
Applications of Mathematics

Petr Vaněk
Smoothed prolongation multigrid with rapid coarsening and massive smoothing

Applications of Mathematics, Vol. 57 (2012), No. 1, 1–10

Persistent URL: http://dml.cz/dmlcz/141813

Terms of use:
© Institute of Mathematics AS CR, 2012

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized
documents strictly for personal use. Each copy of any part of this document must contain these
Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz

http://dml.cz/dmlcz/141813
http://dml.cz


57 (2012) APPLICATIONS OF MATHEMATICS No. 1, 1–10

SMOOTHED PROLONGATION MULTIGRID WITH

RAPID COARSENING AND MASSIVE SMOOTHING*

Petr Vaněk, Plzeň

(Received August 18, 2009)

Dedicated to Soňa Krausová

Abstract. We prove that within the frame of smoothed prolongations, rapid coarsening
between first two levels can be compensated by massive prolongation smoothing and pre-
and post-smoothing derived from the prolongator smoother.
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1. Introduction

In multigrid context, assuming no regularity it is impossible to improve conver-

gence by adding more smoothing steps and therefore rapid coarsening cannot be

compensated by massive smoothing. In this paper we show that this is possible

if, alongside with adding more smoothing steps, also prolongator smoothing is per-

formed. We prove that within the frame of smoothed prolongations ([5], [4], [6]),

rapid coarsening between first two levels can be compensated by massive prolonga-

tion smoothing and pre- and post-smoothing derived from the prolongator smoother

while preserving coarse-level matrices reasonably sparse. We prove an abstract con-

vergence result and apply it to the simplest regular multigrid for the twodimensional

model problem with H1
0 -equivalent form on a unit square. We prove a uniform

*This work was sponsored by the Technology Agency of the Czech Republic under
grant TA01020352, by the Ministry of Education, Youth and Sports of the Czech Re-
public through the Institute for Theoretical Computer Sciences (grant 1M0545), and by
Department of the Navy Grant N62909-11-1-7032.
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convergence result for the case that finest level prolongator smoother, pre- and post-

smoothers are based on transformed Chebyshev polynomials in matrix A of degree

about 1
2h2/h1, where h1 and h2 are resolutions on first and second level. By uni-

form convergence result we mean rate of convergence independent of h1, h2/h1 and

dependent linearly on number of levels as in [1]. In [3], we presented such result

for variational two-level method. Here, we extend it to multigrid V-cycle with rapid

coarsening between first two levels. Our theory is based on interpretation of a com-

plex key result in [3] and is simpler and more general. Restriction to V-cycle is only

for the sake of brevity and extension to W-cycle is trivial. Paper presupposes basic

expertise in multigrid.

2. Algorithm

We are interested in solving the system of linear algebraic equations

(2.1) Ax = f,

where A is an n×n symmetric positive definite matrix and f ∈ R
n. Set n1 = n. We

consider a standard variational multigrid V-cycle with prolongators

(2.2) I l
l+1 : R

nl+1 → R
nl , l = 1, . . . , L− 1, nl+1 < nl,

that is, the multigrid algorithm with coarse level matrices

Al = (I1
l )⊤AI1

l , I1
l = I1

2 . . . I l−1
l for l > 2 and I1

1 = I,

and restrictions given by the transpose of prolongators. With abstract convergence

theory [1] in mind we define coarse spaces Ul, associated norms ‖·‖l and inner prod-

ucts (·, ·)l by

(2.3) Ul = Rng(I1
l ), (·, ·)l : I1

l x, I1
l y 7→

nl
∑

i=1

xiyi and ‖·‖l = (·, ·)
1/2
l .

In this paper we are interested in rapid coarsening between the first two levels com-

pensated by massive prolongator smoothing and massive pre- and post-smoothing

derived from the prolongator smoother. More specifically, we will investigate the

multigrid V-cycle with the prolongator I1
2 in the form

I1
2 = SĨ1

2 , Ĩ1
2 : R

n2 → R
n1 , n2 ≪ n1,
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where the prolongator smoother S is the tranformed Chebyshev polynomial in A

such that

(2.4) ̺(S2A)≪ ̺(A).

In what follows we assume that S is a polynomial in A satisfying

(2.5) ̺(S) 6 1.

With (2.4) in mind a specific choice of the operator S will be given in Section 4.

On finest level we choose pre-smoother with error propagation operator S and post-

smoother with error propagation operator

(2.6) S′ = I −
ω

̺(AS)
AS , AS = S2A, ω ∈ (0, 1).

