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TRIPLE AUTOMORPHISMS OF SIMPLE LIE ALGEBRAS

Dengyin Wang, Xiaoxiang Yu, Xuzhou

(Received July 18, 2010)

Abstract. An invertible linear map ϕ on a Lie algebra L is called a triple automorphism of
it if ϕ([x, [y, z]]) = [ϕ(x), [ϕ(y), ϕ(z)]] for ∀x, y, z ∈ L. Let g be a finite-dimensional simple
Lie algebra of rank l defined over an algebraically closed field F of characteristic zero, p an
arbitrary parabolic subalgebra of g. It is shown in this paper that an invertible linear map
ϕ on p is a triple automorphism if and only if either ϕ itself is an automorphism of p or it
is the composition of an automorphism of p and an extremal map of order 2.

Keywords: simple Lie algebras, parabolic subalgebras, triple automorphisms of Lie alge-
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1. Introduction

For an associative algebra A defined over a field F , a linear map ϕ on it is called

a Lie triple derivation if ϕ([x, [y, z]]) = [ϕ(x), [y, z]] + [x, [ϕ(y), z]] + [x, [y, ϕ(z)]] for

any x, y, z ∈ A, where the bracket operation is defined as [x, y] = xy − yx. The set

of all Lie triple derivations of A, which we denote by TDer(A), forms a Lie algebra

relative to the ordinary bracket operation [ϕ1, ϕ2] = ϕ1ϕ2 − ϕ2ϕ1, and contains

the set Der(A) of all Lie derivations of A as its subalgebra. The concept, Lie triple

derivation, was first introduced by C.Robert Miers [1] for Von Neumann algebras and

was recently extensively studied by other authors for more general operator algebras.

For example, Lie triple derivations of TUHF algebras were determined by P. Ji and

L.Wang [2]; Lie triple derivations of nest algebras were described by J.H. Zhang,

et al., [3]; and by F. Lu [4], respectively. More recently, H.T.Wang and Q.G. Li

[5] transferred this concept to Lie algebras and they described triple derivations
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for a nilpotent linear Lie algebra over a commutative ring. In fact, the derivation

algebra, Der(A), of an algebra A has a close relation with the automorphism group,

Aut(A), of A. In our view, Der(A) is just a linearization of Aut(A), and conversely,

Aut(A) is just a group object of Der(A). From this point of view, a similar concept,

which can be viewed as the group object of TDer(A), is now introduced naturally.

An invertible linear map ϕ on A is called a Lie triple automorphism if ϕ([x, [y, z]]) =

[ϕ(x), [ϕ(y), ϕ(z)]] for any x, y, z ∈ A. For an abstract Lie algebra L over F , we define

the so-called triple automorphism similarly. An invertible linear map ϕ on L is called

a triple automorphism if ϕ([x, [y, z]]) = [ϕ(x), [ϕ(y), ϕ(z)]] for any x, y, z ∈ L. It is

clear that the product of two such maps and the inverse of such map are also such

maps. So all triple automorphisms of L form a group under composition of maps,

which is denoted by TAut(L). Note that every automorphism of L is obviously

a triple automorphism of it. However, the converse of this assertion may be false.

As a simple example, we consider the radical of a simple Lie algebra of type A2,

consisting of all 3 × 3 strictly upper triangular matrices. One will see that the

invertible linear map, permuting E12 and E13, fixing E23, and extending linearly,

is a triple automorphism of it, but fails to be an automorphism. To give a more

interesting example we consider the general linear Lie algebra gl(n, F ) consisting

of all n × n matrices over F . Define ω to be the map on gl(n, F ) sending any

matrix (ai,j) ∈ gl(n, F ) to ((−1)j−i+1ai,j). Then it is not difficult to verify that

ω is a triple automorphism of gl(n, F ), but it fails to be an automorphism. The

above two examples show that it may be interesting to study how much TAut(L)

differs from Aut(L) for a given Lie algebra L. In this article, we wish to answer this

question for L an arbitrary parabolic subalgebra of a finite-dimensional simple Lie

algebra over F .

