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Abstract. The article studies the cubic mapping graph Γ(n) of Zn[i], the ring of Gaussian
integers modulo n. For each positive integer n > 1, the number of fixed points and the
in-degree of the elements 1 and 0 in Γ(n) are found. Moreover, complete characterizations
in terms of n are given in which Γ2(n) is semiregular, where Γ2(n) is induced by all the
zero-divisors of Zn[i].
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1. Introduction

The set of all complex number a+bi, where a and b are integers, forms a Euclidean

domain which is denoted by Z[i], with the usual complex number operations. Let

n > 1 be an integer and 〈n〉 the principal idea generated by n in Z[i], and Zn =

{0, 1, . . . , n − 1} the ring of integers modulo n. Then the factor ring Z[i]/〈n〉 is

isomorphic to Zn[i] = {a + bi : a, b ∈ Zn}. The ring Zn[i] is called the ring of

Gaussian integers modulo n.

In this paper, we investigate some properties of the digraph Γ(n), whose vertex

set consists of all elements of Zn[i], and for which there is a directed edge from

α = a + bi ∈ Zn[i] to β = x + y i ∈ Zn[i] if and only if α3 = β. This digraph Γ(n)

This research was supported by the National Natural Science Foundation of China
(11161006, 11171142), the Guangxi natural Science Foundation (2011GXNSFA018139),
the Guangxi New Century 1000Talents Project and the Scientific Research Foundation
of Guangxi Educational Committee (201012MS140).
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is called the cubic mapping graph of Zn[i]. In [4], [5] and [9], some properties of the

cubic mapping graph of Zn were investigated.

Let R be a commutative ring, let U(R) denote the unit group of R, D(R) the

zero-divisor set of R. For α ∈ U(R), o(α) denotes the multiplicative order of α

in R. If R = Zn, then we write ordn α instead of o(α). We specify two particular

subdigraphs Γ1(n) and Γ2(n) of Γ(n), i.e., Γ1(n) induced by all the vertices of U(Zn[i]),

and Γ2(n) induced by all the vertices of D(Zn[i]).

Let G be a finite abelian group of order pt1
1 . . . ptm

m , where p1, . . . , pm are distinct

primes and t1, . . . , tm are positive integers. Then we can write G = G1 × . . . × Gm

where Gk is a group of order ptk

k for k = 1, . . . , m. Furthermore, for an arbitrary

element g of the group G, we can write g = (g1, . . . , gm) with gk ∈ Gk.

In Γ(n), if α1, . . . , αt are pairwise distinct vertices and α3
1 = α2, . . ., α3

t−1 = αt,

α3
t = α1, then the elements α1, α2, . . . , αt constitute a cycle of length t, and such

a cycle is called a t-cycle. Cycles are assumed to be oriented counterclockwise. It is

obvious that α is a vertex of a t-cycle if and only if t is the least positive integer such

that α3t

= α. Let At(Γ(n)), At(Γ1(n)), and At(Γ2(n)) denote the number of t-cycles

in Γ(n), Γ1(n), and Γ2(n), respectively.

A component of Γ(n) is a subdigraph which is a maximal connected subgraph

of the associated nondirected graph of Γ(n). Clearly, the number of components

in Γ(n) is equal to the number of all cycles in Γ(n). If σ1, . . . , σk (k > 1) are distinct

components of Γ(n) (i.e., there exist no common vertices between σt and σj whenever

t 6= j, 1 6 t, j 6 k), then the disjoint union σ1∪. . .∪σk denotes a subdigraph of Γ(n),

such a subdigraph contains precisely k components, namely, σ1, . . . , σk. Let Com(α)

denote the component containing the element α. The vertex set of Γ(n) is denoted

by V (Γ(n)). Suppose α ∈ V (Γ(n)), if α3 = α, then α is called a fixed point. For

α ∈ V (Γ(n)), the in-degree indeg(α) of α denotes the number of directed edges

coming into α. If α is a fixed point and indeg(α) = 1, then α is called an isolated

fixed point.

We call a digraph semiregular if there exists a positive integer d such that the

in-degree of each vertex is either d or 0 ([6]). In particular, if every component of

the digraph is exactly a cycle, we also call this digraph semiregular.

Similarly, we can assign to a cyclic group Cn of order n a cubic mapping graph

whose vertex set consists of all elements in Cn and for which there is a directed edge

from g ∈ Cn to h ∈ Cn if and only if g3 = h, and such a digraph will be denoted

by Γc(n).
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2. Some lemmas

Lemma 2.1 (9, Theorem 2.1). Let Cn denote the cyclic group of order n, and let

1 be the identity of Cn.