Note that resulting iteration can be implemented by formula

x←
(

I −
ω

̺(AS)
AS

)

x +
ω

̺(AS)
S2f.

On other levels we choose both pre- and post-smoothers to be simple Jacobi iterations

with error propagation operator

(2.7) I −
ω

̺(Al)
Al.

The choice of smoothers will be justified in next section. In Section 4 we propose

operator S in the form S = (I−α1A) . . . (I−αdA). Finest level pre-smoother can be

then implemented as sequence of Jacobi sweeps x← (I − αiA)x + αif , i = 1, . . . , d.

Note that smoothers (2.7) satisfy smoothing condition of [1].

3. Analysis

The error propagation operator of our algorithm is

(3.1) E = S′(I − I1
2V2(I

1
2 )⊤A)S = S′(I − SĨ1

2V2(SĨ1
2 )⊤A)S,

where V2 is a single iteration of V-cycle on level 2 started from the zero approxima-

tion. By direct calculation,

(3.2) E = S′S(I − Ĩ1
2V2(Ĩ

1
2 )⊤AS) = SS′(I − Ĩ1

2V2(Ĩ
1
2 )⊤AS).
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Let u ∈ U1. It is well known that since both the pre- and post-smoothers on all

coarse levels are simple Jacobi smoothers, the coarse-grid correction part of the error

propagation operator of the variational multigrid V-cycle is A-symmetric and satisfies

‖I − I1
2V2(I

1
2 )⊤A‖A 6 1,

where ‖·‖A = (A·, ·)
1/2
1 . Moreover, ‖S

′‖A 6 1 and therefore by (3.1),

(3.3) ‖Eu‖A 6 ‖S′‖A‖I − I1
2V2(I

1
2 )⊤A‖A‖Su‖A 6 ‖Su‖A.

Further, setting

R = I − Ĩ1
2V2(Ĩ

1
2 )⊤AS

and using (3.2) and (2.5), we get

‖Eu‖A
‖u‖A

=
‖SS′Ru‖A
‖u‖AS

·
‖u‖AS

‖u‖A
=
‖S′Ru‖AS

‖u‖AS

·
‖Su‖A
‖u‖A

(3.4)

6
‖S′(I − Ĩ1

2V2(Ĩ
1
2 )⊤AS)u‖AS

‖u‖AS

,

where ‖·‖AS
= (AS ·, ·)

1/2
1 . Let t ∈ (0, 1) be a given parameter. We set

W =
{

u ∈ U :
‖Su‖A
‖u‖A

> t
}

.

Note that

(3.5) t‖u‖A 6 ‖u‖AS
= ‖Su‖A 6 ‖u‖A for all u ∈ W.

In view of (3.3) and (3.4) it becomes clear that to establish a convergence estimate

for our method it is sufficient to estimate the term on the right-hand side of (3.4)

for all u ∈ W . We will do so using the equivalence (3.5) as a key argument. Note

that the term S′(I − Ĩ1
2V2(Ĩ

1
2 )⊤AS) on the right-hand side of (3.4) is an error propa-

gation operator of the multigrid V-cycle for solving the problem with the smoothed

matrix As, prolongators Ĩ
1
2 , I2

3 , . . . , IL−1
L , Jacobi post-smoother S′ on the finest level

and simple Jacobi pre and post smoothers (2.7) on the other levels.
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Theorem 3.1 ([1]). Let E be the error propagation operator of the variational

multigrid V-cycle algorithm for solving problem (2.1) with prolongators (2.2) and

simple Jacobi pre- and/or post-smoothers (2.7) on all levels l = 1, . . . , L − 1. Let

V ⊂ U1 be a subset. We assume that there are constants C1, C2 > 0 and linear

mappings Ql : U1 → Ul, l = 2, . . . , L, Q1 = I such that for every u ∈ V

(3.6) ‖(Ql −Ql+1)u‖l 6
C1

√

̺(Al)
‖u‖A, l = 1, . . . , L− 1,

and

(3.7) ‖Qlu‖A 6 C2‖u‖A, l = 1, . . . , L.

Then for every u ∈ V

‖Eu‖A 6 1−
1

CL
‖u‖A, where C =

(

1 + C
1/2
2 +

(C1

ω

)1/2)2

.

