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A CONSUMPTION-INVESTMENT PROBLEM MODELLED
AS A DISCOUNTED MARKOV DECISION PROCESS

Hugo Cruz-Suárez, Raúl Montes-de-Oca and Gabriel Zacaŕıas

In this paper a problem of consumption and investment is presented as a model of
a discounted Markov decision process with discrete-time. In this problem, it is assumed
that the wealth is affected by a production function. This assumption gives the investor a
chance to increase his wealth before the investment. For the solution of the problem there
is established a suitable version of the Euler Equation (EE) which characterizes its optimal
policy completely, that is, there are provided conditions which guarantee that a policy is
optimal for the problem if and only if it satisfies the EE. The problem is exemplified in
two particular cases: for a logarithmic utility and for a Cobb-Douglas utility. In both cases
explicit formulas for the optimal policy and the optimal value function are supplied.

Keywords: discounted Markov decision processes, differentiable value function, differen-
tiable optimal policy, stochastic Euler equation, consumption and investment
problems

Classification: 93E12, 62A10

1. INTRODUCTION

This paper concerns a problem of consumption and investment (see [9, 10, 11, 19, 21]
and [22]). It was inspired by [9] and [19]. In these references there is considered an
investor, who wants to increase his wealth at each time (t = 0, 1, 2, . . .); in this case,
it is assumed that the investor wishes to allocate his wealth between investment and
consumption. Then the objective is to maximize his utility consumption.

In this paper a generalization of the model presented in [9, 10] and [19] is given.
In those references, it was assumed that the utility is obtained by a logarithmic
or exponential function; now there is considered a general utility function. Also,
it is assumed that an investor’s wealth is affected by a production function, with
the usual properties (see [18]). In economic growth models the production function
has been used both in deterministic and stochastic cases (see [5], [11, 18, 20] and
[22]). In those cases, the production function was affected by a exogenous variable;
in this article, however, it is assumed that the investment is perturbed by a random
noise, which represents an interest rate risk. Those classes of model are important
in portfolio selection (see [17]) and optimal savings problems (see, [2] and [3]), where
the risky investment is prevalent.
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In order to find the optimal solution to the problem of consumption and invest-
ment, it is presented as a discounted discrete-time Markov Decision Process, with
real state and action spaces (see, [5, 9, 11, 18, 19, 20] and [22]).

To do so, firstly, there are studied conditions to guarantee the differentiability of
the optimal solution (i. e. the optimal value function and the optimal policy) for the
discounted Markov Decision Processes (MDPs) on real spaces. Besides a functional
equation to characterize the optimal policy is established; this equation is known
as Euler Equation (EE). In particular, a version of the EE in terms of the value
iteration functions is obtained.

The EE has been applied in various economic branches. For example, in asset
prices (see [10] and [12]) and economic growth (see [5, 11, 18, 20] and [22]). The
methodology to solve the EE, in some papers (see [13] and [19]), involves charac-
terizing the optimal policy and proposing a particular class of policies to determine
the solution. One of the contributions of this work consists in obtaining a new
stochastic version of the EE, in terms of the value iteration functions, and the other
contribution is doing it in terms of the optimal policy. This is an extension of the
version presented in [7]: in this work a version of the EE is obtained for deterministic
system.

Secondly, for the problem of consumption and investment modelled as a dis-
counted Markov decision process there is established a version of the EE and, with
an additional condition, it is obtained that, if the optimal policy satisfies the EE,
then it is optimal. This part of the article is exemplified in two particular cases,
considering a logarithmic utility and a Cobb-Douglas utility. In both cases explicit
formulas for the optimal policy and the optimal value function are given.

The paper is organized as follows. In Section 2 there is introduced the basic
theory referring to MDPs. After that, in Section 3, there are presented some preview
results about the differentiability and Euler equation in the context of discounted
MDPs. In Section 4, the problem of consumption and investment is posed and
some results about this model are given. Finally, the theory is exemplified with two
classical examples; for these instances all the assumptions considered in the paper
are verified.

2. MARKOV DECISION PROCESSES: BASICS

A discrete-time Markov Decision Model (MDM) (see [4, 14] and [15]) consists of five
elements:

(X,A, {A(x)|x ∈ X}, Q, r),

where X and A are Borel spaces of R, both with non-empty interior. X and A are
called the state space and the action space, respectively. {A(x)|x ∈ X} is a family
of non-empty and measurable subsets A(x) of A, where A(x) denotes the set of
feasible actions when the system is in state x ∈ X. Let K be the set of state-action
pairs:

K := { (x, a)|x ∈ X, a ∈ A (x)} .

Q( ·| ·), called the transition law, is a stochastic kernel on X given K, and r : K → R
is a measurable function called the one-step reward function.
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The dynamics described in this stochastic system works as follows: if the system
is observed at a time t, the state considered is xt = x ∈ X and action at = a ∈ A(x)
is applied, then two things happen:

a) a reward r(x, a) is obtained and

b) the system moves to the next state xt+1 by means of the transition law Q.

Throughout this paper it will be assumed that X, A and A(x), x ∈ X, are convex
sets. It is also assumed that the transition law Q is given by a difference equation
of the type:

xt+1 = L(F (xt, at), ξt), (1)

t = 0, 1, . . ., with a given initial state x0 = x, where {ξt} is a sequence of independent
and identically distributed (i.i.d.) random variables, independent of x and taking
values in a Borel space S ⊂ R. Let ξ be a generic element of the sequence {ξt}. The
density of ξ is designated by ∆ and its probability distribution, by µ; L : X ′×S → X
is a measurable function, with X ′ ⊂ R, and F : K → X ′, is a measurable function
too.