(1) Suppose n = 3k, k > 1. Then Γc(n) is a ternary tree of height k with the root

in 1.

(2) Suppose 3 ∤ n. Then Γc(n) is the disjoint union

Γc(n) =
⋃

d|n

(σ(ordd 3) ∪ . . . ∪ σ(ordd 3))
︸ ︷︷ ︸

ϕ(d)/ ordd 3

,

where σ(l) is the cycle of length l, and ϕ(d) is the Euler totient function.

(3) Suppose n = 3km, k > 1, m > 1, 3 ∤ m. Then

Γc(n) =
⋃

d|m

(σ(ordd 3, k) ∪ . . . ∪ σ(ordd 3, k))
︸ ︷︷ ︸

ϕ(d)/ ordd 3

,

where σ(l, k) consists of a cycle of length l with a copy of the ternary tree of

height k attached to each vertex.

The following results were shown in [1] and [7].

Lemma 2.2. Let n > 1.

(1) The element a + bi is a unit of Zn[i] if and only if a2 + b
2
is a unit of Zn.

(2) If n =
s∏

j=1

p
kj

j is the prime power decomposition of n, then the function

(2.1) θ : Zn[i] →

s⊕

j=1

Z
p

kj

j

[i]

such that θ(a + bi) = ((a mod p
kj

j ) + (b mod p
kj

j )i)s
j=1 is an isomorphism.

(3) Zn[i] is a local ring if and only if n = pt, where p = 2 or p is a prime congruent

to 3 modulo 4, t > 1.

(4) Zn[i] is a field if and only if n is a prime congruent to 3 modulo 4.

According to papers [2] and [8], we have the following lemma.

Lemma 2.3.

(1) U(Z2[i]) ∼= Z2, U(Z22 [i]) ∼= Z2 × Z22 , U(Z2t [i]) ∼= Z22 × Z2t−1 × Z2t−2 for t > 2.

Hence, |U(Z2t [i])| = 22t−1, |D(Z2t [i])| = 22t−1.
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(2) Let q be a prime congruent to 3 modulo 4. Then U(Zqt [i]) ∼= Zqt−1 × Zqt−1 ×

Zq2−1 for t > 1. Hence, |U(Zqt [i])| = q2t − q2t−2, |D(Zqt [i])| = q2t−2.

(3) Let p be a prime congruent to 1 modulo 4. Then U(Zpt [i]) ∼= Zpt−1 × Zpt−1 ×

Zp−1 ×Zp−1 for t > 1. Hence, |U(Zpt [i])| = (pt − pt−1)2, |D(Zpt [i])| = 2p2t−1 −

p2t−2.

By Lemma 2.2 (2), we have the following lemma concerning the in-degree of an

arbitrary vertex in Γ(n).

Lemma 2.4. Suppose α = a + bi ∈ Zn[i], and let n =
s∏

j=1

p
kj

j be the prime

power decomposition of n. Then indeg(α) = indeg(α1) × . . . × indeg(αs), where

αj = (a mod p
kj

j ) + (b mod p
kj

j )i and indeg(αj) is the in-degree of αj in Γ(p
kj

j ),

j = 1, . . . , s.

3. Structure of the digraph Γ(n)

Let α = a + bi ∈ V (Γ(n)). Then α is a fixed point of Γ(n) if and only if α3 = α,

i.e., the following system of equations holds

a3 − 3ab2 ≡ a (mod n),(3.1)

3a2b − b3 ≡ b (mod n).(3.2)

Now, let

(3.3) n = 2k ×
m∏

j=1

q
tj

j ×
l∏

s=1

pλs

s

be the prime power factorization of n, where k, m, l > 0, tj , λs > 1, q1, . . . , qm are

distinct primes congruent to 3 modulo 4, and p1, . . . , pl are distinct primes congruent

to 1modulo 4. The following theorem gives the formula for the number of fixed points

in Γ(n).

Theorem 3.1. Let n be as in (3.3). The number L(n) of fixed points in Γ(n)

equals

L(n) =







3k × 3m × 9l, k = 0, 1,

5 × 3m × 9l, k = 2,

9 × 3m × 9l, k > 3.
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P r o o f. Let α = a+bi ∈ Zn[i] and α3 = α. By Lemma 2.4, it suffices to consider

the cases of n being a power of a prime.

(1) Suppose n = 2k (k > 1). By inspection, L(2) = 3 and L(22) = 5.