P r o o f. Proof follows by the original proof of [1]. �

We apply the above theorem, choosing V = W , to estimate the right-hand side

of (3.4). Recall that the term

S′(I − Ĩ1
2V2(Ĩ

1
2 )⊤AS)

is the variational multigrid V-cycle for solving the problem with the matrix AS ,

prolongators Ĩ1
2 , I2

3 , . . . , IL−1
L and Jacobi post-smoother (2.6) on the finest level and

Jacobi pre- and post-smoothers (2.7) on the other levels. The coarse level matrices

are given by

Ãl = (Ĩ1
l )⊤AS Ĩ1

l , l = 1, . . . , L,

where Ĩ1
l = Ĩ1

2I2
3 . . . I l−1

l for l > 2, Ĩ1
1 = I. Note that Ã1 = AS and Ãl = Al for l > 1.

We define coarse spaces and associated norms by

Ũl = Rng(Ĩ1
l ), ‖·‖Ũl

: Ĩ1
l x 7→

( nl
∑

i=1

x2
i

)1/2

, x ∈ R
nl .

Note that Ũ1 = U1 = R
n1 .
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Theorem 3.2. Assume there are constants C1, C2 > 0 and linear mappings

Q̃l : Ũ1 → Ũl, l = 2, . . . , L, Q̃1 = I such that for every u ∈ Ũ1

(3.8) ‖(Q̃l − Q̃l+1)u‖Ũl
6

C1
√

̺(Ãl)
‖u‖A, l = 1, . . . , L− 1,

and

(3.9) ‖Q̃l‖A 6 C2, l = 1, . . . , L.

Then the error propagation operator E of our method satisfies

(3.10) ‖Eu‖A 6 q‖u‖A ∀u ∈ Ũ1

with a positive constant q < 1 dependent only on C1, C2 and a parameter ω in (2.6)

and (2.7).

P r o o f. Assume u 6∈ W . Then (3.10) follows by (3.3) with q = t. Let u ∈ W .

We use Theorem 3.1 choosing V = W to estimate the right-hand side of (3.4). We

need to verify

(3.11) ‖(Q̃l − Q̃l+1)u‖Ũl
6

Ca
√

̺(Ãl)
‖u‖AS

, l = 1, . . . , L− 1

and

(3.12) ‖Q̃lu‖AS
6 Cs‖u‖As

, l = 1, . . . , L

for every u ∈ W . Using the equivalence (3.5), (3.11) follows from (3.8) with Ca =

C1/t. Further, ‖Q̃lu‖As
= ‖SQ̃lu‖A 6 ‖Q̃lu‖A and ‖u‖AS

> t‖u‖A from (3.5).

Therefore,
‖Q̃lu‖AS

‖u‖AS

6
1

t
·
‖Q̃u‖A
‖u‖A

and (3.12) follows from (3.9) with Cs = C2/t. Hence, by Theorem 3.1 we have the

estimate (3.10) with

q = 1−
1

(

1 +
(C2

t

)1/2

+
(C1

ωt

)1/2)2

L

, u ∈W

and for u 6∈ W we have (3.10) with q = t, where t is a paremeter we choose.

Minimizing

min
t∈(0,1)

max{t, q(C1, C2, ω, t)}

eliminates the dependence of the estimate q on t. �

6



When proving convergence of the multigrid in case of rapid coarsening between

levels 1 and 2 by means of Theorem 3.1, the critical issue is to verify the approxima-

tion condition (3.6) for l = 1. If ̺(S2A) ≪ ̺(A), the condition (3.8) is much easier

to satisfy than (3.6).

4. Prolongator smoother

Lemma 4.1 ([2]). For any ̺ > 0 and the integer d > 0 there is a unique polyno-

mial p of degree d such that

max{p2(λ)λ : 0 6 λ 6 ̺}

is minimal under the constraint p(0) = 1. The polynomial p is given by

(4.1) p(λ) =
(

1−
λ

r1

)

. . .
(

1−
λ

rd

)

, rk =
̺

2

(

1− cos
2kπ

2d + 1

)

,

k = 1, . . . , d. The polynomial p satisfies

(4.2) max
06λ6̺

p2(λ)λ =
̺

(2d + 1)2

and

(4.3) max
06λ6̺

|p(λ)| = 1.

We choose S to be the polynomial (4.1) in A with ̺ = ̺(A). For simplicity we

assume that the spectral bound ̺(A) is available. To use the upper bound ̺ = ¯̺

satisfying

̺(A) 6 ¯̺ 6 C̺(A)

represents a minimal technical problem.

Using the spectral mapping theorem and (4.3), we get (2.5). By the spectral

mapping theorem and (4.2) we get

(4.4) ̺(AS) 6
1

(2 deg(S) + 1)2
̺(A).
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5. Application to regular multigrid for problem with

H1
0 -equivalent form

The purpose of this section is to demonstrate the abstract result on the simplest

possible nontrivial case. A more natural application to smoothed aggregation spaces

will be published elsewhere.

