ν(hA)fνk −

j−1
∑

ν=0

∫ t(ν+1)k

tνk

U(tjk − τ)f(τ) dτ.

The integral in the last sum of the right-hand term of (2.38) can be estimated as

(2.39)

∫ t(ν+1)k

tνk

U(tjk − τ)f(τ) dτ = hU(tjk − tνk)fνk + o(h),

since the function U(tjk − τ)f(τ) is continuous. Thus, it remains to investigate the

behaviour of the expression h
j−1
∑

ν=0
(F j−1−ν(hA) − U(tjk − tνk))fνk. But

h

j−1
∑

ν=0

(F j−1−ν(hA) − U(tjk − tνk))fνk(2.40)

= h

j−1
∑

ν=0

(F j−1−ν(hA) − U j−ν(h))fνk

= h

j−1
∑

ν=0

(F j−1−ν(hA) − U j−1−ν(h))fνk + h

j−1
∑

ν=0

U j−1−ν(h)(I − U(h))fνk.

If we use now Lemma 2.1 and the estimate (2.8) the assertion of the theorem follows

immediately. �

3. Appendix

Let an ordinary differential equation

(3.1) u′(t) = f(t, u), t ∈ [0, T ],

with the initial condition

(3.2) u(0) = η ∈ R

be given. The right-hand term of (3.1) is supposed to be defined, continuous, and

Lipschitzian with respect to u in the strip 0 6 t 6 T , −∞ < y < ∞ so that the

existence and uniqueness of (3.1), (3.2) is guaranteed in the whole interval [0, T ].
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Let an integer k, k > 1, real numbers µ1, . . . , νk−1, a square matrix C of order k,

a k-dimensional vector d and a positive real number h be given. Putting

(3.3) trk = rh, r = 0, 1, . . .

(these points will be called the basic points),

(3.4) trk+i = trk + µih, . . . , k − 1

(the intermediate points), and denoting the approximate solution at the point tj

by uj , the selfstarting block method (SB-method briefly) is defined by the formula

(3.5)







urk+1

...

u(r+1)k






= urki+ hC







frk+1

...

f(r+1)k






+ hfrkd, r = 0, . . . ,

where i = (1, . . . , 1)⊤ and fj = f(tj , uj). One step of the SB-method consists

therefore in computing k values of the approximate solution simultaneously from the

generally nonlinear system of equations and the next step is started with the last

of them. Note that the Lipschitz property of f guarantees that the system (3.5)

has—at least for any sufficiently small h—exactly one solution.

The local truncation error of an SB-method is defined in the usual way, i.e. by

(3.6) L(u(t);h) =







u(t+ µ1h)
...

u(t+ µkh)






− u(t)i− hC







u′(t+ µ1h)
...

u′(t+ µkh)






− hu′(t)d

where µk = 1. Using this definition, the given SB-method will be said to have the

order p (p positive integer), if

(3.7) Li(u(t);h) = O(hp+1) for i = 1, . . . , k,

where Li is the ith component of the vector L.

The order of the method depends only on the parameters of the method and does

not depend on the particular function u. For example, the assertion that the order

of the method is at least 1 is equivalent to k algebraic equalities

(3.8)

k
∑

s=1

cis + di = µi, i = 1, . . . , k.

The following two theorems can be proved very simply (see [3]).

Theorem 3.1. The selfstarting method of order at least 1 is convergent.
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Theorem 3.2. Let the solution of (3.1), (3.2) have p+ 1 continuous derivatives

in [0, T ]. Then the error of an SB-method of order p is of the order O(hp).

The subclass of overimplicit block methods formed by such SB-methods for which

µi = i/k and the order of which is at least k is not empty, as was shown also in [3].

We denote them as SBK-methods. Note that these methods play an important role

in the study of methods for solving stiff differential equations.
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