2. Notation and some elementary results

We follow the notation of [6]. Let F be an algebraically closed field of characteristic

zero, g a finite-dimensional simple Lie algebra of rank l over F , h a fixed Cartan

subalgebra of g, Φ ⊆ h∗ the corresponding root system of g, ∆ a fixed base of Φ and

Φ+ (resp., Φ−) the set of positive (resp., negative) roots relative to ∆. The roots

in ∆ are called simple. Actually, ∆ defines a partial order on Φ in such a way that

β ≺ α iff α− β is a sum of simple roots or β = α. For β =
∑

α∈∆

kαα ∈ Φ, the integer
∑

α∈∆

kα is called the height of β and denoted by htβ. By θ we denote the unique

maximal root in Φ. We denote by kerα, for α ∈ Φ, the kernel of α in h. For each

α ∈ Φ+, let eα be a non-zero element of gα, then there is a unique element e−α ∈ g−α

such that eα, e−α, hα = [eα, e−α] span a three-dimensional simple subalgebra of g
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isomorphic to sl(2, F ) via eα 7→
(

0 1

0 0

)

, e−α 7→
(

0 0

1 0

)

, hα 7→
(

1 0

0 −1

)

. The set

{hα, eβ, e−β | α ∈ ∆, β ∈ Φ+} forms a basis of g. If α, β, α + β ∈ Φ, since [eα, eβ ] is

a scalar multiple of eα+β , then we define Nα,β by [eα, eβ] = Nα,βeα+β , which we call

the structure constants of g. We can choose a basis {hα, eβ, e−β | α ∈ ∆, β ∈ Φ+}

of g such that all structure constants of g are integers, which we call a Chevalley

basis of g. In the remainder of this paper, the set {hα, eβ, e−β | α ∈ ∆, β ∈ Φ+} will

always denote a Chevalley basis of g. For the base ∆ of Φ, let d∆ = {dα | α ∈ ∆} be

the dual basis of h relative to ∆. Namely, β(dα) takes the value 0 when β 6= α ∈ ∆

and takes the value 1 when β = α ∈ ∆. A symmetric bilinear form ( , ) is defined

on the l-dimensional real vector space spanned by Φ, which is dual to the Killing

form on g. For α, β ∈ Φ, let 〈β, α〉 = 2(β, α)/(α, α). If α 6= ±β, let p, q be the

greatest non-negative integers for which β − pα, β + qα ∈ Φ, then 〈β, α〉 = p− q, and

Nα,β = ±(p + 1). A subalgebra p of g is called parabolic if it includes some Borel

subalgebra. For each subset π of ∆, let Φπ = Zπ ∩ Φ, Φ−
π = Φπ ∩ Φ−. Define pπ

to be the subalgebra of g generated by all gα, α ∈ ∆ or α ∈ −π, along with h. If

π = ∅, then pπ is a Borel subalgebra of g, which is denoted by b. It is well known

that every parabolic subalgebra of g is conjugate under an inner automorphism to

one of the pπ, thus in order to determine the triple automorphisms of an arbitrary

parabolic subalgebra of g, it suffices to determine those of pπ. We now introduce

several types of standard triple automorphisms for pπ, and later on we will use them

to build every triple automorphism of pπ.

(i) If x ∈ pπ is ad-nilpotent, then the map exp(adx) is an automorphism of pπ.

We denote by Int(pπ) the group generated by all such elements. Each element in it

is called an inner automorphism of pπ. For α ∈ Φ+ ∪Φ−
π and t ∈ F , teα is obviously

ad-nilpotent in pπ, so the map σα(t) = exp(ad teα) is an inner automorphism of pπ.

(ii) Let ̺ be a symmetry (nontrivial or trivial) of the Dynkin diagram of Φ, or

equivalently, 〈̺(α), ̺(β)〉 = 〈α, β〉 for any α, β ∈ ∆. If α ∈ π implies that ̺(α) ∈ π,

then ̺ can be extended to an automorphism ¯̺ of Φ+ ∪ Φ−
π by

∑

α∈∆

kαα 7→
∑

α∈∆

kα̺(α).

