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1. Introduction

Let N, Z, R be the set of all natural numbers, integers and real numbers, respec-

tively. For a, b ∈ Z, define Z(a) = {a, a + 1, . . .}, Z(a, b) = {a, a + 1, . . . , b} when
a 6 b. Consider the boundary value problem for nonlinear discrete systems involving

the p-Laplacian

∆(φp(∆u(t − 1))) + λ∇F (t, u(t)) = 0, t ∈ Z(1, M),(1.1)

u(0) = u(M + 1) = 0,(1.2)

where λ > 0 is a parameter, M > 1 is a fixed positive integer, ∆ is the forward

difference operator defined by ∆u(t) = u(t + 1) − u(t), φp(s) = |s|p−2s, 1 < p < ∞
and F : Z(0, M) × R

m → R is continuously differential in x for every t ∈ Z(0, M).

As is known, the critical-point theory is an important tool when dealing with

the existence of solutions of differential equations (see [8]–[14], [18]). For difference

*This work is supported by the Graduate degree thesis Innovation Foundation of Cen-
tral South University (No. 3960-71131100014) and the Outstanding Doctor degree thesis
Implantation Foundation of Central South University (No. 2008yb032) and partially sup-
ported by the NNSF (No. 10771215) of China.
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equations, there have also been some results (see [1]–[6], [15], [16], [19]). In particular,

by using the Linking Theorem, Guo and Yu have successfully proved the existence

of periodic solutions for the difference equation

(1.3) ∆2x(t − 1) + f(t, x(t)) = 0, t ∈ Z(1, M),

when either f(t, y) is superlinear in the second variable y or f(t, y) is sublinear in the

second variable in [5] and [6], respectively. In [19], Zhou, Yu and Guo generalized such

results to discrete systems. In [15], by the Local Linking Theorem, and in [16], by

the Saddle Point Theorem, Xue and Tang proved the existence of periodic solutions

for discrete systems. Especially, in [1], by a suitable version of Clark’s Theorem, in

the case p = 2 and m = 1, Bai and Xu have established

Theorem A. Assume that the following conditions hold:

(B1) f : [0, M + 1] × R → R is continuous;

(B2) there exists an α > 0 such that f(t, α) = 0 and f(t, x) > 0 for x ∈ (0, α);

(B3) f(t, x) is odd in x.

Then there exists a λ∗ > 0 such that if λ > λ∗, (1.1)–(1.2) with p = 2 has at

least M distinct pairs of nontrivial solutions. Furthermore, each solution u satisfies

|u(t)| 6 α, t ∈ Z(0, M + 1).

Put

(1.4) F (t, x) = (t − M)|x|2 + M |x|3/2, t ∈ Z(1, M), x ∈ R
m.

We verify that F does not satisfy condition (B2). In fact, when m = 1, then

f(t, x) =
∂F (t, x)

∂x
= 2(t − M)x +

3

2
Mx1/2, t ∈ Z(1, M), x ∈ R

+.

Furthermore, when x ∈ (0,∞) and t = M , we have

f(M, x) =
3M

2
x1/2 > 0,

which shows that there is no α > 0 such that f(M, α) = 0. Therefore, it is worth

while to further study the existence of multiple solutions to system (1.1)–(1.2).

Moreover, in [17], we have also treated system (1.1)–(1.2) with p = 2 by using

Clark’s Theorem. However, now we find that the results in [17] can be done better.

In this paper, by using the critical point theorems, we obtain, also for the one

dimensional case, some solvability conditions for system (1.1)–(1.2). To be precise,
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for λ large enough and under suitable growth conditions on F , we establish the

existence of at least mM solutions to system (1.1)–(1.2) (Theorem 3.1). On the

other hand, for λ > 0, under coercivity conditions, at least one solution can be

guaranteed (Theorem 3.2). Moreover, some useful consequences of our main results

are pointed out (Corollaries 3.1–3.4). Finally, some examples of applications of our

results, involving functions like F in (1.4), are given.

2. Preliminaries

In this section we recall some basic notation and lemmas, which come from [1],

[11], and [19].

In the following statement, for any m ∈ N, (·, ·) will denote the inner product
in R

m defined by

(u, v) =

m
∑

i=1

ui · vi, ∀u = (u1, u2, . . . , um), v = (v1, v2, . . . , vm) ∈ R
m,

and |·| will denote the corresponding norm in R
m, i.e.

|u| =

( m
∑

i=1

u2
i

)1/2

, ∀u = (u1, u2, . . . , um) ∈ R
m.