In general, a policy is a sequence π = {πt} of stochastic kernels, defined on A
given the history of the process. Π is used to denote the set of policies. A particular
class of these policies are the stationary ones:

F :=
{
f : X → A| f is a measurable function and f(x) ∈ A(x) for all x∈X

}
(in this case π is denoted by f).

For each π ∈ Π and x ∈ X, it will be defined that

v(π, x) := Eπ
x

[ ∞∑
t=0

αtr(xt, at)

]
.

v(π, x) is called total discounted reward, where α ∈ (0, 1) is the discount factor.

Definition 2.1. A policy π∗ ∈ Π is optimal, if for each x ∈ X,

v(π∗, x) = sup
π∈Π

v(π, x).

The function defined by
V (x) := sup

π∈Π
v(π, x),

x ∈ X, will be called the optimal value function.

The optimal control problem consists in determining an optimal policy.

Definition 2.2. A measurable function λ : X → R is said to be a solution to the
optimality equation (OE) if it satisfies

λ(x) = sup
a∈A(x)

{r(x, a) + αE [λ(L(F (x, a), ξ))]} , (2)

x ∈ X.
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Definition 2.3. The value iteration functions are defined as

vn(x) = max
a∈A(x)

{r(x, a) + αE[vn−1(L(F (x, a), ξ))]} , (3)

for all x ∈ X and n = 1, 2, . . ., with v0(x) = 0.

Remark 2.4. Under certain assumptions (see [14] and [15]), it is possible to demon-
strate that for each n = 1, 2, . . ., there exists a stationary policy fn ∈ F such that
the maximum in (3) is attained, i. e.,

vn(x) = r(x, fn(x)) + αE[vn−1(L(F (x, fn(x)), ξ))],

x ∈ X.

The Assumption 2.5 named, for short, Basic Assumption (BA) is fulfilled in a
wide variety of cases. (See, for example, [14], p. 46, Assumptions 4.2.1 and 4.2.2,
and Theorem 4.2.3, and also see Lemma 4.2.8, p. 49.)

Assumption 2.5.

a) The optimal value function V is a solution to the OE (see (2)).

b) For every x ∈ X, vn(x) → V (x), as n→∞.

3. MARKOV DECISION PROCESSES: PRELIMINARY RESULTS

Throughout this section it is assumed that BA holds. Let X and Y be Euclidian
spaces and consider the following notation: C2(X,Y ) denotes the set of functions
l : X → Y with a continuous second derivative (when X = Y , C2(X,Y ) will be
denoted by C2(X) and in some cases it will be written only as C2).

Let Γ : X×Y → R be a measurable function such that Γ ∈ C2(X×Y,R). Γx, Γy

and Γyy denote the partial derivative of Γ with respect to x and y, and the second
partial derivative with respect to y. The interior of the set X is denoted by int(X).

Let Λ : K → R be a measurable function and

λ(x) := sup
a∈A(x)

Λ(x, a),

x ∈ X.

The proof of the following theorem, can be consulted in [8], Theorem 1.

Theorem 3.1. Suppose that

a) Λ ∈ C2(int(K); R). Furthermore, Λaa(x, ·) < 0, for every x ∈ X.

b) There is a function f : X → A such that f(x) ∈ int(A(x)) and λ(x) =
Λ(x, f(x)), for every x ∈ X.

Then f ∈ C1(int(X);A) and λ ∈ C2(int(X); R).



A consumption-investment problem as a discounted MDP 913

Define G : K → R by

G(x, a) := r(x, a) + αH(x, a), (4)

where H(x, a) = E [V (L(F (x, a), ξ))], (x, a) ∈ K.

The following result is a direct consequence of the previous theorem.

Theorem 3.2. Suppose that r, H ∈ C2(int(K); R), raa(x, ·) < 0 and Haa(x, ·) ≤ 0
and f(x) ∈ int(A(x)), for every x ∈ X, where f is the optimal policy. Then
f ∈ C1(int(X);A) and V ∈ C2(int(X); R).

Theorem 3.3. Suppose that

a) r, H ∈ C2(int(K); R), raa(x, ·) < 0, Haa(x, ·) ≤ 0 and Fa(x, a) is invertible;

b) f(x) ∈ int(A(x)) for every x ∈ X.

Then f satisfies the Euler’s equation

(raF−1
a )(x, f(x)) = −αE

[
W (L(F (x, f(x)), ξ), f (L(F (x, f(x)), ξ))) (5)

L′(F (x, f(x)), ξ)
]
,

for each x ∈ int(X), where the function W is defined by

W (x, a) :=
[
rx − raF

−1
a Fx

]
(x, a), (6)

(x, a) ∈ K.

P r o o f . Fix x ∈ X. Note that the assumptions of Theorem 3.2 hold, then f ∈
C1(int(X);A) and V ∈ C2(int(X); R) and therefore G ∈ C2(int(K); R) where G is
defined in (4). Thus, it follows that for a ∈ int(A(x)),

Ga(x, a) = ra(x, a) + αE [V ′ (L (F (x, a), ξ))L′(F (x, a), ξ)]Fa(x, a).