Using ¯̺ we can define an automorphism ϕ̺ of pπ in the following way:

∑

α∈∆

aαhα +
∑

α∈Φ+∪Φ−

π

bαeα 7→
∑

α∈∆

aαh̺(α) +
∑

α∈Φ+∪Φ−

π

bαrαe ¯̺(α), aα, bα ∈ F,

where rα = ±1 and rαr−α = 1 if α ∈ Φπ; and N ¯̺(α), ¯̺(β)rαrβ = Nα,βrα+β if α + β is

also a root. ϕ̺ is called a graph automorphism of pπ.

(iii) Let P = ZΦ be the set of all Z-linear combinations of the elements of Φ. It

is a free abelian group of rank l and has ∆ as a basis. A homomorphism χ from the
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additive group P into the multiplicative group F ∗ of non-zero elements of F is called

a character of P . Each character χ of P gives rise to an automorphism ϕχ of pπ, by

h +
∑

α∈Φ+∪Φ−

π

aαeα 7→ h +
∑

α∈Φ+∪Φ−

π

aαχ(α)eα, h ∈ h, aα ∈ F.

ϕχ is called a diagonal automorphism of pπ.

(iv) Define ω : pπ → pπ by

h +
∑

α∈Φ+∪Φ−

π

aαeα 7→ −h +
∑

α∈Φ+∪Φ−

π

(−1)(1+ht α)aαeα, h ∈ h, aα ∈ F.

Obviously ω2 is just the identity map, thus ω is invertible. It is not difficult to verify

that the following equalities hold, where h, d ∈ h, β, γ ∈ Φ+ ∪ Φ−
π :

(1) ϕ([h, [eβ , eγ ]]) = ([ϕ(h), [ϕ(eβ), ϕ(eγ)]]);

(2) ϕ([eβ , [h, eγ ]]) = ([ϕ(eβ), [ϕ(h), ϕ(eγ)]]);

(3) ϕ([h, [d, eγ ]]) = ([ϕ(h), [ϕ(d), ϕ(eγ)]]);

(4) ϕ([eγ , [h, d]]) = ([ϕ(eγ), [ϕ(h), ϕ(d)]]).

Since h along with eβ, β ∈ Φ+ ∪ Φ−
π span pπ, we conclude that ω is exactly a triple

automorphism of pπ, which we call an extremal triple automorphism of pπ. But it

fails to be an automorphism of pπ, since ω([dα, eα]) = eα 6= [ω(dα), ω(eα)] = −eα for

α ∈ ∆.

In this article we will show that any ϕ ∈ TAut(pπ) is just a composition of those

standard maps. To prove this statement, we need some preliminary results.

Lemma 2.1. Let ϕ ∈ TAut(pπ), then [x, y] = 0 ⇔ [ϕ(x), ϕ(y)] = 0.

P r o o f. Suppose [x, y] = 0, then [z, [x, y]] = 0 for every z ∈ pπ. Applying ϕ we

have that [ϕ(z), [ϕ(x), ϕ(y)]] = 0 for every z ∈ pπ. Since ϕ(z), z ∈ pπ exhaust pπ, the

element [ϕ(x), ϕ(y)] must belong to the center of pπ, so it must be zero. Considering

ϕ−1, we get the converse result. �

For β ∈ Φ+ ∪ Φ−
π , let

Xβ = {α ∈ Φ+ ∪ Φ−
π | α + β ∈ Φ ∪ {0}};

Yβ = {α ∈ Φ+ ∪ Φ−
π | α + β /∈ Φ ∪ {0}}.
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Lemma 2.2. Let h ∈ h, β ∈ Φ+ ∪ Φ−
π . If α(h) = 0 for all α ∈ Yβ , then h = 0.

P r o o f. Let ∆1 = ∆ ∩ Yβ and ∆2 = ∆ ∩ Xβ . Then α(h) = 0 for each α ∈ ∆1.

