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ON THE OSCILLATION OF THIRD-ORDER QUASI-LINEAR
NEUTRAL FUNCTIONAL DIFFERENTIAL EQUATIONS

E. Thandapani and Tongxing Li

Abstract. The aim of this paper is to study asymptotic properties of the
third-order quasi-linear neutral functional differential equation

(E)
[
a(t)
(

[x(t) + p(t)x(δ(t))]′′
)α]′

+ q(t)xα(τ(t)) = 0 ,

where α > 0, 0 ≤ p(t) ≤ p0 <∞ and δ(t) ≤ t. By using Riccati transformation,
we establish some sufficient conditions which ensure that every solution of (E)
is either oscillatory or converges to zero. These results improve some known
results in the literature. Two examples are given to illustrate the main results.

1. Introduction

We are concerned with the oscillation and asymptotic behavior of the third-order
neutral differential equation

(E)
[
a(t) ([x(t) + p(t)x(δ(t))]′′)α

]′ + q(t)xα(τ(t)) = 0 ,

where α > 0 is the quotient of odd positive integers, a(t), p(t), q(t), τ(t), δ(t) ∈
C([t0,∞)) and

(H) a(t) > 0,
∫∞
t0

1
a1/α(t)dt = ∞, 0 ≤ p(t) ≤ p0 < ∞, q(t) ≥ 0, q(t) is not

identically zero on any ray of the form [t∗,∞) for any t∗ ≥ t0, δ(t) ≤ t,
δ′(t) ≥ δ0 > 0, τ ◦ δ = δ ◦ τ and limt→∞ τ(t) = limt→∞ δ(t) =∞.

We set z(t) = x(t) + p(t)x(δ(t)). By a solution of Eq. (E) we mean a func-
tion x(t) ∈ C([Tx,∞)), Tx ≥ t0, which has the properties z(t) ∈ C2([Tx,∞)),
a(t)(z′′(t))α ∈ C1([Tx,∞)) and satisfies (E) on [Tx,∞). We consider only those
solutions x(t) of (E) which satisfy sup{|x(t)| : t ≥ T} > 0 for all T ≥ Tx. We
assume that (E) possesses such a solution. A solution of (E) is called oscillatory if it
has arbitrarily large zeros on [Tx,∞) and otherwise, it is said to be nonoscillatory.
Equation (E) itself is said to be almost oscillatory if all its solutions are oscillatory
or convergent to zero asymptotically.

In recent years, great attention has been devoted to the oscillation of differential
equations; see for example [1 - 29], and the references cited therein. Especially,
differential equations of the form (E) and its special cases have been the subject
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of intensive research. Hartman and Wintner [9], Hanan [8] and Erbe [5] studied a
particular case of (E), namely, the third-order differential equation

x′′′(t) + q(t)x(t) = 0 .

Baculíková et al. [4] considered the oscillation of third-order differential equation[
b(t)
(

[a(t)x′(t)]′
)α]′ + q(t)xα(t) = 0 .

Baculíková and Džurina [3, 1], Grace et al. [6] and Saker and Džurina [12] investi-
gated the nonlinear differential equation[

a(t)
(
x′′(t)

)α]′ + q(t)xα
(
τ(t)

)
= 0 .

Regarding the oscillation of third-order neutral differential equations, Zhong
et al. [13] used method given in [6] and extended some of their results to neutral
differential equation (E) for the case when 0 ≤ p(t) < 1. Baculíková and Džurina
[2] examined the oscillation behavior of (E) under the case when a′(t) ≥ 0 and
−1 < −p1 ≤ p(t) ≤ p2 < 1. Han et al. [7] considered the oscillation nature of (E)
for the case when a(t) = 1, α = 1 and −1 < −p1 ≤ p(t) ≤ 0. Karpuz et al. [10]
studied the odd-order neutral delay differential equation

[x(t) + p(t)x(δ(t))](n) + q(t)x(τ(t)) = 0

under the condition when −1 < p(t) < 1.
It is interesting to study (E) under the condition 0 ≤ p(t) ≤ p0 <∞. To the best

of our knowledge, there are no results regarding the oscillation of (E) under the
assumption p(t) ≥ 1. So the purpose of this paper is to present some new oscillatory
and asymptotic criteria for (E). We derive criteria for (E) to be oscillatory or for
all its nonoscillatory solutions tend to zero as t→∞.

In order to prove our results, we give the following definition and remarks.

Definition 1 ([11]). Consider the sets D0 = {(t, s) : t > s ≥ t0} and D = {(t, s) :
t ≥ s ≥ t0}. Assume that H ∈ C(D,R) satisfies the following assumptions:

(A1) H(t, t) = 0, t ≥ t0; H(t, s) > 0, (t, s) ∈ D0;
(A2) H has a non-positive continuous partial derivative with respect to the

second variable in D0.
Then the function H has the property P .

Remark 1. All functional inequalities considered in this paper are assumed to
hold eventually, that is, they are satisfied for all t large enough.

Remark 2. Without loss of generality we can deal only with the positive solutions
of (E) since the proof for the opposite case is similar.

2. Main results

In this section, we obtain some new oscillatory criteria for (E). We begin with
some useful lemmas, which will be used later.



OSCILLATION THEOREMS 183

Lemma 1. Assume that α ≥ 1, x1, x2 ∈ [0,∞). Then

(2.1) x1
α + x2

α ≥ 1
2α−1 (x1 + x2)α .

Proof. (i) Suppose that x1 = 0 or x2 = 0. Then we have (2.1).
(ii) Suppose that x1 > 0, x2 > 0. Define the function f by f(x) = xα, x ∈ (0,∞).
Then f ′′(x) = α(α− 1)xα−2 ≥ 0 for x > 0. Thus, f is a convex function. By the
definition of convex function, we have

f
(x1 + x2

2

)
≤ f(x1) + f(x2)

2 .