Now, let k > 3. Then by Lemma 2.2 (3), Z2k [i] is a local ring. If α ∈ D(Z2k [i]),

then clearly α is a vertex of Com(0). Note that α3 = α, therefore α = 0.

Now suppose α ∈ U(Z2k [i]). Since α3 = α, we have α2 = 1, and the following

system of equations holds

a2 − b2 ≡ 1 (mod n),(3.4)

2ab ≡ 0 (mod n).(3.5)

Clearly, a and b have different parity. First, if a is even while b is odd, then it follows

from (3.5) that 2k−1 | a. Hence, we derive from (3.4) that b2 ≡ −1 (mod 2k), which

is impossible because k > 2. So a must be odd while b is even. In this case we have

2k−1 | b and a2 ≡ 1 (mod 2k). By [6, Lemma 2.5] and since k > 2, the number of

solutions of a2 ≡ 1 (mod 2k) is 22. Therefore, the number of solutions of the system

of equations (3.4) and (3.5) is 23.

Hence, we can conclude that L(2k) = 1 + 23 = 9 for k > 3.

(2) Suppose n = qt (t > 1), where q is a prime congruent to 3 modulo 4. Then

by Lemma 2.2 (3), Zqt [i] is a local ring. If α ∈ D(Zqt [i]), then clearly α is a vertex

of Com(0). Therefore, α = 0.

Now suppose α ∈ U(Zqt [i]). By Lemma 2.2 (1) we have q ∤ a2 + b2. It follows

from (3.5) that qt | a while q ∤ b, or qt | b while q ∤ a. First, if qt | a, q ∤ b, by (3.4), we

have b2 ≡ −1 (mod qt) and this equation has no solutions because q ≡ 3 (mod 4). So

we have qt | b and q ∤ a. By (3.4), a2 ≡ 1 (mod pt) and the number of solutions of this

equation is 2 ([6, Lemma 2.5]). Therefore, we can conclude that L(qt) = 1 + 2 = 3.

(3) Suppose n = pλ (λ > 1), where p is a prime congruent to 1 modulo 4. If α ∈

D(Zpλ [i]) with α 6= 0, by Lemma 2.2 (1) we have p | a2 + b2. It follows immediately

from (3.1) and (3.2) that p ∤ a and p ∤ b. Hence, a2 − 3b2 ≡ 1 (mod pλ), 3a2 − b2 ≡ 1

(mod pλ). Thus, 4a2 ≡ 1 (mod pλ) and 4b2 ≡ −1 (mod pλ). Clearly, each of the

last two equations has exactly 2 solutions. Moreover, note that 0
3

= 0, so the system

of equations (3.1) and (3.2) has exactly 2 × 2 + 1 = 5 solutions.

Now suppose α ∈ U(Zpλ [i]) and by Lemma 2.2 (1), we have p ∤ a2 + b2. It can be

derived from (3.5) that exactly one of a and b must be divisible by pλ. First, if pλ | a

and p ∤ b, then the number of solutions of equation (3.2) is 2. Secondly, if pλ | b and

p ∤ a, then the number of solutions of equation (3.1) is 2. Therefore, if α ∈ U(Zpλ [i])

with α3 = α, then the system of equations (3.1) and (3.2) has exactly 2 + 2 = 4

solutions.

Therefore, we can conclude that L(pλ) = 5 + 4 = 9. �
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For example, Γ(22) has exactly 5 fixed points, see Figure 1.

0

2 2i

1 + i 3 + 3i 1 + 3i 3 + i

2 + 2i
1 3 1 + 2i 3 + 2i

i 3i 2 + i 2 + 3i

Figure 1. The cubic mapping graph of Z22 [i].

Theorem 3.2. For n > 1, Γ1(n) is semiregular.

P r o o f. Suppose U(Zn[i]) = U1 × . . .×Ut, t > 1, U1, . . . , Ut being cyclic groups.

If 3 ∤ |U(Zn[i])|, then 3 ∤ |Us| for s = 1, . . . , t. By Lemma 2.1 (2), indeg(αs) = 1

for αs ∈ Us. Therefore by Lemma 2.4, indeg(α) = 1 for α ∈ U(Zn[i]).

Now suppose 3 | |U(Zn[i])|. Without loss of generality, we can assume that 3 |

|U1|, . . ., 3 | |Uv| with 1 6 v 6 t, and 3 ∤ |Uv+1|, . . ., 3 ∤ |Ut|. By Lemma 2.1 and

Lemma 2.4, indeg(α) = 3v or 0 for α ∈ U(Zn[i]).