Let S be the set of sequences

u = (u(0), u(1), . . . , u(M + 1)) = {u(t)}M+1
t=0 ,

where u(t) = (ut1, . . . , utm)⊤ ∈ R
m. For any u, v ∈ S, a, b ∈ R, au + bv is defined by

au + bv := {au(t) + bv(t)}M+1
t=0 .

Then S is a vector space.

For any given positive integer M , EM is defined as a subspace of S by

EM = {u = {u(t)} ∈ S : u(0) = u(M + 1) = 0}

equipped with the norm

‖u‖ :=

( M
∑

t=1

|u(t)|p
)1/p

, ∀u ∈ EM .

It is easy to verify that (EM , ‖·‖) is a Banach space and dimEM = mM .
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Let X be a real Banach space. For ϕ ∈ C1(X,R), we say that ϕ satisfies the

Palais-Smale condition (henceforth denoted by (PS)) if any sequence {um} ⊂ X

for which ϕ(um) is bounded and ϕ′(um) → 0 as m → ∞ possesses a convergent

subsequence.

Denote by θ the zero element of X . Σ indicates the family of sets A ⊂ X \ {θ}
where A is closed in X and symmetric with respect to θ, i.e. u ∈ A implies −u ∈ A.

Now, we state the main tools used to investigate system (1.1)–(1.2).

Lemma 2.1 (see [8]). Assume that ϕ ∈ C1(E,R) is bounded from below (above)

and satisfies the (PS) condition. Then

c = inf
u∈E

ϕ(u) (c = sup
u∈E

ϕ(u))

is a critical value of ϕ.

Lemma 2.2 (see [11, Theorem 9.1]). Let X be a real Banach space and ϕ an even

function belonging to C1(X,R) with ϕ(θ) = 0, bounded from below and satisfying

the (PS) condition. Suppose that there is a set K ∈ Σ such that K is homeomorphic

to Sj−1 (j − 1 dimension unit sphere) by an odd map and sup
K

ϕ < 0. Then ϕ has at

least j distinct pairs of nonzero critical points.

3. Main results

Lemma 3.1. For any u ∈ EM ,

1

(2pM)p
‖u‖p 6

M
∑

t=0

|∆u(t)|p 6 2p‖u‖p.

P r o o f. It follows from u(0) = u(M + 1) = 0 and the Hölder inequality that

M
∑

t=0

|∆u(t)|p =

M
∑

t=0

|u(t + 1) − u(t)|p 6

M
∑

t=0

(|u(t + 1)| + |u(t)|)p

6 2p−1
M
∑

t=0

|u(t + 1)|p + 2p−1
M
∑

t=0

|u(t)|p

= 2p−1
M
∑

t=1

|u(t)|p + 2p−1
M
∑

t=1

|u(t)|p = 2p‖u‖p.
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Thus the right-hand side has been proved. In order to prove the left-hand side, we

need the inequality

|xp − yp| 6 p|x − y|(xp−1 + yp−1) for all x > 0, y > 0,

which is an immediate consequence of the Lagrange differential mean value theorem

(or see [7]).

Since for any s ∈ Z(0, M),

∆|u(s)|p = |u(s + 1)|p − |u(s)|p

6 p
∣

∣|u(s + 1)| − |u(s)|
∣

∣(|u(s + 1)|p−1 + |u(s)|p−1)

6 p|u(s + 1) − u(s)|(|u(s + 1)|p−1 + |u(s)|p−1)

= p|∆u(s)|(|u(s + 1)|p−1 + |u(s)|p−1),

thus by the Hölder inequality and u(0) = u(M + 1) = 0 we obtain that for any

t ∈ Z(1, M),

|u(t)|p =

t−1
∑

s=0

∆|u(s)|p =

t−1
∑

s=0

[

p|∆u(s)||u(s + 1)|p−1 + p|∆u(s)||u(s)|p−1
]

6

M
∑

s=0

p|∆u(s)||u(s + 1)|p−1 +

M
∑

s=0

p|∆u(s)||u(s)|p−1

6 p

( M
∑

s=0

|∆u(s)|p
)1/p

·
( M

∑

s=0

|u(s + 1)|p
)(p−1)/p

+ p

( M
∑

s=0

|∆u(s)|p
)1/p

·
( M

∑

s=0

|u(s)|p
)(p−1)/p

= 2p

( M
∑

s=0

|∆u(s)|p
)1/p

·
( M

∑

s=1

|u(s)|p
)(p−1)/p

.