That is,

x1
α + x2

α ≥ 1
2α−1 (x1 + x2)α .

This completes the proof. �

Lemma 2. Assume that 0 < α ≤ 1, x1, x2 ∈ [0,∞). Then

(2.2) x1
α + x2

α ≥ (x1 + x2)α .

Proof. Assume that x1 = 0 or x2 = 0. Then we have (2.2). Assume that x1 > 0
and x2 > 0. Define f(x1, x2) := x1

α + x2
α − (x1 + x2)α, x1, x2 ∈ (0,∞). Fix x1.

Then
df(x1, x2)

dx2
= αx2

α−1 − α(x1 + x2)α−1

= α
[
x2
α−1 − (x1 + x2)α−1] ≥ 0 , since 0 < α ≤ 1 .

Thus, f is nondecreasing with respect to x2, which yields f(x1, x2) ≥ 0.
The proof of the lemma is complete. �

Lemma 3 ([10, Lemma 3]). Let f and g ∈ C([t0,∞),R) and α ∈ C([t0,∞),R)
satisfies limt→∞ α(t) = ∞ and α(t) ≤ t for all t ∈ [t0,∞); further suppose
that there exists h ∈ C([t−1,∞),R+), where t−1 := mint∈[t0,∞){α(t)}, such that
f(t) = h(t) + g(t)h(α(t)) holds for all t ∈ [t0,∞). Suppose that limt→∞ f(t) exists
and lim inft→∞ g(t) > −1. Then lim supt→∞ h(t) > 0 implies limt→∞ f(t) > 0.

Lemma 4. Assume that x is a positive solution of (E) and limt→∞ x(t) 6= 0. If

(2.3)
∫ ∞
t0

∫ ∞
v

( 1
a(δ(u))

∫ ∞
u

Q(s)ds
)1/α

dudv =∞ ,

where

(2.4) Q(t) = min{q(t), q(δ(t))} ,

then

(2.5) z(t) > 0 , z′(t) > 0 , z′′(t) > 0 ,
[
a(t) (z′′(t))α

]′ ≤ 0 ,

for t ≥ t1, where t1 is sufficiently large.



184 E. THANDAPANI AND T. LI

Proof. Assume that x is a positive solution of (E). We may only prove the case
when α ≥ 1, since the case when 0 < α ≤ 1 is similar. From (E), we see that
z(t) ≥ x(t) > 0 and

(2.6)
[
a(t) (z′′(t))α

]′ = −q(t)xα
(
τ(t)

)
≤ 0 .

Thus, a(t) (z′′(t))α is nonincreasing and of one sign. Therefore, z′′(t) is also of one
sign and so we have two possibilities: z′′(t) > 0 or z′′(t) < 0 for t ≥ t1. We claim
that z′′(t) > 0. If not, then there exists a constant M > 0 such that

a(t) (z′′(t))α ≤ −M < 0 .

Integrating the above inequality from t1 to t, we get

z′(t) ≤ z′(t1)−M1/α
∫ t

t1

1
a1/α(s)

ds .

Therefore, limt→∞ z′(t) = −∞. Then, from z′′(t) < 0 and z′(t) < 0, we obtain
limt→∞ z(t) = −∞. This contradiction proves that z′′(t) > 0.

Next, we prove that z′(t) > 0. Otherwise, we assume that z′(t) < 0. From (E),
we obtain [

a(t)
(
z′′(t)

)α]′ + (p0
α)
[
a(δ(t)) (z′′(δ(t)))α

]′
δ0

+ q(t)xα
(
τ(t)

)
+ (p0

α)q
(
δ(t)

)
xα
(
τ(δ(t))

)
≤ 0 ,

which follows from (2.1), (2.4) and τ ◦ δ = δ ◦ τ that

(2.7)
[
a(t) (z′′(t))α

]′ + (p0
α)
[
a(δ(t)) (z′′(δ(t)))α

]′
δ0

+ Q(t)
2α−1 z

α
(
τ(t)

)
≤ 0 .

Integrating the last inequality from t to ∞, we obtain

a(t)
(
z′′(t)

)α + (p0
α)a(δ(t)) (z′′(δ(t)))α

δ0
≥ 1

2α−1

∫ ∞
t

Q(s)zα
(
τ(s)

)
ds .

In view of (2.6) and δ(t) ≤ t, we see that

a(t)
(
z′′(t)

)α ≤ a(δ(t))(z′′(δ(t)))α .
Thus

a
(
δ(t)

)(
z′′(δ(t))

)α ≥ 1
2α−1(1 + p0α

δ0
)

∫ ∞
t

Q(s)zα
(
τ(s)

)
ds .

Since limt→∞ x(t) 6= 0, from Lemma 3, limt→∞ z(t) = L > 0 and zα(τ(t)) ≥ Lα.
Then, we obtain

z′′
(
δ(t)

)
≥ L

( 1
2α−1(1 + p0α

δ0
)

)1/α( 1
a(δ(t))

∫ ∞
t

Q(s) ds
)1/α

.

Integrating again from t to ∞, we get

− 1
δ0
z′(δ(t)) ≥ L

( 1
2α−1(1 + p0α

δ0
)

)1/α ∫ ∞
t

( 1
a(δ(u))

∫ ∞
u

Q(s) ds
)1/α

du .
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Integrating the last inequality from t1 to ∞, we have
1

(δ0)2 z(δ(t1)) ≥ L
( 1

2α−1(1 + p0α

δ0
)

)1/α ∫ ∞
t1

∫ ∞
v

( 1
a(δ(u))

∫ ∞
u

Q(s)ds
)1/α

dudv ,

which contradicts (2.3). Thus z′(t) > 0. This completes the proof. �

Lemma 5. Assume that z satisfies (2.5) for t ≥ t1. Then

(2.8) z′(t) ≥
(
a1/α(t)z′′(t)

)
β1(t, t1) ,

and

(2.9) z(t) ≥
(
a1/α(t)z′′(t)

)
β2(t, t1) ,

where

β1(t, t1) :=
∫ t

t1

1
a1/α(s)

ds , β2(t, t1) :=
∫ t

t1

∫ s

t1

1
a1/α(u)

duds .

