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Gradient estimates for a nonlinear equation
Aru 4+ cu™® = 0 on complete noncompact manifolds

Jing Zhang, Bingqing Ma

Abstract. Let (M, g) be a complete noncompact Riemannian manifold. We
consider gradient estimates on positive solutions to the following nonlinear
equation
Aju+cu™ =0 in M,

where a, c are two real constants and o > 0, f is a smooth real valued func-
tion on M and Ay = A -V fV. When N is finite and the N-Bakry-Emery
Ricci tensor is bounded from below, we obtain a gradient estimate for pos-
itive solutions of the above equation. Moreover, under the assumption that
oo-Bakry-Emery Ricci tensor is bounded from below and |V f] is bounded
from above, we also obtain a gradient estimate for positive solutions of the
above equation. It extends the results of Yang [16].

1 Introduction

Let (M, g) be a complete noncompact n-dimensional Riemannian manifold. For
a smooth real-valued function f on M, the drifting Laplacian (see [11], [12]) is
defined by Ay = A — VfV. There is a naturally associated measure du = e~/ dV
on M, which makes the operator A self-adjoint. The N-Bakry-Emery Ricci tensor
is defined by

1
Ric} = Ric + V?f — N ed

for 0 < N < oo and N = 0 if and only if f = 0. Here V2 is the Hessian and Ric is
the Ricci tensor. In particular, the co-Bakry-Emery Ricci tensor is denoted by

Ricy := Ric} = Ric + V*f

with Ricy = Ag is called a gradient Ricci soliton which is extensively studied in
Ricci flow.
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The author in [16] obtained interesting gradient estimates for positive solutions
to the following elliptic equation with singular nonlinearity

Au+cu *=0 in M, (1)

where a, ¢ are two real constants and o > 0. For the importance of equation (1),
the authors who are interested in it see [5], [8]. In this paper, we consider the
following equation

Aju+cu =0 in M, (2)

where f is a smooth real-valued function on M. For some interesting gradient
estimates in this direction, for example, we refer to [2], [3], [6], [7], [9], [10], [15].
When N is finite and the N-Bakry-Emery Ricci tensor is bounded from below, we
obtain a gradient estimate for positive solutions of the above equation. Moreover,
under the assumption that co-Bakry-Emery Ricci tensor is bounded from below
and |V f]| is bounded from above, we also obtain a gradient estimate for positive
solutions of the above equation. Main results of this paper are stated as follows:

Theorem 1. Let (M,g) be a complete noncompact n-dimensional Riemannian
manifold with N-Bakry-Emery Ricci tensor bounded from below by the constant
—K := —K(2R), where R > 0 and K(2R) > 0, in the metric ball B,(2R) with
radius 2R around p € M. Let u be a positive solution of (2) with «, ¢ two real
constants and a > 0. Then

(1) If ¢ > 0, we have

\VZP beuot < AN AN+ 2er® | (nt N)[(n+ N = Dey +¢f
U R2 R2 3)
N N)K
Lt S;H K | otn+ N)K.

(2) If ¢ < 0, we have

2 s N N-1
Vul? ) et < (A4 VA)el(_inf w4 EE NN EN = ey ool
U Bp(2R) R
(n+ N)c? n+ N (n+ N)y/(n+ N)Ke
U, N2
+ (n+N+2+ ; Z)Jr -

+ (2+ %)(n—i—N)K, (4)

where A = (n+ N)(a+ 1)(a+2).