Furthermore, we get

M
∑

t=1

|u(t)|p 6 2pM

( M
∑

s=0

|∆u(s)|p
)1/p

·
( M

∑

s=1

|u(s)|p
)(p−1)/p

,

that is,
( M

∑

t=1

|u(t)|p
)1/p

6 2pM

( M
∑

s=0

|∆u(s)|p
)1/p

from which, one has

1

(2pM)p
‖u‖p 6

M
∑

t=0

|∆u(t)|p,

and our conclusion is proved. �
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Lemma 3.2. For any u, v ∈ EM , the following useful equality holds:

−
M
∑

t=1

(

∆(φp(∆u(t − 1))), v(t)
)

=

M
∑

t=0

(

φp(∆u(t)), ∆v(t)
)

.

P r o o f. In fact, it follows from u(0) = u(M + 1) = v(0) = v(M + 1) = 0 that

−
M
∑

t=1

(∆(φp(∆u(t − 1))), v(t)) = −
M
∑

t=1

∆(|∆u(t − 1)|p−2∆u(t − 1), v(t))

= −
M
∑

t=1

(

|∆u(t)|p−2∆u(t) − |∆u(t − 1)|p−2∆u(t − 1), v(t)
)

= −
M
∑

t=1

(

|∆u(t)|p−2(u(t + 1) − u(t)), v(t)
)

+

M
∑

t=1

(

|∆u(t − 1)|p−2(u(t) − u(t − 1)), v(t)
)

= −
M
∑

t=1

(

|∆u(t)|p−2(u(t + 1) − u(t)), v(t)
)

+ (|u(1)|p−2u(1), v(1))

+

M
∑

t=2

(

|∆u(t − 1)|p−2(u(t) − u(t − 1)), v(t)
)

= −
M
∑

t=1

(

|∆u(t)|p−2(u(t + 1) − u(t)), v(t)
)

+ (|u(1)|p−2u(1), v(1))

+

M−1
∑

t=1

(

|∆u(t)|p−2(u(t + 1) − u(t)), v(t + 1)
)

= −
M
∑

t=1

(

|∆u(t)|p−2(u(t + 1) − u(t)), v(t)
)

+ (|u(1)|p−2u(1), v(1))

+

M
∑

t=1

(

|∆u(t)|p−2(u(t + 1) − u(t)), v(t + 1)
)

(since v(M + 1) = 0)

=
M
∑

t=1

(

|∆u(t)|p−2(u(t + 1) − u(t)), ∆v(t)

+ (|u(1) − u(0)|p−2(u(1) − u(0)), v(1) − v(0)
)

=

M
∑

t=0

(|∆u(t)|p−2∆u(t), ∆v(t)) =

M
∑

t=0

(φp(∆u(t)), ∆v(t)).

The proof is complete. �

16



In Theorem 3.1 below, we will assume that F (t, x) satisfies the following conditions:

(I1) for all t ∈ Z(0, M), F (t, 0) = 0 and for all t ∈ Z(1, M), F (t, x) is even in x;

(I2) there exists r > 0 such that, for all u ∈ EM with ‖u‖ = r,
M
∑

t=1
F (t, u(t)) > 0.

Consider the functional ϕ defined on EM by

(3.1) ϕ(u) =

M
∑

t=0

[1

p
|∆u(t)|p − λF (t, u(t))

]

=

M
∑

t=0

1

p
|∆u(t)|p − λ

M
∑

t=1

F (t, u(t)).

It is well known that the functional ϕ on EM is continuously differentiable. Moreover,

since for any u, v ∈ EM , v(0) = 0, we have

〈ϕ′(u), v〉 =

M
∑

t=0

[

(φp(∆u(t)), ∆v(t)) − λ(∇F (t, u(t)), v(t))
]

=

M
∑

t=0

(φp(∆u(t)), ∆v(t)) − λ

M
∑

t=1

(∇F (t, u(t)), v(t)),

for any u, v ∈ EM (see [9]). Then u ∈ EM is a critical point of ϕ if and only if

(3.2)
M
∑

t=0

(φp(∆u(t)), ∆v(t)) = λ
M
∑

t=1

(∇F (t, u(t)), v(t)).

By the arbitrariness of v, we conclude that

∆(φp(∆u(t − 1))) + λ∇F (t, u(t)) = 0, ∀ t ∈ Z(1, M).

Since u ∈ EM , we have u(0) = u(M + 1) = 0 and hence u ∈ EM is a critical point

of ϕ if and only if u satisfies system (1.1)–(1.2). Thus the problem of finding the

solutions to system (1.1)–(1.2) is reducing to that of seeking the critical points of the

functional ϕ on EM .

Theorem 3.1. Suppose that F (t, x) satisfies (I1), (I2) and the condition

(I3)

lim sup
|x|→∞

F (t, x)

|x|p 6 0 for all t ∈ Z(1, M).