Proof. Since [a(t)(z′′(t))α]′ ≤ 0, a(t)(z′′(t))α is nondecreasing. Then we get

z′(t) ≥ z′(t)− z′(t1) =
∫ t

t1

[
a(s) (z′′(s))α

]1/α
a1/α(s)

ds

≥
(
a1/α(t)z′′(t)

) ∫ t

t1

1
a1/α(s)

ds .

Similarly, we have

z(t) ≥
(
a1/α(t)z′′(t)

) ∫ t

t1

∫ s

t1

1
a1/α(u)

duds .

�

Next, we state and prove the main theorems.

Theorem 1. Let α ≥ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that (2.3) holds
and τ(t) ≤ δ(t). Moreover, assume that there exists a function ρ ∈ C1([t0,∞), (0,∞)),
for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that

(2.10) lim sup
t→∞

∫ t

t2

[ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

(α+ 1)α+1
((ρ′(s))+)α+1

(ρ(s)β1(τ(s), t1)τ ′(s))α
]

ds =∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E), which does not tend to zero
asymptotically. From the proof of Lemma 4, we obtain (2.5) and (2.7). Then, from
Lemma 5, we have (2.8).

Define the function ω by

(2.11) ω(t) = ρ(t)a(t)(z′′(t))α

zα(τ(t)) .
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Then ω(t) > 0 due to Lemma 4, and

ω′(t) = ρ′(t)a(t)(z′′(t))α

zα(τ(t)) + ρ(t)
(a(t)(z′′(t))α

zα(τ(t))

)′
= ρ′(t)a(t)(z′′(t))α

zα(τ(t)) + ρ(t) [a(t)(z′′(t))α]′

zα(τ(t))

− αρ(t)a(t)(z′′(t))αzα−1(τ(t))z′(τ(t))τ ′(t)
z2α(τ(t)) .(2.12)

From (2.5), (2.8) and τ(t) ≤ t, we have

z′
(
τ(t)

)
≥
(
a1/α(τ(t))z′′(τ(t))

)
β1
(
τ(t), t1

)
≥
(
a1/α(t)z′′(t)

)
β1
(
τ(t), t1

)
.

It follows from (2.11) and (2.12) that

ω′(t) ≤ ρ(t)[a(t)(z′′(t))α]′

zα(τ(t)) + ρ′(t)
ρ(t) ω(t)

− αβ1(τ(t), t1)τ ′(t)
ρ1/α(t)

ω(α+1)/α(t) .(2.13)

Similarly, define another function ν by

(2.14) ν(t) = ρ(t)a(δ(t))(z′′(δ(t)))α

zα(τ(t)) .

Then ν(t) > 0 due to Lemma 4, and

ν′(t) = ρ′(t)a(δ(t))(z′′(δ(t)))α

zα(τ(t)) + ρ(t)
(a(δ(t))(z′′(δ(t)))α

zα(τ(t))

)′
= ρ′(t)a(δ(t))(z′′(δ(t)))α

zα(τ(t)) + ρ(t) [a(δ(t))(z′′(δ(t)))α]′

zα(τ(t))

− αρ(t)a(δ(t))(z′′(δ(t)))αzα−1(τ(t))z′(τ(t))τ ′(t)
z2α(τ(t)) .(2.15)

From (2.5), (2.8) and τ(t) ≤ δ(t), we have

z′
(
τ(t)

)
≥
(
a1/α(τ(t))z′′(τ(t))

)
β1(τ(t), t1) ≥

(
a1/α(δ(t))z′′(δ(t))

)
β1(τ(t), t1) ,

which follows from (2.14) and (2.15) that

ν′(t) ≤ ρ(t)[a(δ(t))(z′′(δ(t)))α]′

zα(τ(t)) + ρ′(t)
ρ(t) ν(t)

− αβ1(τ(t), t1)τ ′(t)
ρ1/α(t)

ν(α+1)/α(t) .(2.16)
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Using (2.13) and (2.16), we get

ω′(t) + p0
α

δ0
ν′(t) ≤ ρ(t)

[a(t)(z′′(t))α]′ + p0
α

δ0
[a(δ(t))(z′′(δ(t)))α]′

zα(τ(t))

+ (ρ′(t))+

ρ(t) ω(t)− αβ1(τ(t), t1)τ ′(t)
ρ1/α(t)

ω(α+1)/α(t)

+ p0
α

δ0

[ (ρ′(t))+

ρ(t) ν(t)− αβ1(τ(t), t1)τ ′(t)
ρ1/α(t)

ν(α+1)/α(t)
]
.(2.17)

By (2.7) and (2.17), we obtain

ω′(t) + p0
α

δ0
ν′(t) ≤ − ρ(t)Q(t)

2α−1 + (ρ′(t))+

ρ(t) ω(t)− αβ1(τ(t), t1)τ ′(t)
ρ1/α(t)

ω(α+1)/α(t)

+ p0
α

δ0

[ (ρ′(t))+

ρ(t) ν(t)− αβ1(τ(t), t1)τ ′(t)
ρ1/α(t)

ν(α+1)/α(t)
]
.(2.18)

Using (2.18) and the inequality

(2.19) Bu−Au(α+1)/α ≤ αα

(α+ 1)α+1
Bα+1

Aα
, A > 0 ,

we have

ω′(t) + p0
α

δ0
ν′(t) ≤ − ρ(t)Q(t)