Theorem 2. Let (M,g) be a complete noncompact n-dimensional Riemannian
manifold and f € C?(M) be a function satisfying |[Vf] < 6. Assume that
oo-Bakry-Emery Ricci tensor bounded from below by the constant —K := —K(2R),
where R > 0 and K(2R) > 0, in the metric ball B,(2R) with radius 2R around
p € M. Let u be a positive solution of (2) with «, ¢ two real constants and o > 0.
Then
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(1) If ¢ > 0, we have

2 2 —
A LR RN U R RO I LN
! — (5)
Lrayvin-DE e
R
(2) If ¢ < 0, we have
[Vul® | et < (B+VB)|c|(_inf w) '+ £((2 + o+ )2
u? - B,(2R) R? VB’ !
nc16 1 9
+(n—T)er+e2) + & +(1+2 79)89 (6)
nei/(n — DK 1

where B = n(a+1)(a + 2).
From (1) in Theorem 1, we obtain the following result immediately:

Corollary 1. Let (M,g) be a complete noncompact n-dimensional Riemannian
manifold with nonnegative N-Bakry-Emery Ricci tensor. Assume that two real
constants «, ¢ in (2) are positive. Then the equation (2) does not have a positive
smooth solution.

2 Proof of Theorem 1
Let h =logu. Then one has from (2) that

1
Ash = ~Aju—|Vh]? = —cu™>"! — |Vh|%.
U

Define F' = cu™*"! + |Vh|?, then we have Agh = —F. It is well known that for
the N-Bakry-Emery Ricci tensor, we have the Bochner formula (see [14]):

2
Af|Vh]2 > —=—|A¢h]? + 2(Vh, V(A h)) — 2K |Vh|?
f\V\_n+N\f|+<V,V(f)> |Vh|

2
= F?2-2 F) - 2K 2,
N (Vh,VF) = 2K|Vh|

Hence, one gets
AfF = CAfUiail + Af|Vh‘2
> cla+1)(a+2)u"* HVh? —cla+ Du " 2Asu (7)

+

F?2 —2(Vh,VF) — 2K|Vh|?.
TT N (Vh,VF) |Vh|

Let & be a cut-off function such that {(r) = 1 for r < 1, £(r) = 0 for r > 2,
0<¢(r) <1, and
0> ¢ %(r)¢ () > —e
§'(r) > —ca



76 Jing Zhang, Bingqing Ma

for positive constants ¢; and ¢y. Denote ¢ by p(z) = d(z, p) the distance between

2 and p in M. Let
br) = ¢ (”f)) .

Using an argument of Calabi [1] (see also Cheng and Yau [4]), we can assume
without loss of generality that the function ¢ is smooth in B,(2R). Then, we have

Vo|* _ cf
— < = 8
QS — R2 ( )
It has been shown by Qian[13] that
4K p?
2
< .
Ap(p) <+ N) (14 )1+ n+N)
Hence, we have
1
Asp = 5-[A5(p%) = 2V pl?]
p
_ 2
7n+N 2+n—|—N(1 4Kp )
2p 2p n+ N
N -1
= HT +v(n+N)K.
It follows that
1 2 !/ A
Ao EOIVE | €A
_(n+N-14/(n+N)KR)c1 +c2
- R2 .

Define G = ¢F. We may assume that G achieves its maximal value @) at the
point € Bp(2R) and assume that @ is positive (otherwise the proof is trivial).
Then at the point =z,

0=VG =¢VF + FV¢

and AyG < 0. Therefore, at the point z, it holds that

0> A;G=AG— (Vf,VG)
= ¢AfF + FA;¢+2(Ve, VF)
[Vg|?
¢

= oAy F + FAyp — 2F

2
> F? —2¢(Vh,VF) — 2K¢|Vh|*
> = 0F? = 26(Vh,VF) = 2K6|Vh|
m+N—-1++/(n+ N)KR)c; + c2
— I F
2¢2

- EF +c(a+ 1) (a+2)u™* 1o Vh[* — c(a+ 1)u"*"2¢A ju,
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which shows that
2
> = _G?+2 — 2K ¢?|Vh|?
0 n—i—NG +2G(Vh, V) @*|Vh|

_(n+N—1+\/mR)c1+cQG (10)

R2 G +cla+ D) (a+2)u"*1¢?| VA2 — cla + 1)u™*"2¢*Asu.