Then, if λ > 2prp/(pδ) with δ = inf
‖u‖=r

M
∑

t=1
F (t, u(t)), system (1.1)–(1.2) has at least

mM distinct pairs of nontrivial solutions.
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P r o o f. By virtue of (I1), it is easy to verify that ϕ(0) = 0 and ϕ(·) is even.
Next, we show that ϕ is coercive, that is lim

‖u‖→∞
ϕ(u) = ∞. For any ε > 0 with

ε < 1/(λp(2pM)p), by (I3), there is a ̺1 > 0 such that F (t, x) 6 ε|x|p for all x ∈ R
N

with |x| > ̺1 and all t ∈ Z(1, M). Let a̺1
= max{|F (t, x)| : t ∈ Z(1, M), x ∈

R
m, |x| 6 ̺1}. Hence,

(3.3) F (t, x) 6 ε|x|p + a̺1

for all x ∈ R
N and all t ∈ Z(1, M). If there is a sequence {un} ⊂ EM and a constant c

such that ‖un‖ → ∞, n → ∞ and ϕ(un) 6 c, n = 1, 2, . . ., then by Lemma 3.1 and

(3.3) we have

c

‖un‖p
>

ϕ(un)

‖un‖p
=

1

p

M
∑

t=0
|∆un(t)|p

‖un‖p
−

λ
M
∑

t=1
F (t, un(t))

‖un‖p

>
1

p(2pM)p
− λ

‖un‖p

M
∑

t=1

(ε|un(t)|p + a̺1
)

=
1

p(2pM)p
− λε − λMa̺1

‖un‖p
.

Let n → ∞. Then we have 1/(p(2pM)p) − λε 6 0, which contradicts ε <

1/(λp(2pM)p). Therefore, ϕ is coercive. Furthermore, it is easy to observe that ϕ is

bounded from below and the (PS) condition follows at once from the coercivity of I,

as the space EM has finite dimension.

Define

K = {u ∈ EM : ‖u‖ = r}.

We can find that 0 6∈ K and K is closed in EM and symmetric with respect to 0. It

is clear that K is homeomorphic to SmM−1 by an odd map.

Clearly, by (I2), we get δ = inf
‖u‖=r

M
∑

t=1
F (t, u(t)) > 0. Then it follows from

Lemma 3.1 and λ > 2prp/(pδ) that, for any u ∈ K,

ϕ(u) =
1

p

M
∑

t=0

|∆u(t)|p−λ

M
∑

t=1

F (t, u(t)) 6
2p

p
‖u‖p−λ

M
∑

t=1

F (t, u(t)) 6
2prp

p
−λδ < 0.

Thus all the conditions of Lemma 2.2 are satisfied and then ϕ has at least mM dis-

tinct pairs of nonzero critical points. Consequently, (1.1)–(1.2) has at least mM dis-

tinct pairs of nontrivial solutions. Thus we have completed the proof. �
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R em a r k 3.1. By the proof of Theorem 3.1, it is easy to know that if F (t, x) satis-

fies only the condition (I3), then ϕ is bounded from below and satisfies the (PS) con-

dition. Hence, by Lemma 2.1, if λ > 0, then (1.1)–(1.2) has at least one solution.

Corollary 3.1. Suppose that F (t, x) satisfies (I1), (I2) and the following condi-

tion:

(I4) there exists α ∈ [0, p) such that

lim sup
|x|→∞

F (t, x)

|x|α < ∞ for all t ∈ Z(1, M).

Then, if λ > 2prp/(pδ) with δ = inf
‖u‖=r

M
∑

t=1
F (t, u(t)), system (1.1)–(1.2) has at least

mM distinct pairs of nontrivial solutions.

P r o o f. For every t ∈ Z(1, M), put

lim sup
|x|→∞

F (t, x)

|x|α = A(t).

Then by (I4), the inequality A(t) < ∞ holds for all t ∈ Z(1, M).

Now, we distinguish two cases.

Case (i): If for every t ∈ Z(1, M), A(t) > −∞, then for any ε > 0 there exists

̺2(t) > 0 such that F (t, x) 6 (A(t)+ε)|x|α for all x ∈ R
N with |x| > ̺2(t). Moreover,

let

a̺2
(t) = max{|F (t, x)| : x ∈ R

m, |x| 6 ̺2(t)}.

Then, for every t ∈ Z(1, M) and all x ∈ R
m, we have

F (t, x) 6 |A(t) + ε||x|α + a̺2
(t) 6 (A1 + ε)|x|α + a̺2

,

where

A1 = max
t∈Z(1,M)

|A(t)|, a̺2
= max

t∈Z(1,M)
a̺2

(t).

Since α < p, we have

lim sup
|x|→∞

F (t, x)

|x|p 6 0,

which shows that (I3) in Theorem 3.1 holds.