2α−1 + 1
(α+ 1)α+1

((ρ′(t))+)α+1

(ρ(t)β1(τ(t), t1)τ ′(t))α

+
p0
α

δ0

(α+ 1)α+1
((ρ′(t))+)α+1

(ρ(t)β1(τ(t), t1)τ ′(t))α .(2.20)

Integrating (2.20) from t2 (t2 ≥ t1) to t, we get∫ t

t2

[
ρ(s)Q(s)

2α−1 −
1

(α+ 1)α+1

(
1 + p0

α

δ0

) ((ρ′(s))+)α+1

(ρ(s)β1(τ(s), t1)τ ′(s))α
]

ds

≤ ω(t2) + p0
α

δ0
ν(t2) ,

which contradicts (2.10). The proof is complete. �

By Lemma 2, similar to the proof of Theorem 1, we obtain the following result.

Theorem 2. Let 0 < α ≤ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that
(2.3) holds and τ(t) ≤ δ(t). Further, assume that there exists a function ρ ∈
C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that

(2.21) lim sup
t→∞

∫ t

t2

[
ρ(s)Q(s)−

(1 + p0
α

δ0
)

(α+ 1)α+1
((ρ′(s))+)α+1

(ρ(s)β1(τ(s), t1)τ ′(s))α
]

ds =∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.
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Theorem 3. Let α ≥ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that (2.3)
holds and τ(t) ≤ δ(t). Furthermore, assume that there exists a function ρ ∈
C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that

(2.22)

lim sup
t→∞

∫ t

t2

[ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

4α
((ρ′(s))+)2

ρ(s) (β2(τ(s), t1))α−1
β1(τ(s), t1)τ ′(s)

]
ds

=∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E), which does not tend to zero
asymptotically. By the proof of Lemma 4, we obtain (2.5) and (2.7). Then, from
Lemma 5, we get (2.8) and (2.9).

Define the function ω and ν by (2.11) and (2.14), respectively. Proceeding as in
the proof of Theorem 1, we obtain (2.12) and (2.15). It follows from (2.12) that

ω′(t) = ρ′(t)a(t)(z′′(t))α

zα(τ(t)) + ρ(t) [a(t)(z′′(t))α]′

zα(τ(t))

− α [ρ(t)a(t)(z′′(t))α]2 τ ′(t)
z2α(τ(t))

zα−1(τ(t))z′(τ(t))
ρ(t)a(t)(z′′(t))α .(2.23)

In view of (2.5), (2.8), (2.9) and τ(t) ≤ t, we see that

zα−1(τ(t))z′(τ(t))
a(t)(z′′(t))α = zα−1(τ(t))z′(τ(t))

a(t)(z′′(t))α

≥
(
a1/α(τ(t))z′′(τ(t))

)α
a(t)(z′′(t))α (β2(τ(t), t1))α−1

β1(τ(t), t1)

≥ (β2(τ(t), t1))α−1
β1(τ(t), t1) .(2.24)

Substituting (2.24) into (2.23), and using (2.12), we get

ω′(t) ≤ ρ(t) [a(t)(z′′(t))α]′

zα(τ(t)) + (ρ′(t))+

ρ(t) ω(t)

− ατ ′(t) (β2(τ(t), t1))α−1
β1(τ(t), t1)

ρ(t) ω2(t) .(2.25)

On the other hand, from (2.15), we have

ν′(t) = ρ′(t)a(δ(t))(z′′(δ(t)))α

zα(τ(t)) + ρ(t) [a(δ(t))(z′′(δ(t)))α]′

zα(τ(t))

− α [ρ(t)a(δ(t))(z′′(δ(t)))α]2 τ ′(t)
z2α(τ(t))

zα−1(τ(t))z′(τ(t))
ρ(t)a(δ(t))(z′′(δ(t)))α .(2.26)
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By (2.5), (2.8), (2.9) and τ(t) ≤ δ(t), we see that

zα−1(τ(t))z′(τ(t))
a(δ(t))(z′′(δ(t)))α = zα−1(τ(t))z′(τ(t))

a(δ(t))(z′′(δ(t)))α

≥
(
a1/α(τ(t))z′′(τ(t))

)α
a(δ(t))(z′′(δ(t)))α (β2(τ(t), t1))α−1

β1(τ(t), t1)

≥ (β2(τ(t), t1))α−1
β1(τ(t), t1) .(2.27)

Substituting (2.27) into (2.26), and applying (2.15), we get

ν′(t) ≤ ρ(t) [a(δ(t))(z′′(δ(t)))α]′

zα(τ(t)) + (ρ′(t))+

ρ(t) ν(t)

− ατ ′(t) (β2(τ(t), t1))α−1
β1(τ(t), t1)

ρ(t) ν2(t) .(2.28)

Using (2.25) and (2.28), we have

ω′(t) + p0
α

δ0
ν′(t) ≤ ρ(t)

[a(t)(z′′(t))α]′ + p0
α

δ0
[a(δ(t))(z′′(δ(t)))α]′

zα(τ(t))

+ (ρ′(t))+

ρ(t) ω(t)− α (β2(τ(t), t1))α−1
β1(τ(t), t1)τ ′(t)

ρ(t) ω2(t)

+ p0
α

δ0

[ (ρ′(t))+

ρ(t) ν(t)− α (β2(τ(t), t1))α−1
β1(τ(t), t1)τ ′(t)

ρ(t) ν2(t)
]
.(2.29)

Applying (2.7), (2.29) and the inequality

Bu−Au2 ≤ B2

4A , A > 0 ,

we have

ω′(t) + p0
α

δ0
ν′(t) ≤ − ρ(t)Q(t)

2α−1

+
(1 + p0

α

δ0
)