Next, we consider the following two cases: (1) ¢ > 0; (2) ¢ < 0.
(1) When ¢ > 0, then we have F = |[VA|2 + cu=*"! > 0 and |[Vh| < Fz. Since

(Vh,Ve) < |Vh||Vg| < szd)%

2c; 3 _ (n+N)c? 1 9
- 2 <
T A
then (10) yields
2 2 201 3 2
> - —G2? -2K¢|Vh
0> n+NG G ¢|Vh|
_(n—f—N—l—i—\/ n—l—N)KR)cl—i—ch
R2G—i—c(oz—|—1)2 L2V + (o + Du Lo F (11)
1 (n+ N +2)c?
> — G- ——1g 2K
_n—l—NG R2 G- 2KG

B (n—i—N—l—i—\/(n—l—N)KR)cl—i—cQG
R2

From (11), we obtain

(m+N)(n+N+2)c2 (n+N)[(n+N—1)c; + ¢
R2 + R2

N)e
"+ DT A Sint NK +2(n+ N)K

G <

and hence

2 —
sup FSGS(n+N)(n—|2—N+2)cl+(n+N)[(n+];f ey + o]
B,(2R) R R

+%\/(n+N)K+2(n+N)K.

Now (1) of Theorem 1 follows easily from the inequality above.

(2) When ¢ < 0, if FF < 0, then the estimate in (2) of Theorem 1 is trivial.
Hence we assume F' > 0. Under the assumption that F > 0, one gets |Vh| > Fz.
Since

1 (n+ N)c?
2 <
G(Vh. Vo) € —— G+

V|,
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then (10) yields

1 (n+ N)ci
> 2 1 \v4 2_2K QV 2
0_n+NG R? 91Vl ¢"IVhl

N1+ (n+N)KR)cl+02G
R2

20% . —a—1 ,2 2
— ﬁG—&—c(a—i-l)(a—&-Q)(B:l(leR)u) ¢*|Vh|

+A(a+1)( sup u) 22

B, (2R)
1 2 (n+N)e? (n+ N)ct . —a—1
— F— f
> NG 79 B ¢|C\(B;{12R)U)
_(n+N-1+ (n+N)KR)cl+02G
R2

2
_2a

72 G — J(2R)¢*F — L(2R)¢?,

where

J(2R) = 2K — c(a+ 1)(a+2)(_inf w)™*7,

By(2R)
L(2R) = |C|J(2R)(B,i)?2fn) u)—a—l ~Pla+ 1)(321(1213{) u)—Qa—Q.
This shows that
0= n Ji NG2
(" 2, e o WR)CI 2 4 JeR))G
- ch(igfm u)~ "' — L(2R).
Hence
<M v
where

n+ N)|(n+N -1+ n+ N)KR)c; +c
+(n+N)(n—|—N+2)c%
R? ’

(n+ N)?ct

R? B,(2R)

d=(n+ N)L(2R) +
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Let m = (infp (2p) w) T M= (supgp, (2r) u)~*"". We have

n—i—N)c%‘

\/&—\/(n+N)c2(a+1)[(a+2)m2—M2]+[( 7zl + 200+ N) || K]m

(n+ N)ci
e
(AN | o0 4 NYK

n a a cam - .
<+ N)(a+1)(a+2)|c +2\/(n+N)(a+1)(a+2)

<\/(n+N)cz(a+1)(a+2)m2+[ c|+2(n+ N)|c|K]m

It follows from (13) that

(n+ N)[(n+N—-1++/(n+ N)KR)c1 + c2]
R2

(n+N)2c2
(n+ N)(n+ N +2)c? =L +2(n+ N)K
+ + VAlc/m +
R? el 2V A

— (4 VAl 4 SN N = e+ 1)
(n+ N)c3 n+ N

+ A (e N 2 m)

(n+ N)y/(n+ N)Kc 1

- 1+(2+ﬁ)(n+N)K,

G <2(n+ N)K + Alcjm +

_|_

where
A=n+N)(a+1)(a+2).
Therefore, we obtain (2) of Theorem 1. O
3 Proof of Theorem 2
Let h = logu. Then we have
Aph=—cu™ ' —|Vh|%

Denote by F' = cu™®"! + |Vh|?, then we have Ash = —F. Applying the Bochner
formula to h, we get (see [14]):

A¢|Vh|?> = 2|D?h> + 2(Vh, V(A sh)) + 2Ricy (Vh, Vh). (15)

Since

v

|D2h‘2

—
>
>

S—

[\v]

[F —(Vh,Vf)]?