For α ∈ ∆2, let k be the maximal positive integer such that α + kβ ∈ Φ ∪ {0}, i.e.,

α+kβ ∈ Φ∪{0} and α+(k+1)β /∈ Φ∪{0}. Then one will see that α+kβ ∈ Φ+∪Φ−
π .

Thus (α+kβ)(h) = 0 (by assumption). It follows that α(h) = 0 (note that β(h) = 0).

Therefore, α(h) = 0 for all α ∈ ∆, forcing h = 0. �

For later use, we need to extend the definition of ϕ ∈ TAut(pπ) to the whole g

by sending eβ to zero for each β ∈ Φ− \ Φ−
π and extending linearly. For brevity, the

extension of ϕ is also denoted by ϕ.

Lemma 2.3. Let ϕ ∈ TAut(pπ), d ∈ h.

(i) Each ϕ(eβ), β ∈ Φ+ ∪ Φ−
π , is an eigenvector of ϕ(d). In particular, ϕ(d) is

semisimple;

(ii) ϕ sends a semisimple element to a semisimple one;

(iii) ϕ sends a Cartan subalgebra to a Cartan subalgebra;

(iv) There exists σ ∈ Int(pπ) such that σ · ϕ stabilizes h;

(v) If ϕ stabilizes h, then for each α ∈ Φ+ ∪ Φ−
π , there exists β ∈ Φ+ ∪ Φ−

π such

that ϕ(gα) = gβ .

P r o o f. For (i), if β(d) = 0, Lemma 2.1 shows that [ϕ(d), ϕ(eβ)] = 0, the

assertion holds. Now assume that β(d) 6= 0. Because ϕ(h) and ϕ(eγ), γ ∈ Φ+ ∪ Φ−
π ,

span pπ, we may assume that

[ϕ(d), ϕ(eβ)] = ϕ(tβ) +
∑

γ∈Φ+∪Φ−

π

bγϕ(eγ), tβ ∈ h, bγ ∈ F.

If there exists some β0 ∈ Φ+ ∪ Φ−
π , distinct from ±β, such that bβ0

6= 0, we choose

h ∈ h such that β(h) = 0 and β0(h) 6= 0. Considering the equality

[ϕ(h), [ϕ(d), ϕ(eβ)]] =

[

ϕ(h), ϕ(tβ) +
∑

γ∈Φ+∪Φ−

π

bγϕ(eγ)

]

,

we find that the left-hand side of the equality is just zero since [h, [d, eβ]] = 0. Thus

[

ϕ(h), ϕ(tβ) +
∑

γ∈Φ+∪Φ−

π

bγϕ(eγ)

]

= 0,

which leads to
[

h, tβ +
∑

γ∈Φ+∪Φ−

π

bγeγ

]

=
∑

γ∈Φ+∪Φ−

π

bγγ(h)eγ = 0,
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which is absurd since bβ0
β0(h) 6= 0. So [ϕ(d), ϕ(eβ)] = ϕ(tβ)+ bβϕ(eβ)+ b−βϕ(e−β).

It follows from [eβ, [d, eβ ]] = 0 that

[ϕ(eβ), [ϕ(d), ϕ(eβ)]] = [ϕ(eβ), ϕ(tβ + bβeβ + b−βe−β)] = 0.

This implies that [eβ , tβ + bβeβ + b−βe−β ] = 0, forcing b−β = 0. So [ϕ(d), ϕ(eβ)] =

ϕ(tβ) + bβϕ(eβ). For α ∈ Yβ , by [eα, [d, eβ]] = 0 we have that

[ϕ(eα), [ϕ(d), ϕ(eβ)]] = [ϕ(eα), ϕ(tβ + bβeβ)] = 0.

This implies that [eα, tβ + bβeβ ] = −α(tβ)eα = 0. So α(tβ) = 0 for each α ∈ Yβ ,

forcing tβ = 0 (recall Lemma 2.2). Hence [ϕ(d), ϕ(eβ)] = bβϕ(eβ). Obviously,

[ϕ(d), ϕ(h)] = 0. Since ϕ(h) along with all eβ, β ∈ Φ+ ∪ Φ−
π , span pπ, we conclude

that ϕ(d) is semisimple.