4α
((ρ′(t))+)2

ρ(t) (β2(τ(t), t1))α−1
β1(τ(t), t1)τ ′(t)

.(2.30)

Integrating (2.30) from t2 (t2 ≥ t1) to t, we obtain∫ t

t2

[
ρ(s)Q(s)

2α−1 −
(1 + p0

α

δ0
)

4α
((ρ′(s))+)2

ρ(s) (β2(τ(s), t1))α−1
β1(τ(s), t1)τ ′(s)

]
ds

≤ ω(t2) + p0
α

δ0
ν(t2) ,

which contradicts (2.22). The proof is complete. �

From Lemma 2, similar to the proof of Theorem 3, we obtain the following
result.
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Theorem 4. Let 0 < α ≤ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that
(2.3) holds and τ(t) ≤ δ(t). Furthermore, assume that there exists a function
ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that

(2.31)

lim sup
t→∞

∫ t

t2

[
ρ(s)Q(s)−

(1 + p0
α

δ0
)

4α
((ρ′(s))+)2

ρ(s) (β2(τ(s), t1))α−1
β1(τ(s), t1)τ ′(s)

]
ds

=∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.

Now we shall establish some criteria for the oscillation of (E) for the case when
τ(t) ≥ δ(t).

Theorem 5. Assume that (2.3) holds, α ≥ 1 and τ(t) ≥ δ(t). Moreover, assume
that there exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0,
there is a t2 > t1 such that

(2.32) lim sup
t→∞

∫ t

t2

[ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

(α+ 1)α+1
((ρ′(s))+)α+1

(ρ(s)β1(δ(s), t1)δ′(s))α
]
ds =∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E), which does not tend to zero
asymptotically. From the proof of Lemma 4, we obtain (2.5) and (2.7). Hence by
Lemma 5, we get (2.8).

Define the function ω by

(2.33) ω(t) = ρ(t)a(t)(z′′(t))α

zα(δ(t)) .

Then ω(t) > 0 due to Lemma 4, and

ω′(t) = ρ′(t)a(t)(z′′(t))α

zα(δ(t)) + ρ(t)
(a(t)(z′′(t))α

zα(δ(t))

)′
= ρ′(t)a(t)(z′′(t))α

zα(δ(t)) + ρ(t) [a(t)(z′′(t))α]′

zα(δ(t))

− αρ(t)a(t)(z′′(t))αzα−1(δ(t))z′(δ(t))δ′(t)
z2α(δ(t)) .(2.34)

By (2.5), (2.8) and δ(t) ≤ t, we have

z′(δ(t)) ≥
(
a1/α(δ(t))z′′(δ(t))

)
β1(δ(t), t1) ≥

(
a1/α(t)z′′(t)

)
β1(δ(t), t1) .

It follows from (2.33) and (2.34) that

(2.35) ω′(t) ≤ ρ(t) [a(t)(z′′(t))α]′

zα(δ(t)) + ρ′(t)
ρ(t) ω(t)− αβ1(δ(t), t1)δ′(t)

ρ1/α(t)
ω(α+1)/α(t) .

Similarly, define another function ν by

(2.36) ν(t) = ρ(t)a(δ(t))(z′′(δ(t)))α

zα(δ(t)) .
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Then ν(t) > 0 due to Lemma 4, and

ν′(t) = ρ′(t)a(δ(t))(z′′(δ(t)))α

zα(δ(t)) + ρ(t)
(a(δ(t))(z′′(δ(t)))α

zα(δ(t))

)′
= ρ′(t)a(δ(t))(z′′(δ(t)))α

zα(δ(t)) + ρ(t) [a(δ(t))(z′′(δ(t)))α]′

zα(δ(t))

− αρ(t)a(δ(t))(z′′(δ(t)))αzα−1(δ(t))z′(δ(t))δ′(t)
z2α(δ(t)) .(2.37)

From (2.5) and (2.8), we have

z′(δ(t)) ≥
(
a1/α(δ(t))z′′(δ(t))

)
β1
(
δ(t), t1

)
,

which follows from (2.36) and (2.37) that

ν′(t) ≤ ρ(t) [a(δ(t))(z′′(δ(t)))α]′

zα(δ(t)) + ρ′(t)
ρ(t) ν(t)

− αβ1(δ(t), t1)δ′(t)
ρ1/α(t)

ν(α+1)/α(t) .(2.38)

Using (2.35) and (2.38), we get

ω′(t) + p0
α

δ0
ν′(t) ≤ ρ(t)

[a(t)(z′′(t))α]′ + p0
α

δ0
[a(δ(t))(z′′(δ(t)))α]′

zα(δ(t))

+ (ρ′(t))+

ρ(t) ω(t)− αβ1(δ(t), t1)δ′(t)
ρ1/α(t)

ω(α+1)/α(t)

+ p0
α

δ0

[ (ρ′(t))+

ρ(t) ν(t)− αβ1(δ(t), t1)δ′(t)
ρ1/α(t)

ν(α+1)/α(t)
]
.(2.39)

By (2.5), (2.7), (2.39) and τ(t) ≥ δ(t), we obtain

ω′(t) + p0
α

δ0
ν′(t) ≤ − ρ(t)Q(t)

2α−1 + (ρ′(t))+

ρ(t) ω(t)− αβ1(δ(t), t1)δ′(t)
ρ1/α(t)

ω(α+1)/α(t)

+ p0
α

δ0

[ (ρ′(t))+

ρ(t) ν(t)− αβ1(δ(t), t1)δ′(t)
ρ1/α(t)

ν(α+1)/α(t)
]
.(2.40)

Using (2.40) and the inequality (2.19), we have

ω′(t) + p0
α

δ0
ν′(t) ≤ − ρ(t)Q(t)

2α−1 + 1
(α+ 1)α+1

((ρ′(t))+)α+1

(ρ(t)β1(δ(t), t1)δ′(t))α

+
p0
α

δ0

(α+ 1)α+1
((ρ′(t))+)α+1

(ρ(t)β1(δ(t), t1)δ′(t))α .(2.41)

Integrating (2.41) from t2 (t2 ≥ t1) to t, we get∫ t

t2

[
ρ(s)Q(s)

2α−1 −
1

(α+ 1)α+1

(
1 + p0

α

δ0

) ((ρ′(s))+)α+1

(ρ(s)β1(δ(s), t1)δ′(s))α
]

ds

≤ ω(t2) + p0
α

δ0
ν(t2) ,
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which contradicts (2.32). The proof is complete. �

From Lemma 2, similar to the proof of Theorem 5, we obtain the following
result.