SIm3I=3-

Y

F? - %F(Vh, V1),

then we derive from (15)

2 4
A¢|Vh|? > 5F2 - 5F<Vh, Vf) —2(Vh,VF) - 2K|Vh[*. (16)
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Thus we have

AfF = cApu™ "1+ Af|VA?
>cla+1)(a+2)u* VA —cla+ Du*?Aru (17)

2 4
+ EF2 = —F(Vh,Vf) = 2(Vh,VF) - 2K |Vh|?.

Let & be a cut-off function such that £(r) = 1 for r < 1, {(r) = 0 for r > 2,
0<¢(r) <1, and

’

0> &7 2(r)E (r) > —¢;
&'(r) > —co

for positive constants ¢; and ¢y. Denote ¢ by p(z) = d(z, p) the distance between

¢ and p in M. Let
wwzg(ﬁ?).

Using an argument of Calabi [1] (see also Cheng and Yau [4]), we can assume
without loss of generality that the function ¢ is smooth in Bagr(p). Then, we have

Vo> _
—_—< = 1
i< (19
Since Ricy > —K and |V f| < 6, we have from the Theorem 1.1 in [14]:
K
< — _
Asp </(n 1)Kcoth(\/ — 1p> +0
1 K
<m-1(=+4/—)+0.
<(n 1)(p+ n_1>+9
Therefore, we obtain
"(r) |V p|? "(rA
Apo =t (;%I2 ol +§(3%fp
(19)

>_(nflJr\/(nfl)KRJrGR)clJch
R? '

Define G = ¢F. We assume that G achieves its maximal value @) at the point
x € Bp(2R) and assume that () is positive (otherwise the proof is trivial). Then at
the point z,
0=VG=¢VF + FV¢

and AyG < 0. This shows that

VEF =—

S|

V.
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Therefore, at the point x, it holds that
0>AiG=¢AsF+FA;¢p+2(Vep,VF)
Vol
¢
> %qu? - %ng(Vh, Vf) —2¢(Vh,VF) — 2K ¢|Vh|?

B (nflJr\/(n—l)KRJrﬂR)cl +62F7&

R2
+e(a+ 1) (a+2)u” 19| VA® —cla+ 1)u*"*pAfu,

which means that

= ¢AfF + FApp— 2F 21

0> %G2 - %gbG(Vh, Vf) +2G(Vh, V) — 2K 6| Vh|?
B 26%4—(7],— 1)61+CQG7 (\/m+9)61G (20)
R2
+cla+ 1) (a+ 2)u™*"1¢?|Vh|? - ( + Du"*2¢*Asu.

Next, we consider two cases: (1) ¢ > 0; (2)c < 0.
(1) When ¢ > 0, we have F = |[Vh|2 4+ cu=®"! > 0 and |[Vh| < F2. Since

(Vh,Vo)| < [VhIIVe| < TFHob,

[(Vh, V)| < |Vh||[Vf| < F2|Vf],
then from (20) we obtain

2 4 2 2c? -1
0> =G - 2 vfiGE - L6 -2k v - X Fn—bate,
n n R2
V= DK +6)
(V(n ])% + ClG—i—c(a—l— 1)%u=*"'¢?*|Vh|?
+cla+ Du™ "1 F (21)
2 _
> 20 vpiar - 2at og At Date,
n n R2
_ (V(r—1)K+0) “a
R

Using the Schwarz inequality, one has

<7|Vf|+E>G <n<f|Vf|+ )G+ ez

de; (22)

