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CONFORMALLY GEODESIC MAPPINGS SATISFYING A
CERTAIN INITIAL CONDITION

HaNA CHUDA AND JOSEF MIKES

ABSTRACT. In this paper we study conformally geodesic mappings between
pseudo-Riemannian manifolds (M, g) and (M, §), i.e. mappings f: M — M
satisfying f = f1 o fa2 o f3, where f1, f3 are conformal mappings and f2 is a
geodesic mapping. Suppose that the initial condition f*g = kg is satisfied at
a point g € M and that at this point the conformal Weyl tensor does not
vanish. We prove that then f is necessarily conformal.

1. INTRODUCTION

One may say that the pioneering work in conformal and projective geometry
was done by H. Weyl [13] and T. Thomas [I2]. Corresponding Weyl tensors for
these structures are known for many decades. In that period many monographs
and research papers were devoted to these topics. Let us mention, e.g. [1] and [3]
which are closely connected to this paper.

Composing the conformal mapping first with a geodesic and then with a confor-
mal mapping give rise to the so called conformally geodesic mapping to which we
focus our attention. These mappings were studied e.g., in the papers of Hinterleit-
ner [4], Hinterleitner, Mikes [5] and of Mike§, Vanzurova and Hinterleitner [9]. In
this paper we prove that under a certain condition if two manifolds are related by
a conformally geodesic mapping the mapping is already conformal. This is a kind
of rigidity result.

Let us mention that geodesic mappings were studied under a certain additional
condition based on the proportionality of the metrics which was suppose to be
valid in a certain subset of the underlying manifold. It turns out that even under
this condition, the mapping is a homothety. See e.g. |2, [7]. We shall suppose the
condition is satisfied at a single point only. We prove the homothety result under
this milder condition in this text.

Although one can be quite precise about the degrees of differentiability of the
mappings, manifolds, tensor fields etc., we will suppose all the objects we work
with are smooth, i.e. of the class C*°, for simplicity. Because our statements are
local, the computations e.g., in the proofs, are supposed to be valid locally as well.
We will not always write that explicitly. Although in the statements we stress
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it. Due the signature is not for our reasonings, we decided to formulate them for
pseudo-Riemannian manifolds.

2. MAIN PROPERTIES OF GEODESIC AND CONFORMAL MAPPINGS

2.1. Geodesic mappings. Let us recall that a diffeomorphism f between pseu-
do-Riemannian manifolds V,, and V,, is called a geodesic mapping, if f maps any
geodesic in V,, onto a geodesic in V. Let us stress that we consider geodesics as
unparameterized curves. Thus actually when talking about geodesic mappings, we
work in the realm of projective differential geometry. Because f is a diffeomorphism,
we can actually suppose that V;, = (M, g) and V,, = (M, g), where g and g denote
the metrics defined on the manifold M. See e.g. [T}, 3] [6] [7, 9] 10} [T}, T2} [13] where
these objects are investigated.

It is known that a diffeomorphism of M is geodesic if and only if so called the
Levi-Civita equation ([6]), i.e.

(1) (V= V)xX =20(X) - X
or equivalently
(2) Vzg(X,Y) =24(Z2)g(X,Y) + ¢(X)g(Y, Z) + ¢(Y)g(X, Z)

holds. Here, V and V are the Levi-Civita connections on V,, and V,,, ¢ is a
differential 1-form and X,Y, Z are vector fields tangent to M. If ¢» = 0, then the
geodesic mapping is called affine or sometimes, trivial. The latter name is used
because the diffeomorphism preserves not only the geodesics but also the geodesics
considered with their “preferred” parameterizations.

It is also known that if the equations above are satisfied, there exists a function

¥ on M such that ¢; = aq/i. To prove this, take e.g. ¥ = 2(n1—|— T ggzz .
x

There is the so called projective Weyl tensor W, which measures the projective
features of (M, g). Let us recall the definition and describe its meaning at once. If
there is a geodesic mapping from V,, onto V,,, the projective Weyl tensor defined by

1
(3) Wl =Rl — — (ORRij — 0" Rix)

)ln‘

remains invariant (i.e. W = W). Here, thj  are the components of the Riemannian
tensor of (M, g) and R;; = RY;, are the components of the corresponding Ricci
tensor with respect to orthogonal basis.

It is known, that a pseudo-Riemannian manifold V,, (n > 2) is a space of constant
curvature if and only if the projective Weyl tensor vanishes (W = 0). For n = 2,
the projective Weyl tensor W vanishes identically.

An analysis of the Levi-Civita equations gives to the following theorem.

Theorem 1 (Chud4, Mikes [2]). Let f be a geodesic mapping between pseudo-Rie-
mannian manifolds (M, g) and (M, g), o € M and Ty = f(x¢). Suppose that the
initial condition g(Zo) = k - g(xo) is satisfied for a k € R. If the projective Weyl
tensor does not vanish at xq, then the mapping f provides a homothety between
(M,g) and (M,g), i.e.g =k-g.
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2.2. Conformal mappings. Now, let us turn our attention to conformal struc-
tures. A diffeomorphism f between pseudo-Riemannian manifolds V,, and V,, is
called a conformal mapping, if f preserves angles between all (smooth) curves on
V,,. We will again suppose, M = M. Equivalently, a mapping f of V,, = (M, g)
onto V,, = (M, g) is conformal if and only if

(4) g=r-9,

where p is a nowhere zero function on M.
From the equation it follows that

(5) (V-V)xX =20(X) - X - g(X,X)- %,

where o(X) = 3 VxIn|p|, 0(X) = g(X,%) and X is an arbitrary tangent vector.
As in the projective situation, we have the so called conformal Weyl tensor at

our disposal. Let us recall its definition

(6) Cihjk = thjk + 5?Lik — OpLij + L;Lgik + Ligi;,
1 R
where L;; = P (Rij — ﬁ Gij)s L? =g¢" Ly, R= Ra,gg"‘ﬁ is the scalar
n— n—

curvature and g% are components of the inverse matrix of g;;. As in the case of the
geodesic mappings, a parallel theorem is known. If there is a conformal mapping
V,, — V,, (n > 2), the conformal Weyl tensor remains invariant (i.e. C = C). The
converse is not true. The round spheres as well as its suitable quotients satisfy
C = 0 but they are even not diffeomorphic, thus certainly not globally conformally
equivalent.