Then, using the first-order condition and the invertibility of Fa, it follows that,
Ga(x, f(x)) = 0, i. e.,

− raF
−1
a (x, f(x)) = αE [V ′ (L (F (x, f(x)), ξ))L′(F (x, f(x)), ξ)] . (7)

On the other hand, since V satisfies (2) and f ∈ F is the optimal policy, then

V (x) = r(x, f(x)) + αE [V (L (F (x, f(x)), ξ))]
= G(x, f(x)).

Thus using that Ga(x, f(x)) = 0, it is possible to obtain the following envelope
formula:

V ′(x) = Gx(x, f(x)) +Ga(x, f(x))f ′(x),
= Gx(x, f(x))
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equivalently,

V ′(x) = rx(x, f(x)) + αE [V ′ (L (F (x, f(x)), ξ))L′(F (x, f(x)), ξ)]Fx(x, f(x)). (8)

Substituting (7) in (8), it is obtained that

V ′(x) = W (x, f(x)), (9)

hence

V ′ (L (F (x, f(x)), ξ)) = W (L(F (x, f(x)), ξ), f (L(F (x, f(x)), ξ))) . (10)

Finally, (5) is obtained by substituting (10) in (7). Since x is arbitrary, Theorem
3.3 follows. �

4. CONSUMPTION-INVESTMENT PROBLEM

In this section, there is considered a consumption-investment model defined as fol-
lows. Suppose that at each time t, the current wealth xt generates an output
h(xt), and a part of it, at, is consumed, and the rest it = h(xt) − at is invested
(h : [0,∞) → [0,∞) is a production function). It is assumed that borrowing is not
allowed, so it ∈ [0, h(xt)] and, equivalently, at ∈ [0, h(xt)]. This investment will lead
to another wealth in the next period t+1; in this case, it is assumed that the relation
between wealth and consumption is given by

xt+1 = ξt(h(xt)− at),

t = 0, 1, 2, . . ., where {ξt} is a sequence of i.i.d. random variables taking values in
S = [0,∞), independent of x0, where x0 = x ∈ X = [0,∞) is the initial capital
stock. Let ξ be a generic element of the sequence {ξt}; it is assumed that ξ is a
random variable with density ∆ ∈ C2([0,∞)). In this case, ξ is the return per
invested dollar.

Assumption 4.1. It is assumed that the function h satisfies the following:

a) h ∈ C2((0,∞)),

b) h is concave on X,

c) h′ > 0 and h(0) = 0.

The set of feasible actions is given for each x0 = x ∈ X as A(x) = [0, h(x)].
The objective is to maximize the investor’s consumption utility over all π ∈ Π:

v(π, x) = Eπ
x

[ ∞∑
t=0

αtU(at)

]
, (11)

where U : [0,∞) → R is a measurable function, which is called utility function.
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Assumption 4.2. The utility function U satisfies the following properties:

a) U ∈ C2((0,∞),R), which is strictly increasing and strictly concave,

b) U ′ is invertible with the inverse u,

c) U ′(0) = ∞ and lim
x→∞

U ′(x) = 0,

d) there exists a function ϑ defined on S such that E[ϑ(ξ)] <∞, and

|U ′(h(s(h(x)− a)))h′(s(h(x)− a))s∆(s)| ≤ ϑ(s), (12)

s ∈ S, a ∈ (0, h(x)).

e) The interchange between derivatives and integrals is valid (see Remark 4.3).

Remark 4.3. The Assumption 4.2 d) will be used in the proof of Lemma 5.3 to
ensure the interiority of the optimal policy. And the Assumption 4.2 e) will be used
in the proof of Lemma 5.1. This assumption in some particular cases can be verified
by means of the Dominated Convergence Theorem (see Assumption 5.4, below).

Throughout the paper, the model described is named Consumption-Investment
Problem (CIP).

4.1. Remarks about the CIP

1. In the MDP’s literature there exist conditions to guarantee the validity of BA
(see Assumption 2.5) for CIP. For example:

a) BA holds if there exists a sequence {Xj}j∈N0 of non-empty Borel subsets
of X such that Xj ⊂ Xj+1 for all j ∈ N0 := N ∪ {0} and

X =
⋃
j≥0

int(Xj).

Besides, for any j ∈ N0 let mj be

mj := sup
x∈Xj

sup
a∈A(x)

u+(a), (13)

where u+(a) = max{u(a), 0}. Assume that m0 > 0, mj < ∞ for every
j ∈ N0 and

αlim sup
j→∞

mj+1

mj
< 1. (14)

Finally, suppose that for each j ∈ N0 and x ∈ Xj , a ∈ A(x),

Q(Xj+1|x, a) = 1, (15)

then by Theorem 1 in [16], BA holds.
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b) If there exists a continuous weight function w and constants c, β > 0 such
that 1 ≤ β < 1/α and, for every x ∈ X,

sup
a∈[0,h(x)]

|U(a)| ≤ cw(x), (16)

sup
a∈[0,h(x)]

E [w(ξ(h(x)− a))] ≤ βw(x), (17)

then by Theorem 4.1 in [15], BA holds.

2. In the economics literature Assumption 4.2 c) is known as Inada’s condition
(see [5, 11, 18, 19, 20, 21] and [22]). In some papers a similar assumption for
the production function is considered (see [5, 11, 20, 21] and [22]). Now, in
this paper the Inada’s condition for the production function is not necessary.