So we conclude that Γ1(n) is semiregular. �

Theorem 3.3. Let n = 2v3k ×
m∏

j=1

q
αj

j ×
h∏

s=1
pβs

s ×
l∏

λ=1

gγλ

λ , where v, k, m, h, l > 0,

αj , βs, γλ > 1, 3 < q1 < . . . < qm are primes congruent to 3 modulo 4, p1, . . . , ph

are distinct primes congruent to 1 modulo 12, and g1, . . . , gl are distinct primes

congruent to 5 modulo 12. Then the in-degree of 1 in Γ(n) is

indeg(1) =

{

3m+2h, k = 0, 1,

3m+2h+2, k > 2.

P r o o f. By Lemma 2.4, it suffices to consider the cases of n being a power of

a prime.

(1) Suppose n = 2v (v > 1). By Lemma 2.1 (2), the in-degree of the identity 1

of a cyclic group Cm with 3 ∤ m is equal to 1. Therefore, by Lemma 2.3 (1) and

Lemma 2.4, the in-degree of 1 in Γ(n) is equal to 1.

(2) Suppose n = 3k. If k = 1, then by an argument similar to (1), we have

indeg(1) = 1. If k > 2, by Lemma 2.1, 2.3 (2) and Lemma 2.4, indeg(1) = 32.

(3) Suppose n = qj , where q > 3 is a prime congruent to 3 modulo 4, j > 1. Since

3 ∤ q, exactly one of q − 1, q + 1 is divisible by 3. It follows from Lemma 2.1 (3) and

Lemma 2.3 (2), 2.4 that indeg(1) = 3.

(4) Suppose n = ps, where p is a prime congruent to 1 modulo 4, s > 1. Clearly,

4 | p− 1 and 3 | p− 1 if and only if 12 | p− 1. So by Lemma 2.1 and 2.3 (3), if p ≡ 1

(mod 12), then indeg(1) = 32. If p ≡ 5 (mod 12), then indeg(1) = 1. �
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Theorem 3.4. Let n = 2m ×
s∏

j=1

p
tj

j , where p1, . . . , ps are distinct odd primes,

m, s > 0, tj > 1. Then the in-degree of 0 in Γ(n) is

indeg(0) =







22(m−⌈m/3⌉) ×
s∏

j=1

p
2(tj−⌈tj/3⌉)
j , m ≡ 0, 2 (mod 3),

22(m−⌈m/3⌉)+1 ×
s∏

j=1

p
2(tj−⌈tj/3⌉)
j , m ≡ 1 (mod 3).

P r o o f. By Lemma 2.4, it suffices to consider the cases of n being a power of

a prime, i.e., n = pm, where p is a prime, m > 1.

First, let m = 1, then clearly indeg(0) = 2 if p = 2, and indeg(0) = 1 if p is an

odd prime.

Now, let m > 1. Assume that α = a + bi ∈ Zn[i] with α3 = 0. Clearly p | a and

p | b. Let a = pua1, b = pvb1, where u, v are positive integers, p ∤ a1 and p ∤ b1. Set

k = min{u, v}. Then α = pkβ, where β = pu−ka1 + pv−kb1i.

On the one hand, it is clear that if k > ⌈m/3⌉, then α3 = 0.

Conversely, suppose 1 6 k 6 ⌈m/3⌉−1. If u 6= v, then β ∈ U(Zn[i]), which implies

that β3 6= 0. So α3 6= 0. If u = v, then α = pk(a1 + b1i). Hence, α3 = 0 if and

only if a3
1 − 3a1b

2
1 ≡ 0 (mod pm−3k) and 3a2

1b1 − b3
1 ≡ 0 (mod pm−3k), if and only if

a2
1 − 3b2

1 ≡ 0 (mod pm−3k) and 3a2
1 − b2

1 ≡ 0 (mod pm−3k). Now there are two cases

to consider.

First, if p is an odd prime with m > 1, or p = 2 with m ≡ 0 or 2 (mod 3), then it

is not difficult to show that α3 6= 0. So α3 = 0 if and only if p⌈m/3⌉ | a and p⌈m/3⌉ | b.

So we have indeg(0) = p2m−2⌈m/3⌉.

Secondly, assume that p = 2 and m ≡ 1 (mod 3), α = 2k(a1 + b1i). Since 2 ‖

a2
1−3b2

1, we have 2
m−3k | a2

1−3b2
1 if and only ifm−3k = 1, if and only if k = ⌈m/3⌉−1.