Theorem 6. Assume that (2.3) holds, 0 < α ≤ 1 and τ(t) ≥ δ(t). Moreover,
assume that there exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large
t1 ≥ t0, there is a t2 > t1 such that

(2.42) lim sup
t→∞

∫ t

t2

[
ρ(s)Q(s)−

(1 + p0
α

δ0
)

(α+ 1)α+1
((ρ′(s))+)α+1

(ρ(s)β1(δ(s), t1)δ′(s))α
]

ds =∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.

By using (2.34) and (2.37), similar to the proof of Theorem 3, we obtain the
following result.

Theorem 7. Assume that (2.3) holds, α ≥ 1 and τ(t) ≥ δ(t). Furthermore, assume
that there exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0,
there is a t2 > t1 such that
(2.43)

lim sup
t→∞

∫ t

t2

[ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

4α
((ρ′(s))+)2

ρ(s) (β2(δ(s), t1))α−1
β1(δ(s), t1)δ′(s)

]
ds =∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.

From Lemma 2 and Theorem 7, similar to the proof of Theorem 3, we establish
the following result.

Theorem 8. Assume that (2.3) holds, 0 < α ≤ 1 and τ(t) ≥ δ(t). Furthermore,
assume that there exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large
t1 ≥ t0, there is a t2 > t1 such that
(2.44)

lim sup
t→∞

∫ t

t2

[
ρ(s)Q(s)−

(1 + p0
α

δ0
)

4α
((ρ′(s))+)2

ρ(s) (β2(δ(s), t1))α−1
β1(δ(s), t1)δ′(s)

]
ds =∞ ,

where (ρ′(t))+ := max{0, ρ′(t)}. Then (E) is almost oscillatory.

Remark 3. From Theorems 1–8, we can get some oscillation criteria for (E) with
different choices of ρ.

3. Further results

In this section, we will establish some Philos-type oscillation results for (E).

Theorem 9. Let α ≥ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that (2.3) holds
and τ(t) ≤ δ(t). Moreover, assume that H ∈ C(D,R) has the property P and there
exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is
a t2 > t1 such that

(3.1) − ∂

∂s
H(t, s)− ρ′(s)

ρ(s) H(t, s) = h(t, s)(H(t, s))α/(α+1)

ρ(s) , (t, s) ∈ D0 ,
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and

(3.2) lim sup
t→∞

1
H(t, t2)

∫ t

t2

G1(t, s) ds =∞ ,

where

G1(t, s) := H(t, s)ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

(α+ 1)α+1
(h−(t, s))α+1

(ρ(s)β1(τ(s), t1)τ ′(s))α ,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

Proof. Assume that x is a positive solution of (E), which does not tend to zero
asymptotically. We define ω and ν as in Theorem 1. Then, we obtain (2.18). From
(2.18) with (ρ′(t))+ replaced by ρ′(t), we get

ρ(t)Q(t)
2α−1 ≤ − ω′(t)− p0

α

δ0
ν′(t) + ρ′(t)

ρ(t) ω(t)− αβ1(τ(t), t1)τ ′(t)
ρ1/α(t)

ω(α+1)/α(t)

+ p0
α

δ0

[ρ′(t)
ρ(t) ν(t)− αβ1(τ(t), t1)τ ′(t)

ρ1/α(t)
ν(α+1)/α(t)

]
.(3.3)

In (3.3), replace t by s and multiply both sides by H(t, s), integrate with respect
to s from t2 (t2 ≥ t1) to t, we have∫ t

t2

H(t, s)ρ(s)Q(s)
2α−1 ds ≤ −

∫ t

t2

H(t, s)ω′(s) ds+
∫ t

t2

H(t, s)ρ
′(s)
ρ(s) ω(s) ds

−
∫ t

t2

H(t, s)αβ1(τ(s), t1)τ ′(s)
ρ1/α(s)

ω(α+1)/α(s) ds

− p0
α

δ0

∫ t

t2

H(t, s)ν′(s) ds+ p0
α

δ0

∫ t

t2

H(t, s)ρ
′(s)
ρ(s) ν(s) ds

− p0
α

δ0

∫ t

t2

H(t, s)αβ1(τ(s), t1)τ ′(s)
ρ1/α(s)

ν(α+1)/α(s) ds .