3. For the CIP there exists an optimal policy. Indeed, let θ be a bounded-
continuous function on X and define

Θ(x, a) = E[θ(ξ(h(x)− a))], (18)

(x, a) ∈ K. Observe that Θ is continuous in a ∈ [0, h(x)] for each x ∈ X. In
this case the transition law is weakly continuous (see [14]). Since the utility
function is continuous and A(x) is a compact set, for each x ∈ X, by Theorem
3.3.5 in [14] there exists an optimal policy.

4. Observe that the CIP satisfies a similar condition (in terms of rewards) to Con-
dition 1 (C1) of [6], so it is possible to guarantee that V is strictly increasing,
strictly concave and the optimal policy is unique.

5. MAIN RESULTS ABOUT THE CIP

Firstly note that the value iteration functions are given by:

vn(x) = max
a∈[0,h(x)]

{U(a) + αE [vn−1(ξ(h(x)− a))]} ,

x ∈ X, n ≥ 1, with v0(x) = 0. And the corresponding dynamic progamming
equation for the CIP is given by

V (x) = max
a∈[0,h(x)]

{U(a) + αE [V (ξ(h(x)− a))]} , (19)

x ∈ X.
For each n ≥ 1, define Gn : K̂→ R by

Gn(x, a) = U(a) + αHn(x, a),

where Hn : K̂→ R is defined as

Hn(x, a) := E[vn−1(ξ(h(x)− a))], (20)

and
K̂ := { (x, a)|x > 0, a ∈ (0, h(x))} . (21)
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Lemma 5.1. For the value iteration functions there exist their maximizers {fn}n≥1

and for n ≥ 2, fn(x) ∈ (0, h(x)) with x > 0. Furthermore, vn ∈ C2((0,∞); R) and
fn ∈ C1((0,∞)).

P r o o f . The proof will be made by induction. Fix x > 0. Since U is increasing,
then v1(x) = U(h(x)) and f1(x) = h(x). Take n = 2. By definition,

v2(x) = max
a∈[0,h(x)]

{
U(a) + αH2(x, a)

}
,

where H2 is defined as in (20). It is known that U ∈ C2((0,∞),R) and h ∈
C2((0,∞)), and that both are concave, hence v1 ∈ C2((0,∞); R),

v′1(x) = U ′(h(x))h′(x)

and v′′1 (x) < 0. By Assumption 4.2 e), H2 ∈ C2(K̂; R) and H2
aa(x, a) < 0. Therefore,

G2 ∈ C2(K̂; R).
Note that v′1(0) = ∞ and since

G2
a(x, a) = U ′(a)− αE [v′1(ξ(h(x)− a))ξ] ,

then, from Assumption 4.2 c), it follows that G2
a(x, 0) = +∞ and G2

a(x, h(x)) =
−∞. Now by the Intermediate Value Theorem, there is a ∈ (0, h(x)) such that
G2

a(x, a) = 0. Observe that G2 is strictly concave, therefore a := f2(x) is unique.
Now using the fact that v2(x) = G2(x, f2(x)) and applying Theorem 3.1(in this

case, taking Λ = G2 and λ = v2), it is possible to obtain that v2 ∈ C2((0,∞); R)
and f2 ∈ C1((0,∞)). Note also that v′2(0) = ∞, by Assumption 4.2 c).

Suppose that for some n > 2, vn−1 ∈ C2((0,∞); R), v′′n−1(x) < 0 and v′n−1(0) =
∞. Again, since

vn(x) = max
a∈[0,h(x)]

{U(a) + αHn(x, a)} ,

and in a similar way to the case n = 2, it is possible to conclude that Hn ∈ C2(K̂; R)
and Hn

aa(x, a) < 0. Then fn(x) ∈ (0, h(x)), Gn ∈ C2(K̂; R) and Gn is strictly
concave. Finally, using Theorem 3.1(in this case, taking Λ = Gn and λ = vn) it is
possible to guarantee that vn ∈ C2((0,∞); R) and fn ∈ C1((0,∞)). �

Now, there is presented a version of Euler’s equation (EE) for the value iteration
functions.

Lemma 5.2. The value iteration functions satisfy the Euler’s equation

v′n(x) = αE
{
v′n−1 [ξ (h(x)− u (v′n(x) /h′(x) ))] ξ

}
h′(x), (22)

for all x ∈ (0,∞).

P r o o f . Let x > 0 and n ≥ 2 be fixed. By Lemma 5.1, if a ∈ (0, h(x)), it results
that

Gn
a(x, a) = U ′(a)− αE[v′n−1(ξ(h(x)− a))ξ].
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Using the first-order condition for the optimality of Gn and the fact that fn(x) ∈
(0, h(x)), it is obtained that Gn

a(x, fn(x)) = 0, i. e.,

U ′(fn(x)) = αE
[
v′n−1(ξ(h(x)− fn(x)))ξ

]
. (23)

Since

vn(x) = U(fn(x)) + αE [vn−1(ξ(h(x)− fn(x)))]
= Gn(x, fn(x)).

Thus using that Gn
a(x, f(x)) = 0, it is possible to obtain the following envelope

formula

v′n(x) = Gn
x(x, f(x)) +Gn

a(x, f(x))f ′(x),
= Gn

x(x, f(x))

equivalently,
v′n(x) = αE

[
v′n−1(ξ(h(x)− fn(x)))ξ

]
h′(x). (24)

Substituting (23) in (24), it is obtained that

v′n(x) = U ′(fn(x))h′(x).