Similarly, 2m−3k | 3a2
1 − b2

1 if and only if k = ⌈m/3⌉ − 1. Therefore, α3 = 0 if and

only if 2⌈m/3⌉ | a and 2⌈m/3⌉ | b, or 2⌈m/3⌉−1 ‖ a and 2⌈m/3⌉−1 ‖ b. So we have

indeg(0) = 22m−2⌈m/3⌉+1. �

Theorem 3.5. Suppose p ≡ 1 (mod 4) is a prime. Let α ∈ D(Zp[i]) with α 6= 0.

If indeg(α) > 0, then

indeg(α) =

{

3, p ≡ 1 (mod 12),

1, p ≡ 5 (mod 12).

P r o o f. Since p ≡ 1 (mod 4), by Lemma 2.2 (3), Zp[i] is not local. Therefore,

there exists α = c + di ∈ D(Zp[i]) and α 6= 0 such that indeg(α) > 0. We readily see
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that p ∤ c and p ∤ d. Let β = a + bi be such that β3 = α. Then we have

a3 − 3ab2 ≡ c (mod p),(3.6)

3a2b − b3 ≡ d (mod p).(3.7)

Since p | a2 + b2, by (3.6) and (3.7) we have 4a3 ≡ c (mod p) and 4b3 ≡ −d (mod p),

i.e., a3 ≡ c0 (mod p) and b3 ≡ d0 (mod p) for some integers c0 and d0 because

p is odd. By [3, p. 228, Theorem 8], each of the last two equations has precisely

gcd(3, p − 1) solutions. Therefore, if p ≡ 2 (mod 3) then gcd(3, p − 1) = 1 and

hence indeg(α) = 1. If p ≡ 1 (mod 3) then gcd(3, p − 1) = 3 and we can claim

indeg(α) = 3. In fact, assume that a3 − 3ab2
1 ≡ a3 − 3ab2

2 ≡ c (mod p), then b2
1 ≡ b2

2

(mod p). If b1 ≡ −b2 (mod p), then it follows from b3
1 ≡ b3

2 ≡ d0 (mod p) that

d0 ≡ −d0 (mod p), i.e., p | 2d0. Thus p | d0, which is impossible. Therefore, b1 ≡ b2

(mod p). So we can conclude that indeg(α) = 3 if p ≡ 1 (mod 3). �

For example, see Figure 2, where n = 37, indeg(0) = 1, while indeg(α) = 3 if

α ∈ D(Z37[i]), α 6= 0 and indeg(α) > 0.

0

Figure 2. The subdigraph Γ2(37).
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Theorem 3.6. Let n > 1.

(1) The identity 1 is an isolated fixed point in Γ(n) if and only if n = 2v3k
l∏

λ=1

gγλ

λ ,

where v, l > 0, k = 0, 1, γλ > 1, and g1 < . . . < gl are primes congruent to 5

modulo 12.

(2) The element 0 is an isolated fixed point in Γ(n) if and only if n is odd and n is

square-free.

P r o o f. Since 1 or 0 is an isolated fixed point if and only if indeg(1) = 1 or

indeg(0) = 1, the result follows by Theorem 3.3 or 3.4, respectively. �

Theorem 3.7. Let n > 1.

(1) Each component in Γ1(n) is exactly a cycle if and only if n = 2v3k
l∏

λ=1

gγλ

λ ,

where v, l > 0, k = 0, 1, γλ > 1, and g1, . . . , gl are distinct primes congruent

to 5 modulo 12.

(2) Each component in Γ2(n) is exactly a cycle if and only if n =
m∏

s=1
ps, where

m > 1, and p1, . . . , pm are distinct primes congruent to 3 modulo 4 or congruent

to 5 modulo 12.

(3) Each component in Γ(n) is exactly a cycle if and only if n = 3k
m∏

s=1

ps, where

k = 0, 1, m > 0, and p1, . . . , pm are distinct primes congruent to 5 modulo 12.

P r o o f. (1) By Theorem 3.2, each component in Γ1(n) is exactly a cycle if and

only if 1 is an isolated fixed point. So by Theorem 3.6 (1), the result follows.