Thus, we obtain∫ t

t2

H(t, s)ρ(s)Q(s)
2α−1 ds ≤ H(t, t2)ω(t2)−

∫ t

t2

[
− ∂

∂s
H(t, s)− ρ′(s)

ρ(s) H(t, s)
]
ω(s) ds

−
∫ t

t2

H(t, s)αβ1(τ(s), t1)τ ′(s)
ρ1/α(s)

ω(α+1)/α(s) ds+ p0
α

δ0
H(t, t2)ν(t2)

− p0
α

δ0

∫ t

t2

[
− ∂

∂s
H(t, s)− ρ′(s)

ρ(s) H(t, s)
]
ν(s) ds

− p0
α

δ0

∫ t

t2

H(t, s)αβ1(τ(s), t1)τ ′(s)
ρ1/α(s)

ν(α+1)/α(s) ds .
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Then ∫ t

t2

H(t, s)ρ(s)Q(s)
2α−1 ds ≤ H(t, t2)ω(t2) + p0

α

δ0
H(t, t2)ν(t2)

+
∫ t

t2

[h−(t, s)(H(t, s))α/(α+1)

ρ(s) ω(s)−H(t, s)αβ1(τ(s), t1)τ ′(s)
ρ1/α(s)

ω(α+1)/α(s)
]

ds

+p0
α

δ0

∫ t

t2

[h−(t, s)(H(t, s))α/(α+1)

ρ(s) ν(s)−H(t, s)αβ1(τ(s), t1)τ ′(s)
ρ1/α(s)

ν(α+1)/α(s)
]

ds .

Using the above inequality and the inequality (2.19), we get

1
H(t, t2)

∫ t

t2

[
H(t, s)ρ(s)Q(s)

2α−1 −
(1 + p0

α

δ0
)

(α+ 1)α+1
(h−(t, s))α+1

(ρ(s)β1(τ(s), t1)τ ′(s))α
]
ds

≤ ω(t2) + p0
α

δ0
ν(t2) ,

which contradicts (3.2). The proof is complete. �

From Theorem 2, similar to the proof of Theorem 9, we derive the following
result.

Theorem 10. Let 0 < α ≤ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that (2.3)
holds and τ(t) ≤ δ(t). Moreover, assume that H ∈ C(D,R) has the property P and
there exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0,
there is a t2 > t1 such that (3.1) holds and

(3.4) lim sup
t→∞

1
H(t, t2)

∫ t

t2

F1(t, s) ds =∞ ,

where

F1(t, s) := H(t, s)ρ(s)Q(s)−
(1 + p0

α

δ0
)

(α+ 1)α+1
(h−(t, s))α+1

(ρ(s)β1(τ(s), t1)τ ′(s))α ,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

From (2.7) and (2.29) in Theorem 3, similar to the proof of Theorem 9, we
obtain the following criterion.

Theorem 11. Let α ≥ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that (2.3)
holds and τ(t) ≤ δ(t). Furthermore, assume that H ∈ C(D,R) has the property P
and there exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0,
there is a t2 > t1 such that

(3.5) − ∂

∂s
H(t, s)− ρ′(s)

ρ(s) H(t, s) = h(t, s)(H(t, s))1/2

ρ(s) , (t, s) ∈ D0 ,

and

(3.6) lim sup
t→∞

1
H(t, t2)

∫ t

t2

G2(t, s) ds =∞ ,
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where

G2(t, s) := H(t, s)ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

4α
(h−(t, s))2

ρ(s) (β2(τ(s), t1))α−1
β1(τ(s), t1)τ ′(s)

,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

By Theorem 4, similar to the proof of Theorem 9, we obtain the following
criterion.

Theorem 12. Let 0 < α ≤ 1, τ(t) ∈ C1([t0,∞)) and τ ′(t) > 0. Assume that (2.3)
holds and τ(t) ≤ δ(t). Furthermore, assume that H ∈ C(D,R) has the property P
and there exists a function ρ ∈ C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0,
there is a t2 > t1 such that (3.5) holds and

(3.7) lim sup
t→∞

1
H(t, t2)

∫ t

t2

F2(t, s) ds =∞ ,

where

F2(t, s) := H(t, s)ρ(s)Q(s)−
(1 + p0

α

δ0
)

4α
(h−(t, s))2

ρ(s) (β2(τ(s), t1))α−1
β1(τ(s), t1)τ ′(s)

,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

By (2.40) in Theorem 5, similar to the proof of that of Theorem 9, we establish
the following result.

Theorem 13. Assume that (2.3) holds, α ≥ 1 and τ(t) ≥ δ(t). Moreover, as-
sume that H ∈ C(D,R) has the property P and there exists a function ρ ∈
C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that
(3.1) holds and

(3.8) lim sup
t→∞

1
H(t, t2)

∫ t

t2

G3(t, s) ds =∞ ,

where

G3(t, s) := H(t, s)ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

(α+ 1)α+1
(h−(t, s))α+1

(ρ(s)β1(δ(s), t1)δ′(s))α ,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

By Theorem 6, similar to the proof of that of Theorem 9, we establish the
following result.

Theorem 14. Assume that (2.3) holds, 0 < α ≤ 1 and τ(t) ≥ δ(t). Moreover,
assume that H ∈ C(D,R) has the property P and there exists a function ρ ∈
C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that
(3.1) holds and

(3.9) lim sup
t→∞

1
H(t, t2)

∫ t

t2

F3(t, s) ds =∞ ,



196 E. THANDAPANI AND T. LI

where

F3(t, s) := H(t, s)ρ(s)Q(s)−
(1 + p0

α

δ0
)

(α+ 1)α+1
(h−(t, s))α+1

(ρ(s)β1(δ(s), t1)δ′(s))α ,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

From Theorem 7, similar to the proof of that of Theorem 9, we derive the
following result.

Theorem 15. Assume that (2.3) holds, α ≥ 1 and τ(t) ≥ δ(t). Furthermore,
assume that H ∈ C(D,R) has the property P and there exists a function ρ ∈
C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that
(3.5) holds and

(3.10) lim sup
t→∞

1
H(t, t2)

∫ t

t2

G4(t, s) ds =∞ ,

where

G4(t, s) := H(t, s)ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

4α
(h−(t, s))2

ρ(s) (β2(δ(s), t1))α−1
β1(δ(s), t1)δ′(s)

,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

From Theorem 8, similar to the proof of that of Theorem 9, we give the following
result.