For n > 3, a pseudo-Riemannian space is locally conformally flat if and only if,
the conformal Weyl tensor vanishes (C' = 0). For n = 3 the conformal Weyl tensor
C always vanishes identically. (But ofcourse this does not mean that all three
dimensional manifolds are conformally flat, but rather that the Weyl tensor defined
above is not a suitable tool for recognizing conformal flatness in this dimension. Let
us remark that the flatness in this case is measured by the so called Cotton-York
tensor.)

Spaces of constant curvature are characterized by the vanishing of the projective
Weyl tensor (W = 0). These spaces form a special subclass of conformally flat
spaces.

Using the Weyl symmetry analysis, we obtain the following claim.

Lemma 1. Let zg be a fized point on M and n > 2. If W(xo) = 0, then C(xo) = 0.

Proof. Suppose W (zy) = 0. We suppose the tensors are evaluated at this point
not writing it explicitly. It follows from that

1

After a contraction of the previous equation by ¢/, we obtain that the Ricci tensor

has the following form

R
Ri; = o i
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Substituting the Riemann and Ricci tensors into @, we find that C’ihjk = 0. 0

Remark 1. One can easily see that the converse is not true.

3. CONFORMALLY GEODESIC MAPPINGS

After we have sketched some basic properties of geodesic and conformal mappings,
let us focus our attention to the already mentioned conformally geodesic ones.
In papers [4, [B] of Hinterleitner the so called conformally projective mappings
were studied. These mappings are closely related to our subject. Inspired by her
observations, we will derive some further results on them. We say that f: V,, — V,,
is conformally geodesic if f = f1 o fo o f3, where

1

f1: V=M, 9) =V, = (M,glr ) is a conformal mapping,
1 2

fo: Vi, = (M,gly )=V, = (M7g2] ) is a geodesic mapping and
2 _

f3:V, = (M,gzy )=V, =(M,q) is a conformal mapping.

We may again suppose that all of the three pseudo-Riemannian manifolds
coincide (as smooth manifolds) and differ by the metrics only.

First, let us derive the following consequence of Theorem [1| (conformally geodesic
Levi-Civita relations).

Theorem 2. A diffeomorphism f:V,, = (M,g) — V,, = (M,g) is a conformally
geodesic mapping if and only if for each vector field X the following condition hold
(7) (V=V)xX =2¢(X) - X +g(X, X) - T+ 3(X, X) - Q,

where Y is a differential 1-form, ¥ and Q are vector fields and there exist functions
o1, 05 and o5 on M such that for each field X,

Proof. The necessity of and the existence of the functions o7, 05 and g% follows
from the relations and . The conditions are sufficient due to the following
observation. Suppose the conditions are satisfied. Then one may construct metrics

1 2 _
g =exp(—207)-g, and g =exp(203)- 9.
Computing the difference between the Levi-Civita connections associated to é

and 527 , we get

2 1
(V = V)xX = (2¢(X) = Vxor = Vxep) - X.

Thus according to , the spaces ‘}n and ‘;n are in geodesic correspondence. [

It is evident that the relation of ‘being conformally geodesically equivalent’ is
symmetric and reflexive. Unfortunately, the conformal geodesic mappings do not
form a group because of lack of transitivity - the relation is not an equivalence rela-
tion. Nevertheless, we found the following solution to the appropriate ’equivalence
problem’ though, only partial.
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Theorem 3. Let f be a conformally geodesic mapping between two pseudo-Rie-
mannian manifolds (M, g) and (M, g) Suppose the metrics are homothetic at x,
i.e. g(f(zo)) =k-g(xo), k € R and C(xg) # 0. Then f is a conformal mapping.

Proof. Let V,, = (M, g) admit a conformally geodesic mapping f onto V;,, = (M, g)
and at the point zp € M the following equation holds

gij (f(z0)) =k - gij(wo) -

. 1 1
Because of the existence of conformal equivalences between, we have g = o -
2 2
g and g =0 -g and in particular,

g (wo) = 0 (20) - g(zo)  and  G(zo) =& (x0) - § (wo).

Combining the three last written equation, we get

G (20) - § (o) = k- (7 (20)) ™" - g (o) ,

(8) 3 (z0) = C - § (w0),

*
where C' =k - (0 (o) - & (o))"
We know that C(z() # 0. Because the tensor C of the conformal Weyl tensor is

1
conformally invariant, it does not vanish after translating it to the space V (xg)
1
via a diffeomorphis, i.e. C (xg) # 0. Using Lemmawe know that the projective

1
Weyl tensor of V,, does not vanish as well, i.e.
1

1 2
Using T heoremwe obtain that the geodesic mappings fs: V,, — V,, is a homothety.
Therefore

5 = const - é globally.
Using relation @ we find
g:al -const-g -g.
This means that the mapping f = fi o fo o f3 is conformal. (]

We hope that this is a beginning of the study of equivalence problems for
structures not forming a group in general.
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