(2) On the one hand, suppose that each component in Γ2(n) is exactly a cy-

cle. Then 0 is an isolated fixed point, hence n is odd and n is square-free due to

Theorem 3.6 (2). First, let n be an odd prime, say p. If p ≡ 3 (mod 4), then by

Lemma 2.2 (4), Zp[i] is a field, hence 0 is the unique zero-divisor of Zp[i] and Com(0)

is a cycle. If p ≡ 1 (mod 4), by Theorem 3.5, then each component in Γ2(p) is exactly

a cycle if and only if p ≡ 5 (mod 12). Secondly, let n =
m∏

s=1
gs, where g1, . . . , gm are

distinct odd primes, m > 1. By Lemma 2.4 and the above argument, we have that

each component in Γ2(n) is exactly a cycle if and only if g1, . . . , gm are distinct primes

congruent to 3 modulo 4 or congruent to 5 modulo 12, as desired.

(3) It follows directly from (1) and (2). �

It is easy to show that the following theorem holds.

Theorem 3.8. Suppose α ∈ U(Zn[i]). Then α is a vertex of a t-cycle if and only

if t = ordo(α) 3.
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Theorem 3.9. Let n > 1.

(1) For t > 1, At(Γ1(n)) = 0 if and only if n = 2.

(2) For t > 1, At(Γ2(n)) = 0 if and only if n = qm, where m > 1, q = 2 or q is

a prime congruent to 3 modulo 4.

P r o o f. (1) If n = 2, we readily see that each component of Γ1(n) is a 1-cycle.

On the other hand, if n > 2, then o(i) = 4. Hence, ordo(i) 3 = 2. By Theorem 3.8,

i is a vertex of a 2-cycle.

(2) Suppose that At(Γ2(n)) = 0 for t > 1. If n has at least two distinct prime

factors, let n = gdn1, where g is an odd prime, d > 1, g ∤ n1. Then clearly i is

a vertex of a 2-cycle in Γ1(g
d). By the Chinese Remainder Theorem, there exists

a positive integer b such that b ≡ 1 (mod gd) and b ≡ 0 (mod n1). Since bi is equal

to i in Zgd [i] while bi is equal to 0 in Zn1
[i], we have that α = bi is a vertex of a 2-cycle

in Γ2(n). This is a contradiction. So we can conclude that if At(Γ2(n)) = 0 for t > 1,

then n must be a power of a prime.

Now let n = pm, where p is a prime congruent to 1 modulo 4, m > 1. Let

pm = 4k+1 for some positive integer k. Then by [3, p. 211, Exercises 12], there exits

a positive integer x such that x2 ≡ k (mod pm). Set β = x+yi, where y = 1
2 (pm+1).

We can show that x2 + y2 ≡ 0 (mod pm), and by computation, we readily see that

β3 6= β, while β32

= β. This implies that β is a vertex of a 2-cycle in Γ2(n).

Conversely, let n be a power of 2 or q, where q is a prime congruent to 3 modulo 4.

Then by Lemma 2.2 (3), Zn[i] is local. It is not difficult to show that Com(0) is the

unique component in Γ2(n). Hence, the result follows. �

4. The semiregularity of Γ2(n)

By Theorem 3.2, we know that for n > 1, Γ1(n) is semiregular. Now, we study the

semiregularity of Γ2(n). In the sequel we need the following lemma which is proved

similarly to [9, Theorem 3.7].

Lemma 4.1. Let n = pt1
1 . . . pts

s , where s > 1, p1 < . . . < ps are distinct primes,

t1, . . . , ts are positive integers. Then the following statements are equivalent:

(1) Γ(n) is semiregular.

(2) Γ2(n) is semiregular.

(3) Γ(p
tj

j ) is semiregular for j = 1, . . . , s.

Theorem 4.2.

(1) Γ2(2
m) is semiregular if and only if m = 1, 2.
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(2) Γ2(3
m) is semiregular if and only if m = 1, 2, 3, 4, 5.

(3) Suppose p is a prime congruent to 7 modulo 12. Then Γ2(p
m) is semiregular if

and only if m = 1, 2, 3.

(4) Suppose p is a prime congruent to 11 modulo 12. Then Γ2(p
m) is semiregular if

and only if m = 1, 2, 3, 4.

(5) Suppose p is a prime congruent to 5 modulo 12. Then Γ2(p
m) is semiregular if

and only if m = 1.

(6) Suppose p is a prime congruent to 1 modulo 12. Then Γ2(p
m) is not semiregular

for m > 1.

(7) Suppose n is not a power of a prime. Then Γ2(n) is semiregular if and only if

n = 3k
m∏

j=1

pj , where p1, . . . , pm are distinct primes congruent to 5 modulo 12,

k = 0, 1, 2 and m > 1.