Theorem 16. Assume that (2.3) holds, 0 < α ≤ 1 and τ(t) ≥ δ(t). Furthermore,
assume that H ∈ C(D,R) has the property P and there exists a function ρ ∈
C1([t0,∞), (0,∞)), for all sufficiently large t1 ≥ t0, there is a t2 > t1 such that
(3.5) holds and

(3.11) lim sup
t→∞

1
H(t, t2)

∫ t

t2

F4(t, s) ds =∞ ,

where

F4(t, s) := H(t, s)ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

4α
(h−(t, s))2

ρ(s) (β2(δ(s), t1))α−1
β1(δ(s), t1)δ′(s)

,

h−(t, s) := max{0,−h(t, s)}. Then (E) is almost oscillatory.

Remark 4. From Theorems 9-16, we can obtain some oscillation criteria for (E)
with different choices of ρ and H.

4. Examples

In this section, we will give two examples to illustrate our main results.

Example 1. Consider the third-order quasi-linear neutral differential equation

(4.1)
[
t
([
x(t) + p0x

( t
2

)]′′)3]′
+ λ

t6
x3
( t

2

)
= 0 , λ > 0 .
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Let a(t) = t, p(t) = p0 > 0, τ(t) = δ(t) = t/2, α = 3, q(t) = λ/t6 and δ0 = 1/2.
Then, we have Q(t) = q(t) = λ/t6 and

β1(t, t1) :=
∫ t

t1

1
a1/α(s)

ds =
∫ t

t1

1
s1/3 ds ≥ t2/3 ,

for t sufficiently large. It is easy to see that (2.3) holds. Set ρ(t) = t5. We obtain

lim sup
t→∞

∫ t

t2

[ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

(α+ 1)α+1
((ρ′(s))+)α+1

(ρ(s)β1(τ(s), t1)τ ′(s))α
]

ds

≥
[λ

4 −
54 · 25 · (1 + 2p0

3)
44

]
lim sup
t→∞

∫ t

t2

1
s

ds =∞ ,

if
λ >

54 · 25 · (1 + 2p0
3)

43 .

Hence by Theorem 1, (4.1) is almost oscillatory when

λ >
54 · 25 · (1 + 2p0

3)
43 .

When p0 = 1/3,
54 · 25 · (1 + 2p0

3)
43 <

93

2 .

Thus, our results improve results of [2]; see [2, Example 1].
Also, since β2(t, t1) ≥ 2

5 t
5
3 , we have

lim sup
t→∞

∫ t

t2

[ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

4α
((ρ′(s))+)2

(ρ(s)β2(τ(s), t1))α−1β1(τ(s), t1)τ ′(s)

]
ds

≥
[λ

4 −
54 · 25(1 + 2p3

0)
3 · 42

]
lim
t→∞

t∫
t1

1
s

ds =∞

if λ > 54·25(1+2p3
0)

12 . Hence by Theorem 3, equation(4.1) is almost oscillatory when
λ >

54·25(1+2p3
0)

12 . However for this example Theorem 1 is better than Theorem 3.

Example 2. Consider the third-order quasi-linear neutral differential equation

(4.2)
[
t
([
x(t) + p0x

( t
2

)]′′)3]′
+ λ

t6
x3
(3t

2

)
= 0 , λ > 0 .

Let a(t) = t, p(t) = p0 > 0, τ(t) = 3t/2, δ(t) = t/2, α = 3 and q(t) = λ/t6.
Then, we have δ′(t) = δ0 = 1/2, Q(t) = q(t) = λ/t6,

β1(t, t1) :=
∫ t

t1

1
a1/α(s)

ds =
∫ t

t1

1
s1/3 ds ≥ t2/3 ,

and

β2(t, t1) :=
∫ t

t1

∫ s

t1

1
a1/α(u)

duds ≥ 2
5 t

5/3 ,
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for t sufficiently large. It is easy to verify that (2.3) holds. Set ρ(t) = t5. We get

lim sup
t→∞

∫ t

t2

[
ρ(s)Q(s)

2α−1 −
(1 + p0

α

δ0
)

4α
((ρ′(s))+)2

ρ(s) (β2(δ(s), t1))α−1
β1(δ(s), t1)δ′(s)

]
ds

≥
[λ

4 −
( 25

2
)2 · 25 · (1 + 2p0

3)
12

]
lim sup
t→∞

∫ t

t2

1
s

ds =∞ ,

if

λ >

( 25
2
)2 · 25 · (1 + 2p0

3)
3 .

Hence by Theorem 7, (4.2) is almost oscillatory when

λ >

( 25
2
)2 · 25 · (1 + 2p0

3)
3 .

Also, we have

lim
t→∞

sup
∫ t

t2

[ρ(s)Q(s)
2α−1 −

(1 + p0
α

δ0
)

(α+ 1)α+1
((ρ′(s))+)α+1

(ρ(s)β1(δ(s), t1)δ′(s))α
]

ds

≥
[λ

4 −
54 · 25(1 + 2p3

0)
44

]
lim
t→∞

t∫
t2

1
s

ds =∞

if λ > 54·25(1+2p3
0)

43 . Hence by Theorem 5, equation(4.2) is almost oscillatory when
λ >

54·25(1+2p3
0)

43 . For this example Theorem 5 is better than Theorem 7.

5. Conclusions

In this paper, we have established some new oscillation theorem for (E) for
the case when 0 ≤ p(t) ≤ p0 <∞. Our results can be applied when τ(t) ≥ t; see
Theorems 5, 6, 7, 8, 13, 14, 15, 16. It would be interesting to study (E) under the
cases when p(t) < −1, limt→∞ p(t) =∞ or p(t) is an oscillatory function. Moreover,
it is interesting to find another method to remove the restrictions τ ◦ δ = δ ◦ τ and
δ(t) ≤ t.
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