= (ﬁ'vﬂQ + =Vl + nc1>G+ —G”.
Inserting (22) into (21) yields

1 4 4
0> -G2 - (7|Vf|2 il \Vf|>G 2KG
n n

7(71—1—2)0%—}—(71—1)01—}—02(;7 V(n 71)K+0)01G
R

RQ
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Hence
nl(n+2)c2 + (n—1)cy +ca]  5neib 5 nepy/(n—1)K
G < 460 — 7+ 2nK, (23
< 3 + o 467+ 7 +2nK, (23)
and )
sup F<G<L nln + 2y + (;L — Vet
B, (2R) R
5nc,0 5 ney/(n—1)K
460 — 1+ 2nK.
= A - +2n

We complete the proof of (1) in Theorem 2.
(2) When ¢ < 0, if ' < 0, then the estimate in (2) of Theorem 2 is trivial.
Hence we assume F > 0 and hence |Vh| > Fz. Noticing

c1 1 1 5 2ncl
< 2— 2 < —
2G(Vh,V¢) < 2RG¢> |Vh| < QnG +
26G(vn, V1) < 2oGIVAIV S < -G + —|Vf| 242(7h?,
n n 2n n

V|,

we have from (20)

2¢f + (n—1)er + 2
RQ
1)K +6 T

B (WJF UG 4 ela+ D(a+ 2)(inf ™ 1% |Vh?

2nc1

“oIVh|? — 2K¢*|Vh|* — G

1 8
0> =G*— —|Vf]?¢*|Vh|* -
n n

+c*(a+1)( sup u)72a72¢2
B,(2R)

2nc?

> Lar o (Bwpe s 28 or - (5902 4 2Dkl in )

L (2R)
2c2 -1 (v(n—1)K +6)
_atn-bate, (Vn ; 0 ¢ JoRr)6F - LER)E

RQ

where
J(2R) = 2K — 1 2 inf —a—1
(2R) cla+1)(a+ )(B;I(ER)U) 7
L(QR) = |C|J(2R)( inf u)iail — 62(04 + 1)( sup u)*2a72’
By(2R) B,(2R)

This shows that

0> -G?

n

2 _
3 (%|Vf\2+ (2n + 2)ct ]ég 1) c1+62 (V(n K+0)c J(2R))G

8 5 2nct . —a—1
— = f — L(2R).
(197 + g lel( it ) (2R)
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Hence one has

G

b+ Vb2 +4d
g%gbﬂ/ﬁ, (24)

where

n[(2n +2)c? + (n — 1)eg + ca) N ner(y/(n — 1)K +0)
R )

R2
n2

2 2 C% . —a—1
d=nL(2R) + (8|V/] +?)|c|(Blng)u) :

b=nJ(2R) +8|Vf|* +

—a—1

Let m = (infp (2r) u) , M = (supp, (2r) u)"*"'. We have

2 2.2
Vd = \[ne(a + D)[(a + 2)m? — M?] + (2nK + 8|V |2 + %)lclm

2n2c?

< \/an(a + 1) (a+2)m? + (2nK + 8|V f|? + R2 )lelm

nK + 4|V ]2 + "]
< Vnla+ 1) (a+2)cm+ .

n(a+1)(a+2)

It follows from (24) and |V f| < 6 that

n[(2n +2)c? + (n — 1)ey + ¢3)

G < 2nK + Blc|lm + 86 +

R2
2.2
Vin—1)K+86 K +460% + 232
Ll DEEO) g MY T
R VB
_ n N9 - ncy6
= (B+VB)|c|m + JE ((2 +2n+ \/E)Cl +(n—1ec + 02) + 7
1 neiy/ (n — DK 1
14+ ——)ge2+ XV IR 4 (04— Yk,
+<+2\/§) + = +(+\/§)n
where
B =n(a+1)(a+2).
The proof of (2) in Theorem 2 is completed finally. O
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