P r o o f. (1) By inspection, it is easy to see that Γ2(2) and Γ2(2
2) are semiregular.

On the other hand, letm > 2. Clearly, indeg(β) > 0 where β = (1+i)3 = −2+2i ∈

Z2m [i]. Suppose α = a + bi ∈ D(Z2m [i]) such that α3 = β. Then we have

a3 − 3ab2 ≡ −2 (mod 2m),(4.1)

3a2b − b3 ≡ 2 (mod 2m).(4.2)

It follows from (4.1) and (4.2) that both a and b are odd, a4−b4 ≡ 2(b−a) (mod 2m).

Hence, 2m−1 | (b − a)[12 (a2 + b2)(a + b) + 1]. Since both a2 + b2 and a + b are even,

we have 2 ∤ 1
2 (a2 + b2)(a + b) + 1. Thus, a ≡ b (mod 2m−1) and by (4.1), a3 ≡ 1

(mod 2m−1). The last equation has precisely one solution ([3, p. 192, Exercise 12 (i)]),

namely, a ≡ 1 (mod 2m−1). Similarly, we have b ≡ 1 (mod 2m−1). Therefore,

the solutions of system of (4.1) and (4.2) are a ≡ 1, 2m−1 + 1 (mod 2m) and b ≡

1, 2m−1 + 1 (mod 2m). So indeg(β) = 4. Moreover, by Theorem 3.4, indeg(0) > 4

in Γ(2m) when m > 2. Thus Γ2(2
m) is not semiregular for m > 2.

(2) If m = 1, 2, 3, 4, 5, by inspection, Γ2(3
m) is semiregular.

Now, let p = 3 andm > 5. Clearly, indeg(p3) > 0. Suppose α = a+bi ∈ D(Zpm [i])

is such that α3 = p3. It is obvious that p | a and p | b. Let a = pt1a1, b = pt2b1,

where t1 and t2 are positive integers, p ∤ a1 and p ∤ b1. Then we have

p3t1a3
1 − 3 × pt1a1 × p2t2b2

1 ≡ p3 (mod pm),(4.3)

3 × p2t1a2
1 × pt2b1 − p3t2b3

1 ≡ 0 (mod pm).(4.4)

If t1 > 1, then by (4.3), p3t1−3a3
1 − 3pt1+2t2−3a1b

2
1 ≡ 1 (mod pm−3), which is impos-

sible. So t1 = 1. Hence, by (4.4), we have

(4.5) 3pt2+2a2
1 − p3t2b2

1 ≡ 0 (mod pm).
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Note that p = 3. Then if t2 = 1, by (4.5) we have 3a2
1 ≡ b2

1 (mod 3m−3), which

is impossible. Hence, t2 > 1. Therefore, we derive from (4.5) that 3m | 3t2+3. So

t2 > m−3, i.e., 3m−3 | b. It is easy to see that from 1 to 3m, the number of multiples

of 3m−3 is 33. In addition, since m > 5, we have 2t2 + 2 − m > m − 4 > 0. Thus,

by (4.3), 33a3
1 ≡ 33 (mod 3m). Therefore, a3

1 ≡ 1 (mod 3m−3), and this equation

has exactly 3 solutions. So |A| = 33 when p = 3, where

(4.6) A = {a : 1 6 a 6 pm, a = pa1, a3
1 ≡ 1 (mod pm−3)}.

Hence, indeg(33) = 33 × 33 = 36. However, by Theorem 3.4, indeg(0) > 36 in Γ(3m)

when m > 5. Thus Γ2(3
m) is not semiregular for m > 5.

(3) Since p ≡ 7 (mod 12), we have p ≡ 3 (mod 4). Ifm = 1, 2, 3, by Lemma 2.3 (2)

and Theorem 3.4 we readily show that |D(Zpm [i])| = indeg(0). Therefore, Γ2(p
m) is

semiregular for m = 1, 2, 3.

On the other hand, suppose m > 3. Clearly, indeg(p3) > 0. Let α = a + bi ∈

D(Zpm [i]) be such that α3 = p3. By an argument similar to (2) above, we have

a = pt1a1, b = pt2b1, where t1 and t2 are positive integers, p ∤ a1 and p ∤ b1. Then

the equations (4.3) and (4.4) hold. Therefore, analogously, we derive t1 = 1, t2 > 1,

a3
1 ≡ 1 (mod pm−3) and by (4.5), pm−2 | b. Clearly, from 1 to pm, the number of

multiples of pm−2 is p2. Moreover, since p ≡ 7 (mod 12), we have p ≡ 1 (mod 3),

and the equation a3
1 ≡ 1 (mod pm−3) has exactly 3 solutions. So |A| = 3p2, and

the set A is of the form (4.6). Hence, indeg(p3) = 3p2 × p2 = 3p4. However, by

Theorem 3.4, indeg(0) 6= 3p4 in Γ(pm) when m > 3. Thus Γ2(p
m) is not semiregular

for m > 3.