Therefore, by the invertibility of U ′,

fn(x) = u

(
v′n(x)
h′(x)

)
. (25)

(Recall that u is the inverse of the function U ′.) Finally, substituting (25) in (23),
the result follows. �

Lemma 5.3. For each x > 0, the optimal policy f(x) ∈ (0, h(x)).

P r o o f . Let x > 0 be fixed and suppose, by contradiction, that the optimal policy
is the (constant) zero function. Then by Definition 2.1 it follows that

V (x) = v(0, x) =
U(0)
1− α

,

where v is defined in (11).
Since U and h are strictly increasing, then

V (x) =
U(0)
1− α

< U(h(x)) +
α

1− α
U(0),

but this is impossible since U(h(x))+ α
1−αU(0) = v(h, x), contradicting the definition

of V .
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On the other hand, if h is the optimal policy, then

V (x) = v(h, x)

= U(h(x)) +
α

1− α
U(0).

Let g : [0, h(x)] → R be defined as

g(a) = U(a) + αE[U(h(ξ(h(x)− a)))] +
α2

1− α
U(0).

Note that g is continuous and strictly concave, so there exists a unique a ∈ [0, h(x)]
that maximizes to g. If a 6= h(x), then

V (x) ≥ g(a) > g(h(x)) = V (x),

which is impossible. Therefore, a = h(x).
On the other hand, by (12) it follows that, for a ∈ (0, h(x)),

g′(a) = U ′(a)− αE[U ′(h(ξ(h(x)− a)))h′(ξ(h(x)− a))ξ],

and by Assumption 4.2 c), it is concluded that

lim
a→h(x)

g′(a) = −∞.

In particular, there is ã ∈ (0, h(x)) such that g′(ã) < 0, implying that g is strictly
decreasing in [ã, h(x)]. But then h(x) cannot be the maximizer of g, i. e., there is a
contradiction. �

Define R as R(x, a, y) = ∆
(

y
h(x)−a

)
1

h(x)−a , x > 0, a ∈ [0, h(x)] and y > 0.

Observe thatR ∈ C2. In fact, the following assumption makes possible the derivation
procedure under the expectation.

Assumption 5.4. |Rx(x, a, y)| ≤ Φ1(a, y), |Ra(x, a, y)| ≤ Φ2(x, y), |Rxx(x, a, y)| ≤
Φ3(a, y), |Rxa(x, a, y)| ≤ Φ4(a, y) and |Rxx(x, a, y)| ≤ Φ5(a, y), where Φi are inte-
grable functions, i = 1, . . . , 5.

Lemma 5.5. V ∈ C2((0,∞),R) and the optimal policy f ∈ C1((0,∞)).

P r o o f . Fix x > 0. Let ψ be defined as

ψ(a) := E [V (ξ(h(x)− a))] ,

a ∈ (0, h(x)). Using the Change of Variable Theorem (see [1]), it can be obtained
that

ψ(a) :=
∫
V (y)∆

(
y

h(x)− a

)
dy

h(x)− a

and by Assumption 5.4, it follows that ψ ∈ C2((0, h(x))).
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On the other hand, since V is strictly concave (see (19) and by Subsection 4.1,
Remark 4), ψ is concave. Therefore, ψ ∈ C2 and is concave, implying that ψ′′ < 0.

Since U ′′ < 0 (see Assumption 4.2 a)) and ψ′′ < 0, then G ∈ C2(K̂,R) and
Gaa < 0, where

G(x, a) := U(a) + αψ(a)

and K̂ is defined as (21).
Finally, by Lemma 5.3 and by Theorem 3.1, the result follows. �

The following result allows to characterize the optimal policy for CIP with its
corresponding Euler equation.

Lemma 5.6. The optimal policy f satisfies the following Euler equation for each
x ∈ (0,∞):

U ′(f(x)) = αE[h′(ξ(h(x)− f(x)))U ′(f(ξ(h(x)− f(x))))ξ]. (26)

Conversely, if f ∈ F is a policy which satisfies (26) for each x ∈ (0,∞) and if

lim
t→∞

αtEf
x [h′(xt)U ′(f(xt))xt] = 0, (27)

then f is optimal.

P r o o f . Let f be the optimal policy. Note that assumptions of Theorem 3.3 hold.
Firstly, observe that by Lemma 5.5 V ∈ C2((0,∞),R) and by Subsection 4.1, Re-
mark 4 V is strictly concave (see (19)). Furthermore, by Assumption 4.2. e) and
the fact that h ∈ C2((0,∞)), it is obtained that H ∈ C2(K̂,R) and Haa(x, a) ≤ 0,
where H(x, a) := E[V (ξ(h(x)−a))] (see (4)). On the other hand, taking r = U and,
as to U is strictly concave and U ∈ C2((0,∞),R), then U ′′ < 0. Finally, note that
F−1

a = −1. Therefore Assumption a) of Theorem 3.3 holds. Now, Assumption b) of
Theorem 3.3 holds, due to Lemma 5.3.

In this case,
W (x, a) = h′(x)U ′(a), (28)

(x, a) ∈ K̂ (see (6)) then substituting (28) in (5), (26) is obtained.
On the other hand, let f be a function that satisfies (26) and (27) and x > 0

be fixed. Let f̂ ∈ F be another function and for t = 0, 1, . . ., the trajectories of the
policies f and f̂ be denoted by xt and xt, respectively, and at = f(xt) and at = f̂(xt)
denote their actions, respectively, where x0 = x0 = x for both.