For (ii), let h be an arbitrary semisimple element in pπ, then h is contained in

a Cartan subalgebra. Since each Cartan subalgebra is conjugate under an inner

automorphism to h, we can find some σ ∈ Int(pπ), d ∈ h such that h = σ(d).

Applying (i) to ϕ(h) = (ϕσ)(d) we complete the proof.

For (iii), let C be a Cartan subalgebra of pπ : C is nilpotent and it equals its

normalizer. Since each Cartan subalgebra is conjugate under an inner automorphism

to h, we may directly assume that C is just h itself. Obviously, ϕ(h) is nilpotent

(note that it is abelian). Assume that x ∈ pπ normalize ϕ(h), and write x as

x = ϕ(t) +
∑

β∈Φ+∪Φ−

π

bβϕ(eβ), t ∈ h. Choose d0 ∈ h such that β(d0) 6= 0 for all

β ∈ Φ, and assume that [ϕ(d0), ϕ(eβ)] = aβϕ(eβ), ∀β ∈ Φ+ ∪ Φ−
π (recall (i)). Then

[x, ϕ(d0)] = −
∑

β∈Φ+∪Φ−

π

aβbβϕ(eβ) ∈ ϕ(h). It follows that bβ = 0 for all β ∈ Φ+ ∪ Φ−
π

(note that each aβ is nonzero). So x = ϕ(t) ∈ ϕ(h). This says that ϕ(h) equals its

normalizer. So ϕ(h) is also a Cartan subalgebra.

(iv) is obvious.

For (v), assume that ϕ(eα) = h +
∑

β∈Φ+∪Φ−

π

bβeβ, h ∈ h. There exists at least one

root in Φ+ ∪Φ−
π , say β0, such that bβ0

6= 0. Choose h0 ∈ h such that β0(h0) 6= 0 and

such that β(h0) 6= β0(h0) for each other β ∈ Φ+ ∪ Φ−
π distinct from β0. On the one

hand

[h0, ϕ(eα)] =
∑

β∈Φ+∪Φ−

π

β(h0)bβeβ,

on the other hand, it is just a nonzero scalar multiple of ϕ(eα) (thanks to (i)).

So we have that h = 0, and except for bβ0
, each other bβ is just zero. Hence

ϕ(eα) = bβ0
eβ0

∈ gβ0
. This implies that ϕ(gα) = gβ0

. �
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Lemma 2.3 shows that if ϕ ∈ TAut(pπ) stabilizes h, then ϕ induces a permutation

̺ϕ on Φ+ ∪ Φ−
π in such a way that ϕ(gα) = g̺ϕ(α).

Lemma 2.4. Suppose that ϕ ∈ TAut(pπ) stabilizes h, and suppose that α + β is

a root for α, β ∈ Φ+ ∪ Φ−
π . Then

(i) ̺ϕ(α) + ̺ϕ(β) is also a root, and it coincides with ̺ϕ(α + β).

(ii) ϕ([gα, gβ ]) = [ϕ(gα), ϕ(gβ)].

P r o o f. Applying ϕ to [gα, gβ] = gα+β = [h, [gα, gβ]], we have that

ϕ([gα, gβ ]) = ϕ(gα+β) = [h, [ϕ(gα), ϕ(gβ)]]

= [ϕ(gα), ϕ(gβ)].

Thus (ii) holds. The equality g̺ϕ(α+β) = [g̺ϕ(α), g̺ϕ(β)] shows that ̺ϕ(α)+ ̺ϕ(β) is

also a root, and it coincides with ̺ϕ(α + β). �

Lemma 2.5. If ϕ ∈ TAut(pπ) stabilizes h, then there exists σ ∈ Int(pπ), stabi-

lizing h, such that the permutation on Φ+ ∪ Φ−
π induced by ϕ · σ stabilizes Φ+ and

Φ−
π , respectively.