Case (ii): If there exist t1, . . . , tk ∈ Z(1, M) (1 6 k 6 M) such that A(ti) = −∞
(1 6 i 6 k), then for any G1 > 0 there exists ̺3(ti) > 0 such that F (ti, x) 6 −G1|x|α
for all x ∈ R

m with |x| > ̺3(ti). Let

a̺3
(ti) = max{|F (ti, x)| : x ∈ R

m, |x| 6 ̺3(ti)}.
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Then we have, for all x ∈ R
m,

(3.4) F (ti, x) 6 G1|x|α + a̺3
(ti) 6 G1|x|α + a̺3

, ∀ i ∈ Z(1, k),

where a̺3
= max

16i6k
a̺3

(ti).

For t ∈ Z(1, M)/{t1, . . . , tk}, since A(t) > −∞, similarly to the argument in
case (i) we can get, for all x ∈ R

m,

(3.5) F (t, x) 6 (A2 + ε)|x|α + a̺4
,

where

A2 = max{|A(t)| : t ∈ Z(1, M)/{t1, . . . , tk}},
a̺4

= max{a̺4
(t) : t ∈ Z(1, M)/{t1, . . . , tk}}.

By (3.4) and (3.5), it is easy to obtain that there exist C1 > 0 and C2 > 0 such that

(3.6) F (t, x) 6 C1|x|α + C2, ∀ t ∈ Z(1, M), ∀x ∈ R
m.

Then we also get

lim sup
|x|→∞

F (t, x)

|x|p 6 0,

which shows that (I3) holds. By Theorem 3.1, we complete the proof. �

R em a r k 3.2. Corollary 3.1 shows that when p = 2, Theorem 3.1 in [17] coincides

with our Corollary 3.1.

Corollary 3.2. Suppose that F (t, x) satisfies (I1), (I2) and the following condi-

tion:

(I5) there exist µ ∈ (0, p) and R > 0 such that

(∇F (t, x), x) 6 µF (t, x)

for all x ∈ R
m with |x| > R and all t ∈ Z(1, M).

Then, if λ > 2prp/(pδ) with δ = inf
‖u‖=r

M
∑

t=1
F (t, u(t)), (1.1)–(1.2) has at least mM dis-

tinct pairs of nontrivial solutions.

P r o o f. Choose R1 such that R1 > R. Similarly to the argument in [12], for all

x ∈ R
m/{0} and all t ∈ Z(1, M), define

(3.7) y(s) = F (t, sx), Q(s) = y′(s) − µ

s
y(s), ∀ s >

R1

|x| .
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Then, by (I5), we have

(3.8) Q(s) =
1

s
[(∇F (t, sx), sx) − µF (t, sx)] 6 0

for all s > R1/|x|. It follows from (3.7) that y(s) = F (t, sx) is a solution of the first

order linear ordinary differential equation

y′(s) =
µ

s
y(s) + Q(s),

which implies that

F (t, sx) = sµ

(
∫ s

1

r−µQ(r) dr + F (t, x)

)

for s > R1/|x|. Moreover, by the continuity of F (t, x) and (3.8), we have

C3 > F (t, R1x/|x|) > (R1/|x|)µF (t, x)

for all x ∈ R
m with |x| > R1 and all t ∈ Z(1, M), where

C3 = max{|F (t, x)| : t ∈ Z(1, M), |x| 6 R1}.

Hence,

F (t, x) 6
C3

Rµ
1

|x|µ + C3

for all x ∈ R
m and all t ∈ Z(1, M). Since µ < p, this implies

lim sup
|x|→∞

F (t, x)

|x|p 6 0,

which shows that (I3) holds. By Theorem 3.1, we complete the proof. �

R em a r k 3.3. If F (t, x) satisfies either condition (I4) or (I5), then ϕ is bounded

from below and satisfies the (PS) condition. Hence, by Lemma 2.1, if λ > 0,

(1.1)–(1.2) has at least one solution.
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Theorem 3.2. Assume that F satisfies F (0, 0) = 0 and the following condition:

(I6) there exists a constant β > p such that

lim inf
|x|→∞

F (t, x)

|x|β > 0 for all t ∈ Z(1, M).

Then, if λ > 0, (1.1)–(1.2) has at least one solution.

P r o o f. For every t ∈ Z(1, M), put

lim inf
|x|→∞

F (t, x)

|x|β = B(t).

By (I6), B(t) > 0 for all t ∈ Z(1, M) and B1 = min
t∈Z(1,M)

B(t) > 0.

Now, we distinguish two cases.