Since U is strictly concave and U ∈ C2, applying Theorem 2.17 in [11], p. 258, it
can be obtained that

E

[
T−1∑
t=0

αt (U(at)− U(at))

]
≥ E

[
T−1∑
t=0

αtU ′(at)(at − at)

]
,

for T > 1, which is positive integer. Since xt+1 = ξt(h(xt)−at), xt+1 = ξt(h(xt)−at),
and ξt > 0 almost everywhere (a. e.), then

xt − xt

ξt−1
= h(xt−1)− h(xt−1)− (at−1 − at−1) ,
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or equivalently,

at−1 − at−1 = h(xt−1)− h(xt−1)−
xt − xt

ξt−1
.

Since h is concave and h ∈ C2, again by the Theorem 2.17 in [11], it results that

at−1 − at−1 ≥ h′(xt−1)(xt−1 − xt−1)−
xt − xt

ξt−1
.

Straightforward computations allow to obtain that

T−1∑
t=0

αtU ′(at)(at − at) ≥
T−1∑
t=0

αtU ′(at)
(
h′(xt)(xt − xt)−

xt+1 − xt+1

ξt

)

≥
T−1∑
t=1

[
αt−1 (xt − xt)

ξt−1
[αξt−1h

′(xt)U ′(at)− U ′(at−1)]
]

−α
T−1

ξT−1
U ′(aT−1)xT .

Note that the last inequality is due to the fact that U ′(x), xT , α and ξt are strictly
positive.

Now, since at = f(xt) and f satisfies (26), it follows that

U ′(aT−1) = αEf
x [h′(xT )U ′(aT )ξT−1|xT−1] . (29)

Using (29) it is possible to conclude that

Ef
x

[
αT−1 xT

ξT−1
U ′(aT−1)

]
= E

[
αT−1 xT

ξT−1
αEf

x [h′(xT )U ′(aT )ξT−1|xT−1]
]
.

Now, note that xT

ξT−1
= h(xT−1)− f(xT−1), i. e., xT

ξT−1
depends on xT−1, then by

properties of the conditional expectation, it can be obtained that

Ef
x

[
αT−1 xT

ξT−1
U ′(aT−1)

]
= Ef

x

[
αTh′(xT )U ′(f(xT ))xT

]
,

i. e., (27) follows.
Similarly,

Ef
x

[
(xt − xt)
ξt−1

[αξt−1h
′(xt)U ′(at)− U ′(at−1)]

]
= Ef

x

[
(xt − xt)
ξt−1

E[αξt−1h
′(xt)U ′(at)− U ′(at−1)|xt−1]

]
.

Then, since f satisfies (26), it follows that

U ′(at−1) = Ef
x [αξt−1h

′(xt)U ′(at)|xt−1] ,

implying that
Ef

x [αξt−1h
′(xt)U ′(at)− U ′(at−1)|xt−1] = 0,
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consequently

Ef
x

[
(xt − xt)
ξt−1

[αξt−1h
′(xt)U ′(at)− U ′(at−1)]

]
= 0.

Hence

Ef
x

[
T−1∑
t=0

αt (U(at)− U(at))

]
≥ −Ef

x [αTh′(xT )U ′(f(xT ))xT ].

Then letting T →∞, it follows that

Ef
x

[ ∞∑
t=0

αtU(at)

]
≥ Ef

x

[ ∞∑
t=0

αtU(at)

]
.

Therefore f is optimal. �

6. EXAMPLES

6.1. Example: logarithmic utility

This example is posed in [8] and [22], but with the difference that this is a stochastic
version.

Suppose that

U(at) = ln(at),

and the production function h(x) = xγ , with γ ∈ (0, 1); and

xt+1 = ξt (xγ
t − at) ,

at ∈ [0, xγ
t ] and x0 = x ∈ X := [0,∞), where {ξt} is a sequence of i.i.d. random

variables independent of x, taking values in S := (0, 1). Then let ξ be a generic
element of the sequence {ξt}. Suppose that µγ := E[ln(ξγ)] <∞. The density of ξ
is designated by ∆. It will be considered that ∆ ∈ C2((0,∞)).

Lemma 6.1. The logarithmic utility example satisfies BA.

P r o o f . Notice that the transition law is weakly continuous by Section 4.1 (see
Remark 3).

Fix a number ε > 1 and put Xj := [0, j + ε], for j ∈ N0 := N ∪ {0}. Note that
Xj ⊂ Xj+1 and

X =
⋃
j≥0

int(Xj).

On the other hand, for each j ∈ N0, mj defined in (13) is as follows:

mj = γ ln(j + ε),

and it is easy to see that (14) holds. Moreover, for t = 0, 1, 2, . . ., if xt = x ∈ X and
at ∈ A(x), there exists j ∈ N0 such that x ∈ Xj and, since ξ ∈ (0, 1), it follows that
xt+1 ∈ Xj+1, i. e., (15) holds, by Subsection 4.1, Remark 1a). �
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Lemma 6.2. For each n = 1, 2, . . .,

vn(x) = γkn ln(x) + cn, (30)

where x ∈ X, cn ∈ R and kn =
n−1∑
t=0

(αγ)t, n = 2, 3, . . ..