P r o o f. Obviously, if ̺ϕ stabilizes Φ+, then it stabilizes Φ−
π . So we only need

to show that ̺ϕ stabilizes Φ+. It is not difficult to see (by Lemma 2.4) that:

• For α ∈ ∆, if ̺ϕ(α) ∈ Φ−
π , then α ∈ π and ̺ϕ(−α) = −̺ϕ(α).

• If ̺ϕ(α) ∈ Φ+ for all α ∈ ∆, then ̺ϕ(β) ∈ Φ+ for all β ∈ Φ+.

Now let N(̺ϕ) be the number of positive roots sent by ̺ϕ into Φ−
π . We will

give the remainder of the proof by induction on N(̺ϕ). If N(̺ϕ) = 0, then the

assertion already holds (choose σ to be the identity map). Now assume the assertion

holds for N(̺ϕ) = m − 1 (1 6 m 6 |Φ+|). For the case that N(̺ϕ) = m, there

exists at least one γ ∈ ∆ such that ̺ϕ(γ) ∈ Φ−
π . Say that α ∈ ∆ is such a simple

root. By the above discussion, we know α ∈ π and ̺ϕ(−α) = −̺ϕ(α) ∈ Φ+. Take

wα = σα(1)σ−α(−1)σα(1) ∈ Int(pπ). One will see that wα stabilizes h, ̺wα
sends α

to −α and permutes the set Φ+ \{α}. Thus (ϕ ·wα)(gα) = ϕ(g−α) = g̺ϕ(−α), where

̺ϕ(−α) ∈ Φ+. Denote ϕ · wα by ϕ1. Then we have that N(̺ϕ1
) = N(̺ϕ) − 1. By

induction assumption, we can find σ1 ∈ Int(pπ), stabilizing h, such that (̺ϕ1·σ1
)(β) ∈

Φ+ for all β ∈ Φ+. Finally, choosing σ = wα · σ1, we complete the proof. �

The main result of this paper is as follows.
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Theorem 2.6. Let g be a finite-dimensional simple Lie algebra of rank l over an

algebraically closed field F of characteristic zero, pπ a parabolic subalgebra of g, ϕ

a triple automorphism on pπ. Then either ϕ itself is an automorphism of pπ, or it

takes the form ϕ = σ · ω, where σ is an automorphism and ω is the extremal triple

automorphism.

P r o o f. Let ϕ ∈ TAut(pπ). By Lemma 2.3, we can find some σ1 ∈ Int(pπ)

such that (σ1 · ϕ)(h) = h. By Lemma 2.5, we can choose σ2 ∈ Int(pπ) such that

the permutation on Φ+ ∪ Φ−
π induced by σ1 · ϕ · σ2 stabilizes Φ+ and Φ−

π , respec-

tively. Denote σ1 · ϕ · σ2 by ϕ1 and denote the permutation induced by ϕ1 by ̺

(for brevity). Then ̺ clearly permutes ∆ (recall Lemma 2.4). Now we shall show

that 〈̺(α), ̺(β)〉 = 〈α, β〉 for all α, β ∈ ∆. If (α, β) = 0, then [gα, gβ ] = 0. It fol-

lows that [g̺(α), g̺(β)] = 0, which leads to (̺(α), ̺(β)) = 0. So the assertion holds.

Now suppose 〈α, β〉 = −k < 0. Then α + kβ, denoted by γ, is a positive root, but

α + (k + 1)β fails to be a root. Lemma 2.4 shows that ̺(γ) = ̺(α) + k̺(β) is also

a positive root. By [gβ, gγ ] = 0, we have that [g̺(β), g̺(γ)] = 0. Thus ̺(β) + ̺(γ) is

not a root. This shows that 〈̺(α), ̺(β)〉 = −k. Now we see that ̺ is just a symmetry

of the Dynkin diagram of Φ. For each α ∈ π, it is easy to see that ̺(α) ∈ π. Using

̺ we construct the graph automorphism ϕ̺ of pπ. Then (ϕ̺)
−1 · ϕ1 stabilizes each

gα, α ∈ ∆. Furthermore, one will see, by Lemma 2.4, that (ϕ̺)
−1 ·ϕ1 stabilizes each

gβ , β ∈ Φ+. Denote (ϕ̺)
−1 · ϕ1 by ϕ2.