Case (i): If B(t) < ∞ for all t ∈ Z(1, M), then for any 0 < ε < B1 there exists

̺5(t) > 0 such that F (t, x) > (B(t) − ε)|x|β for all x ∈ R
m with |x| > ̺5(t). Let

a̺5
(t) = max{|F (t, x)| : |x| 6 ̺5(t)}.

Then, for all x ∈ R
m,

F (t, x) > (B(t) − ε)|x|β − (B(t) − ε)̺β
5 (t) − a̺5

(t) > (B1 − ε)|x|β − a̺5
,

where

a̺5
= max

t∈Z(1,M)
{(B(t) − ε)̺β

5 (t) + a̺5
(t)}.

Case (ii): If there exist t1, . . . , tk ∈ Z(1, M) (1 6 k 6 M) such that B(ti) = ∞
(1 6 i 6 k), then for any G2 > 0 there exists ̺6(ti) > 0 such that F (ti, x) > G2|x|β
for all x ∈ R

m with |x| > ̺6(ti). Let

a̺6
(ti) = max{|F (ti, x)| : x ∈ R

m, |x| 6 ̺6(ti)}.

Then we obtain that, for all x ∈ R
m,

(3.9) F (ti, x) > G2|x|β − G2̺
β
6 (ti) − a̺6

(ti) > G2|x|β − a̺6
, ∀ i ∈ Z(1, k),

where a̺6
= max

i∈Z(1,k)
{G2̺

β
6 (ti) + a̺6

(ti)}.
For t ∈ Z(1, M)/{t1, . . . , tk}, since B(t) < ∞, similarly to the argument in case (i),

for all x ∈ R
m and 0 < ε < B2 we get

(3.10) F (t, x) > (B2 − ε)|x|β − a̺7
,

22



where

B2 = min{|B(t)| : t ∈ Z(1, M)/{t1, . . . , tk}} > 0,

and

a̺7
= max{(B(t) − ε)̺β

7 (t) + a̺7
(t) : t ∈ Z(1, M)/{t1, . . . , tk}}.

By (3.9) and (3.10), it is easy to obtain that there exist C4 > 0 and C5 > 0 such

that

(3.11) F (t, x) > C4|x|β − C5, ∀ t ∈ Z(1, M), ∀x ∈ R
m.

Both the cases (i) and (ii) imply that there exist C6 > 0 and C7 > 0 such that

(3.12) F (t, x) > C6|x|β − C7

for all x ∈ R
m and all t ∈ Z(1, M). By Hölder’s inequality we have

M
∑

t=1

|u(t)|p 6 M1−p/β

( M
∑

t=1

|u(t)|β
)p/β

.

Consequently, since β > p, λ > 0, and bearing in mind (3.12) and Lemma 3.1, for

all u ∈ EM , one has

ϕ(u) =
1

p

M
∑

t=0

|∆u(t)|p − λ

M
∑

t=1

F (t, u(t))

6
2p

p
‖u‖p − λC6

M
∑

t=1

|u(t)|β + λMC7

6
2p

p
‖u‖p − λC6M

1−β/p

( M
∑

t=1

|u(t)|p
)β/p

+ λMC7

=
2p

p
‖u‖p − λC6M

1−β/p‖u‖β + λMC7 → −∞ (as ‖u‖ → ∞),

which implies that I is bounded from above and the (PS) sequence must be bounded

in EM . Then the (PS) sequence has a convergent subsequence, since EM has finite

dimension. Hence, ϕ satisfies the (PS) condition. By Lemma 2.1, (1.1)–(1.2) has at

least one solution. We have completed the proof. �
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Corollary 3.3. Suppose that F (t, x) satisfies F (0, 0) = 0 and the following as-

sumptions:

(I7) there exist γ > 0 and L > 0 such that

F (t, x) > γ|x|p

for all x ∈ R
m with |x| > L and all t ∈ Z(1, M);

(I8) there exists µ > p such that

lim sup
|x|→∞

µF (t, x) − (∇F (t, x), x)

|x|p 6 0

for all t ∈ Z(1, M).

Then, if λ > 0, (1.1)–(1.2) has at least one solution.

P r o o f. The proof is similar to Lemma 1 in [13]. By (I8), there is a constant

R2 > L such that

(3.13) µF (t, x) − (∇F (t, x), x) 6 D1|x|p

for all x ∈ R
m with |x| > R2 and all t ∈ Z(1, M), where D1 = 1

2 (µ − p)γ. By the

continuity of F and ∇F , there exists a constant D2 such that

µF (t, x) − (∇F (t, x), x) 6 D2

for all x ∈ R
m with |x| 6 R2 and all t ∈ Z(1, M). Hence, we obtain that

(3.14) (∇F (t, x), x) > µF (t, x) − D1|x|p − D2

for all x ∈ R
m and all t ∈ Z(1, M). Define

f(s) = F (t, sx), ∀ s >
R2

|x|

for all x ∈ R
m/{0} and all t ∈ Z(1, M). Then we deduce from (3.13)

f ′(s) =
1

s
(∇F (t, sx), sx) >

µ

s
F (t, sx) − D1s

p−1|x|p =
µ

s
f(s) − D1s

p−1|x|p,

which implies that

g(s) = f ′(s) − µ

s
f(s) + D1s

p−1|x|p > 0.
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By solving the above equation, we obtain