P r o o f . The proof will be made by induction. Fix x > 0. Take n = 1. Then,
directly, v1(x) = γ ln(x). In this case, H2 (see (20)) is given by

H2(x, a) = γ ln(xγ − a) + µγ ,

a ∈ A(x). Note that H2 ∈ C2(K̂; R) and H2
aa(x, a) < 0, then using Lemma 5.2,

v′2(x) = αE

[
v′1

(
ξ

(
xγ − γxγ−1

v′2(x)

))
ξ

]
γxγ−1,

= αE

[
γξ

/
ξ

(
xγ − γxγ−1

v′2(x)

)]
γxγ−1,

so it follows that v′2(x) = γ
x (1 + αγ), hence

v2(x) = γ ln(x)(1 + αγ) + c2.

Now suppose that for some n > 2, vn−1 satisfies (30). Then Hn (see (20)) is as
follows:

Hn(x, a) = γkn−1 ln(xγ − a) + γkn−1µγ + cn−1.

Note that Hn ∈ C2(K̂; R) and Hn
aa(x, a) < 0, then using Lemma 5.2,

v′n(x) = αE

[
v′n−1

(
ξ

(
xγ − γxγ−1

v′n−1(x)

))
ξ

]
γxγ−1,

= αE

[
γξ

/
ξ

(
xγ − γxγ−1

v′n−1(x)

)]
γxγ−1,

and a straightforward computation allows to obtain that

v′n(x) =
γ

x

n−1∑
t=0

(αγ)t.

Finally, (30) is obtained integrating the last equality. �

Corollary 6.3. For each n = 1, 2, . . .,

fn(x) =
xγ

kn+1
,

x ∈ X, with kn+1 =
n∑

t=0
(αγ)t, n = 0, 1, 2, . . ., where

fn(x) = arg max
a∈A(x)

{ln(a) + αHn(x, a)} .
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P r o o f . Fix x > 0. By Lemma 6.1 it follows that

vn(x) = max
a∈[0,xγ ]

{ln(a) + αE [γ ln(ξ(xγ − a))kn−1 + cn−1]} .

Let ḡ be defined as

ḡ(a) := ln(a) + αγkn ln((xγ − a) + αγknµγ + cn,

a ∈ (0, xγ). Using the first order condition for the optimality of ḡ and the fact that
fn(x) ∈ (0, h(x)), it is possible to obtain that

fn(x) =
xγ

kn+1
.

�

Observe that for each x ≥ 0, fn(x) → f̃(x), where

f̃(x) := xγ(1− αγ), (31)

and f̃(x) ∈ [0, xγ ], i. e. f̃ is an admissible deterministic stationary policy. Further-
more, evaluating f̃ in (11) permits to obtain that v(f̃ , x) = K ln(x) + C > −∞,
where K, C ∈ R.

Corollary 6.4. For the logarithmic utility example,

V (x) =
γ

1− αγ
ln(x) + C,

x > 0, where

C =
1

1− α
[ln(1− αγ) +

αγ

1− αγ
(µγ + ln(αγ))],

and f̃ is the optimal policy, where f̃ is defined in (31).

P r o o f . Fix x > 0. Since vn(x) → V (x), and kn → 1/(1−αγ), n→∞, (notice that
0 < αγ < 1), then from (30) it follows that {cn} is convergent. Let C := limn→∞ cn.
So

V (x) =
γ

1− αγ
ln(x) + C.

On the other hand, since U ′(a) = 1/a and h′(x) = γxγ−1, then

αE[h′
(
ξ
(
h(x)− f̃(x)

))
U ′
(
f̃
(
ξ
(
h(x)− f̃(x)

)))
ξ]

= αE

[
γ(ξ(xγ − xγ(1− αγ)))γ−1

(ξ (xγ − xγ(1− αγ)))γ (1− αγ)
ξ

]
and a straightforward computation yields that (26) holds. Now, observe that

αtE
[
h′(xt)U ′(f̃(xt))xt

]
= αtE

[
γxγ−1

t

xγ
t (1− αγ)

xt

]
,

=
αtγ

1− αγ
,
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then, letting t→∞, equality (27) yields.
Therefore, by Lemma 5.6 it is obtained that f̃ is the optimal policy. Now since

V satisfies (19), it follows that

γ

1− αγ
ln(x) + C = sup

a∈[0,xγ ]

{
ln(a) + α

γ

1− αγ
E [ln(ξ(xγ − a))] + αC

}
,

and it is obtained from (31) that C = 1
1−α

[
ln(1− αγ) + αγ

1−αγ (µγ + ln(αγ))
]
.

�

6.2. Example: exponential utility

Now, consider the following:

U(at) =
b

γ
aγ

t ,

where b > 0 and γ ∈ (0, 1). The production function h(x) = x, and

xt+1 = ξt (xt − at) ,

at ∈ [0, xt], t = 0, 1, 2, . . ., x0 = x ∈ X := [0,∞). It is assumed that {ξt} is a
sequence of i.i.d. random variables independent of x0, taking values in S = [0,∞).
Let ξ be a generic element of the sequence {ξt}. Suppose that µγ := E[ξγ ] < ∞,
with 0 < αµγ < 1, where δ := (αµγ)1/(γ−1) and ∆ ∈ C2((0,∞)) denote the density
of ξ.

Lemma 6.5. The exponential utility example satisfies BA.

P r o o f . Notice that, A(x) = [0, x] is a compact set, for each x ∈ X, and the utility
function is continuous. Now, let θ be a bounded-continuous function on X and

Θ(a) =
∫
θ(sa)∆(s) ds,

a ∈ [0, x] (see 18). Since ∆ ∈ C2(0,∞), it is possible to obtain that Θ is continuous
in a ∈ [0, x] for each x ∈ X. This way the transition law is weakly continuous.