For any given α ∈ ∆, since Fdα =
⋂

β∈∆\{α}

Ch(gβ) and ϕ2 stabilizes Ch(gβ) for

β ∈ ∆, we have that ϕ2(Fdα) = Fdα for any α ∈ ∆. Now suppose ϕ2(dα) = cαdα

for α ∈ ∆. We wish to show that all cα, α ∈ ∆ take a common value. Write

θ as the linear combination of the simple roots: θ =
∑

α∈∆

kαα, where all kα are

positive integers. We know that Ch(gθ) =
{

∑

α∈∆

xαdα ∈ h |
∑

α∈∆

kαxα = 0
}

, which

is an l − 1 dimensional subspace of h. If
∑

α∈∆

kαxα = 0, then
∑

α∈∆

xαdα ∈ Ch(gθ).

Thus
∑

α∈∆

cαxαdα = ϕ2

(

∑

α∈∆

xαdα

)

∈ ϕ2(Ch(gθ)) = Ch(gθ), which implies that
∑

α∈∆

cαkαxα = 0. So the equation
∑

α∈∆

kαxα = 0, and the equations







∑

α∈∆

kαxα = 0,

∑

α∈∆

cαkαxα = 0

have the same solutions. So all cαkα/kα (= cα) are equal for α ∈ ∆. Now we denote

the common value by c. Let α be a fixing simple root. By [dα, [dα, eα]] = eα, we

have that [cdα, [cdα, ϕ(eα)]] = ϕ(eα), which implies that c2 = 1, namely c = 1 or −1.
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If c = 1, then ϕ2 fixes each element in h. If c = −1, then ϕ2 sends each element h in

h to −h. Considering ωδ ·ϕ2, one easily sees that it fixes each element in h, where δ

equals 1 when c = −1, and equals 0 when c = 1. Denote ωδ · ϕ2 by ϕ3.

Now suppose that ϕ3(eα) = bαeα for α ∈ ∆, and define

χ : P = ZΦ → F ∗,
∑

α∈∆

kαα 7→
∏

α∈∆

bkα

α .

Then χ is an F -character of P . Using it we construct the diagonal automorphism

ϕχ of pπ. Then ϕ−1
χ · ϕ3 will further fix each eα for α ∈ ∆. Denote ϕ−1

χ · ϕ3 by ϕ4.

Now we use induction on htβ to show that ϕ4(eβ) = eβ for all β ∈ Φ+. If htβ = 1,

the assertion already holds. Assume the assertion holds for β ∈ Φ+ with htβ = k

(1 6 k < ht θ), and consider the root γ ∈ Φ+ with height k+1. Find α ∈ ∆ such that

γ − α ∈ Φ+. Denote γ − α by β and choose h ∈ h such that γ(h) = N−1
β,α. Then by

applying ϕ4 to [h, [eβ, eα]] = eγ we know that ϕ4 also fixes eγ . So ϕ4 fixes all eβ for

β ∈ Φ+. For α ∈ π, applying ϕ4 to [eα, [e−α, eα]] = 2eα, we conclude that ϕ4 further

fixes e−α. Based on this fact, one can easily see that ϕ4 fixes each e−β for −β ∈ Φ−
π .

So ϕ4 is just the identity map on pπ. Finally we see that ϕ
−1
χ ·ωδ ·ϕ−1

̺ ·σ1 ·ϕ·σ2 = Ipπ
.

So

ϕ = σ−1
1 · ϕ̺ · ωδ · ϕχ · σ−1

2 .

If δ = 0 then ϕ itself is an automorphism, otherwise it is the composition of an

automorphism and the extremal triple automorphism ω. This completes the proof.

�

Corollary 2.7. The automorphism group Aut(pπ) of pπ is normal in TAut(pπ)

and the index [TAut(pπ), Aut(pπ)] is 2. The square of an arbitrary triple automor-

phism of pπ is an automorphism.
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