(3.15) f(s) =

(
∫ s

R2/|x|

g(r) − D1r
p−1|x|p

rµ
dr + D3

)

sµ

for s > R2/|x|, and
f
(R2

|x|
)

= D3

(R2

|x|
)µ

.

Then, we get

D3 =
( |x|

R2

)µ

f
(R2

|x|
)

.

By (3.15), we have

f(s) =

[
∫ s

R2/|x|

g(r) − D1r
p−1|x|p

rµ
dr + D3

]

sµ

=

[
∫ s

R2/|x|

g(r)

rµ
dr − D1|x|p

∫ s

R2/|x|

rp−1−µ dr + D3

]

sµ

> D3s
µ +

[D1|x|p
µ − p

sp−µ − D1

(µ − p)Rµ−p
2

|x|µ
]

sµ

>

[

R−µ
2 f

(R2

|x|
)

− D1

(µ − p)Rµ−p
2

]

|x|µsµ

=
[

R−µ
2 F

(

t,
R2

|x|x
) D1

(µ − p)Rµ−p
2

]

|x|µsµ.

So, we obtain

F (t, x) = f(1) >

[

R−µ
2 F

(

t,
R2

|x|x
)

− D1

(µ − p)Rµ−p
2

]

|x|µ

for all x ∈ R
m with |x| > R2 and all t ∈ Z(1, M). By (I7), the above inequlity and

D1 = 1
2 (µ − p)γ, we have

F (t, x) > D4|x|µ

for all x ∈ R
m with |x| > R2 and all t ∈ Z(1, M), where D4 =

(

γ − (D1/(µ − p)
)

×
Rp−µ

2 = 1
2γRp−µ

2 > 0. Because of the continuity of F (t, x), there is a positive

constant D5 such that

|F (t, x)| 6 D5

for x ∈ R
m with |x| 6 R2 and all t ∈ Z(1, M). Let

D6 = D4R
µ
2 + D5.

25



Then we have

F (t, x) > D4|x|µ − D6.

Consequently,

lim inf
|x|→∞

F (t, x)

|x|µ > D4 > 0.

Hence, by Theorem 3.2 with β = µ, we complete the proof. �

The next result involves the well-known Ambrosetti-Rabinowitz condition.

Corollary 3.4. Suppose that F (t, x) satisfies F (0, 0) = 0 and the (AR) condition,

that is

(I9) there exists ξ > p and K > 0 such that

0 < ξF (t, x) 6 (∇F (t, x), x)

for all x ∈ R
m with |x| > K and all t ∈ Z(1, M).

Then, if λ > 0, (1.1)–(1.2) has at least one solution.

P r o o f. Choose R3 such that R3 > K. Define

f(s) = F (t, sx), ∀ s >
R3

|x|

for all x ∈ R
m/{0} and all t ∈ Z(1, M). Then we deduce from (I9)

f ′(s) =
1

s
(∇F (t, sx), sx) >

ξ

s
F (t, sx) =

ξ

s
f(s),

which implies that

g(s) = f ′(s) − ξ

s
f(s) > 0.

By solving the above equation, we obtain

(3.16) f(s) =

(
∫ s

R3/|x|

g(r)

rµ
dr + D7

)

sξ

for s > R3/|x|, and
f
(R3

|x|
)

= D7

(R3

|x|
)ξ

.

Then, we get

D7 =
( |x|

R3

)ξ

f
(R3

|x|
)

.
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By (3.16), we have

f(s) =

[
∫ s

R3/|x|

g(r)

rξ
dr + D7

]

sξ

> D7s
ξ

> R−ξ
3 f

(R3

|x|
)

|x|ξsξ = R−ξ
3 F

(

t,
R3

|x|x
)

|x|ξsξ.

So, we obtain

F (t, x) = f(1) > R−ξ
3 F

(

t,
R3

|x| x
)

|x|ξ

for all x ∈ R
m with |x| > R3 and all t ∈ Z(1, M). By (I9), we know that F (t, y) > 0

for all y ∈ R
m with |y| = R3 and all t ∈ Z(1, M). Hence, the above inequality implies

that

F (t, x) > D8|x|ξ

for all x ∈ R
m with |x| > R3 and all t ∈ Z(1, M), where D8 = R−ξ

3 min
|y|=R3

F (t, y) > 0.