Let Ω be unit square. We consider the second order elliptic problem

find u ∈ H1
0 (Ω) such that a(u, v) = (f, v)L2(Ω) ∀ v ∈ H1

0 (Ω),

where f ∈ L2(Ω) and the bilinear form a(·, ·) satisfies

c‖u‖2H1(Ω) 6 a(u, u) 6 C‖u‖2H1(Ω) ∀u ∈ H1
0 (Ω).

We assume a system of nested regular triangulations τhl
with meshsizes hl, where

h2 = Nh1, hl+1 = 2hl, l = 2, . . . , L,

and N , L are integers N > 2, L > 2. Let nl be the number of interior vertices of τhl
.

On each level we consider the standard P1 finite element basis {ϕl
i}

nl

i=1 and denote

the corresponding finite element space by Vhl
. We assume the standard scaling

‖ϕl
i‖L∞(Ω) = 1. It is well known that the corresponding stiffness matrices satisfy

(5.1) ̺{a(ϕl
l, ϕ

l
j), i, j = 1, . . . , nl} 6 C.

Here and in what follows c, C are positive constants independent of the meshsize on

any level and the number of levels. We assume that the prolongators Ĩ1
2 , I2

3 , . . . , IL−1
L

are constructed so that

ΠhĨ1
l ei = ϕl

i, i = 1, . . . , nl, Πh : x ∈ R
n1 7→

nl
∑

i=1

xiϕ
1
i .

Here, ei denotes the ith canonical basis vector. Note that

Vhl
= {Πhu, u ∈ Ũl} and (Ĩ1

l )⊤A(Ĩ1
l ) = {a(ϕl

l, ϕ
l
j), i, j = 1, . . . , nl}.

In finite element stiffness matrices, aij 6= 0 if the vertex j belongs to an element

adjacent to the vertex i. Ussage of the prolongator smoother of degree 1 causes that

the fill-in of all coarse level matrices Al increases; an entry aij of Al, l = 2, . . . , L

becomes nonzero if the vertex j of τhl
belongs to two layers of elements adjacent to

the vertex i. We choose the prolongator smoother S, of the largest degree such that
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coarse-level matrices Al, l > 1, have such pattern. It is routine to verify that such

degree is the nearest integer that is smaller or equal to 1
2h2/h1. Then (4.4) and (5.1)

give

(5.2) ̺(Ã1) = ̺(As) 6 C
(h1

h2

)2

.

In what follows we will verify assumptions (3.8) and (3.9). We choose Q̃l, l =

2, . . . , L so that ΠhQ̃l is the L2(Ω)-orthogonal projection onto Vhl
. The following

are well-known properties of finite element functions:

chl‖u‖Ũl
6 ‖Πhu‖L2(Ω) 6 Chl‖u‖Ũl

, u ∈ Ũl,(5.3)

‖Πh(I − Q̃l)u‖L2(Ω) 6 Chl|Πhu|H1(Ω), u ∈ Ũ1,(5.4)

|ΠhQ̃lu|H1(Ω) 6 C|Πhu|H1(Ω), u ∈ Ũ1.(5.5)

Clearly,

(5.6) c|Πhu|H1(Ω) 6 a(Πhu, Πhu) = ‖u‖2A 6 C|Πhu|H1(Ω), u ∈ Ũ1

and (3.9) follows from (5.5).

Using (5.4) and the well-known properties of the orthogonal projections we get

‖Πh(Q̃l − Q̃l+1)u‖L2(Ω) 6 ‖Πh(I − Q̃l+1)u‖L2(Ω) 6 Chl+1|Πhu|H1(Ω).

Hence by (5.3) and (5.6),

(5.7) ‖(Q̃l − Q̃l+1)u‖Ũl
6 C

hl+1

hl
‖u‖A.

This together with (5.2) gives (3.8) for l = 1. For l > 1 we first estimate

̺(Ãl) = sup
(Ĩ1

l x)⊤S2A(Ĩ1
l x)

x⊤x
6 ̺((I1

l )⊤AI1
l ).

Since (I1
l )⊤AI1

l is a stiffness matrix corresponding to the basis {ϕ
l
i}, the last inequal-

ity together with (5.1) gives

̺(Ãl) 6 ̺((I1
l )⊤AI1

l ) 6 C for l = 2, . . . , L.

This estimate, hl+1 = 2hl and (5.7) give (3.8) for l > 2.
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