Furthermore, BA holds, due to (16) and (17) are satisfied (see Subsection 4.1,
Remark 1b)), if

w(x) =
bµγ

γ(1− αµγ)
xγ + 1, c = β = 1.

�

Lemma 6.6. For each n = 1, 2, . . .,

vn(x) =
(
δn−1(1− δ)

1− δn

)γ−1
b

γ
xγ , (32)

x ∈ X.
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P r o o f . Let x > 0 be fixed. Then v1(x) = b
γx

γ . In this case, H2 (see (20)) is given
by

H2(x, a) =
b

γ
µγ(x− a)γ ,

a ∈ A(x). Note that H2 ∈ C2(K̂; R) and H2
aa(x, a) < 0, then using Lemma 5.2,

v′2(x) = bδγ−1

(
x−

(
v′2(x)
b

) 1
γ−1
)γ−1

,

and it follows that

v′2(x) =
(
δ(1− δ)
1− δ2

)γ−1

bxγ−1, (33)

hence

v2(x) =
(
δ(1− δ)
1− δ2

)γ−1
b

γ
xγ .

Observe that v2 was obtained integrating (33) and taking the constant involved in
the integration equal to zero, because for this example, for each n = 0, 1, 2, . . .,
vn(0) = 0 (see [8]).

Suppose that for some n > 2, vn−1 satisfies (32). Then Hn (see (20)), is as
follows:

Hn(x, a) =
(
δn−1(1− δ)

1− δn

)γ−1
bµγ

γ
(x− a)γ .

Note that Hn ∈ C2(K̂; R) and Hn
aa(x, a) < 0, then using Lemma 5.2,

v′n(x) = αE

[
v′n−1

(
ξ

(
x−

(
v′n(x)
b

) 1
γ−1
))

ξ

]
and a straightforward computation allows to obtain that

v′n(x) =
(
δn−1(1− δ)

1− δn

)γ−1

bxγ−1. (34)

Finally, integrating (34) allows to prove that (32) holds. �

Corollary 6.7. For each n = 1, 2, . . .,

fn(x) =
(
δn−1(1− δ)

1− δn

)
x,

x ∈ X.

P r o o f . Fix x > 0. For Lemma 6.5 it follows that

vn(x) = max
a∈[0,xγ ]

{
b

γ
aγ + α

(
δn−1(1− δ)

1− δn

)γ−1
bµγ

γ
(x− a)γ

}
.
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Let ḡ be defined as

ḡ(a) :=
b

γ
aγ + α

(
δn−1(1− δ)

1− δn

)γ−1
bµγ

γ
(x− a)γ ,

a ∈ (0, x). Using the first order condition for the optimality of ḡ and the fact that
fn(x) ∈ (0, h(x)), it is possible to obtain that

fn(x) =
(
δn−1(1− δ)

1− δn

)
x.

Observe that for each x ≥ 0, fn(x) → f̃(x), where

f̃(x) :=
(
δ − 1
δ

)
x, (35)

and f̃(x) ∈ [0, x], i. e. f̃ is an admissible deterministic stationary policy. �

Corollary 6.8. For the exponential example,

V (x) =
(
δ − 1
δ

)γ−1
b

γ
xγ , (36)

and f̃ is the optimal policy defined in (35).

P r o o f . Letting n → ∞ in (32), (36) follows. On the other hand, since U ′(a) =
baγ−1 and h′(x) = 1, then

αE
[
h′(ξ(h(x)− f̃(x)))U ′

(
f̃
(
ξ
(
h(x)− f̃(x)

)))
ξ
]

= αbE

[(
ξ

(
x− x

δ − 1
δ

)
δ − 1
δ

)γ−1

ξ

]

and a straightforward computation allows to obtain that (26) holds. Now, observe
that

αtE
[
h′(xt)U ′(f̃(xt))xt

]
= αtb

(
δ − 1
δ

)γ−1

E [xγ
t ] , (37)

with x0 = x ∈ X. Since {ξn} is a sequence of i.i.d. random variables independent
of x0, then

E [xγ
t ] =

(x
δ

)γ

µt
γ . (38)

Substituting (38) in (37) and since 0 < αµγ < 1, it follows that

lim
t→∞

αtE
[
h′(xt)U ′(f̃(xt))xt

]
= 0.

Therefore, by Lemma 5.6 it is obtained that f is the optimal policy. �
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CyT) under grant PCI6480408.

(Received April 22, 2011)

R E FER E NCE S

[1] C. D. Aliprantis and O. Burkinshaw: Principles of Real Analysis. Academic Press,
San Diego 1998.

[2] G. M. Angelatos: Uninsured idiosyncratic investment risk and aggregate saving. Rev.
Econom. Dynam. 10 (2007), 1–30.

[3] K. J. Arrow: A note on uncertainty and discounting in models of economic growth.
J. Risk Unc. 38 (2009), 87–94.

[4] D. P. Bertsekas: Dynamic Programming: Deterministic and Stochastic Models.
Prentice-Hall, Belmont 1987.

[5] W. Brock and L. Mirman: Optimal economic growth and uncertainty: the discounted
case. J. Econom. Theory 4 (1972), 479–513.

[6] D. Cruz-Suárez, R. Montes-de-Oca, and F. Salem-Silva: Conditions for the uniqueness
of optimal policies of discounted Markov decision processes. Math. Meth. Oper. Res.
60 (2004), 415–436.
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e-mail: hcs@fcfm.buap.mx
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