By the continuity of F (t, x), there is a constant D9 > 0 such that

|F (t, x)| 6 D9

for x ∈ R
m with |x| 6 R3 and all t ∈ Z(1, M). Let

D10 = D8R
ξ
3 + D9.

Then we have

F (t, x) > D8|x|ξ − D10.

Consequently,

lim inf
F (t, x)

|x|ξ > D8 > 0.

Hence, by Theorem 3.2 with β = ξ, we complete the proof. �
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4. Examples

In this section, some examples will be given to illustrate our results.

E x am p l e 4.1. Consider the system

∆2u(t − 1) + λ∇F (t, u(t)) = 0, t ∈ Z(1, M),(4.1)

u(0) = u(M + 1) = 0,(4.2)

where F is defined by (1.4). Then p = 2. It is easy to see that F satisfies (I1) of

Theorem 3.1. Moreover, since

( M
∑

t=1

|u(t)|2
)3/4

6

M
∑

t=1

|u(t)|3/2,

we have

M
∑

t=1

F (t, u(t)) =
M
∑

t=1

(t − M)|u(t)|2 + M
M
∑

t=1

|u(t)|3/2(4.3)

> (1 − M)

M
∑

t=1

|u(t)|2 + M

( M
∑

t=1

|u(t)|2
)3/4

= (1 − M)‖u‖2 + M‖u‖3/2.

Therefore, there exists 0 < r < M2/(M −1)2 such that for all u ∈ EM with ‖u‖ = r,
M
∑

t=1
F (t, u(t)) > 0. Thus (I2) is verified. It is easy to obtain that

lim sup
|x|→∞

F (t, x)

|x|2 = t − M 6 0 for all t ∈ Z(1, M),

which implies (I3) holds. By (4.3), we have

δ = inf
‖u‖=r

M
∑

t=1

F (t, u(t)) > inf
‖u‖=r

{(1 − M)‖u‖2 + M‖u‖3/2} = (1 − M)r2 + Mr3/2.

Then, by Theorem 3.1, we know that if λ > 2r2/((1 − M)r2 + Mr3/2) = 2
√

r×
((1−M)

√
r + M)−1, system (4.1)–(4.2) has at least mM distinct pairs of solutions.

E x am p l e 4.2. Consider the system

∆(φ4(∆u(t − 1))) + λ∇F (t, u(t)) = 0, t ∈ Z(1, M),(4.4)

u(0) = u(M + 1) = 0,(4.5)
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where

F (t, x) = (t − M)|x|4 + M |x|7/2.

It is easy to see that F satisfies (I1) of Theorem 3.1. Moreover, since

( M
∑

t=1

|u(t)|4
)7/8

6

M
∑

t=1

|u(t)|7/2,

we have

M
∑

t=1

F (t, u(t)) >

M
∑

t=1

(t − M)|u(t)|4 + M

M
∑

t=1

|u(t)|7/2(4.6)

> (1 − M)‖u‖4 + M

( M
∑

t=1

|u(t)|4
)7/8

= (1 − M)‖u‖4 + M‖u‖7/2.

Therefore, there exists 0 < r < M2/(M −1)2 such that for all u ∈ EM with ‖u‖ = r,
M
∑

t=1
F (t, u(t)) > 0. Thus (I2) is verified. It is easy to obtain that

lim inf
F (t, x)

|x|4 = t − M 6 0 for all t ∈ Z(1, M),

which implies (I3) holds. By (4.6), we have

δ = inf
‖u‖=r

M
∑

t=1

F (t, u(t)) > inf
‖u‖=r

{(1 − M)‖u‖4 + M‖u‖7/2} = (1 − M)r4 + Mr7/2.

Then, by Theorem 3.1, we know that if λ > 4r4/((1 − M)r4 + Mr7/2) = 4
√

r×
((1−M)

√
r + M)−1, system (4.5)–(4.6) has at least mM distinct pairs of solutions.

E x am p l e 4.3. Consider the system

∆(φ4(∆u(t − 1))) + λ∇F (t, u(t)) = 0, t ∈ Z(1, M),(4.7)

u(0) = u(M + 1) = 0,(4.8)

where

F (t, x) = (M + 1 − t)|x|5 + g(t)|x|3 + (h(t), x),

and h : Z(0, M) → R
m. It is easy to see that

lim inf
|x|→∞

F (t, x)

|x|5 = M + 1 − t > 0 for all t ∈ Z(1, M).

Let β = 5 in Theorem 3.2. Then, if λ > 0, system (4.7)–(4.8) has at least one

solution.
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