(4) Suppose m > 4. Since p ≡ 11 (mod 12), we have p ≡ 2 (mod 3), and the

equation a3
1 ≡ 1 (mod pm−3) has exactly one solution. So |A| = p2, and the set A is of

the form (4.6). Hence, by an argument similar to (3) above, indeg(p3) = p2×p2 = p4.

Nevertheless, by Theorem 3.4, indeg(0) > p4 in Γ(pm) for m > 4. Thus Γ2(3
m) is

not semiregular for m > 4.

Now, suppose m = 4. Let

B = {p3(x + yi)3 ∈ D(Zp4 [i]) : x, y = 0, 1, . . . , p − 1}.

Obviously, indeg(β) > 0 for β ∈ B and by an argument similar to the above, we

have indeg(β) = indeg(p3) = p4. It is not difficult to show that |B| = p2. Since

|D(Zp4 [i])| = p6 = p2 × p4, we have indeg(γ) = 0 whenever γ ∈ D(Zp4 [i]) but γ 6∈ B.

Hence, Γ2(p
4) is semiregular.

Finally, let m = 1, 2, 3. Since p ≡ 11 (mod 12), we have p ≡ 3 (mod 4). By

Lemma 2.3 (2) and Theorem 3.4, we readily show that |D(Zpm [i])| = indeg(0). So

Γ2(p
m) is semiregular for m = 1, 2, 3.
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(5) On the one hand, since p ≡ 5 (mod 12), by Theorem 3.7 (2), each component

of Γ2(p) is exactly a cycle. Therefore, Γ2(p) is semiregular.

On the other hand, suppose m > 1. Since p ≡ 1 (mod 4), there exist positive

integers x and y such that p = x2 + y2. Now let

(4.7) C = {d3(x + yi)3 ∈ D(Zpm [i]) : d = 0 or d ∈ U(Zpm )}.

Obviously, for α ∈ C, indeg(α) > 0. If d1, d2 ∈ U(Zpm ), then d3
1(x+yi)3 = d3

2(x+yi)3

if and only if d3
1 ≡ d3

2 (mod pm), if and only if d1 = d2. This is because p ≡ 5

(mod 12), so p ≡ 2 (mod 3), and the equation d3 ≡ d0 (mod pm) has a unique

solution. Hence |C| = ϕ(pm) + 1 = pm − pm−1 + 1. If Γ2(p
m) is semiregular,

then indeg(α) = indeg(0) = p2(m−⌈m/3⌉) for α ∈ C. However, by Lemma 2.3 (3),

|D(Zpm [i])| = 2p2m−1 − p2m−2 and clearly |C| × indeg(0) > |D(Zpm [i])| when m > 1,

which is impossible. So Γ2(p
m) is not semiregular for m > 1.

(6) Since p ≡ 1 (mod 12), by Theorem 3.5, indeg(α) = 3 if indeg(α) > 0 for

α ∈ D(Zp[i]) and α 6= 0. However, by Theorem 3.4, indeg(0) = 1 in Γ(p). Therefore,

Γ2(p) is not semiregular.

Now, suppose m > 1. Since p ≡ 1 (mod 12), we have p ≡ 1 (mod 3), and the

equation d3 ≡ d0 (mod pm) has precisely three solutions. Hence, |C| = 1
3ϕ(pm)+1 =

1
3 (p − 1)pm−1 + 1, and the set C is of the form (4.7). Then by an argument similar

to (5), we derive that Γ2(p
m) is not semiregular for m > 1. Therefore, Γ2(p

m) is not

semiregular for m > 1.

(7) By Theorem 3.3, Theorem 3.4 and the results above, we derive that if n is

a power of a prime, then Γ(n) is semiregular if and only if n = 3, 32, or n is a prime

congruent to 5 modulo 12. Therefore, if n is not a power of a prime, then by

Lemma 4.1 the result follows. �

Corollary 4.3. Γ(n) is semiregular if and only if n = 3k
m∏

j=1

pj , where p1, . . . , pm

are distinct primes congruent to 5 modulo 12, k = 0, 1, 2 and m > 0.
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