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On the diophantine equation x2 + 5k17l = yn

István Pink, Zsolt Rábai

Abstract. Consider the equation in the title in unknown integers (x, y, k, l, n)
with x ≥ 1, y > 1, n ≥ 3, k ≥ 0, l ≥ 0 and gcd(x, y) = 1. Under the above
conditions we give all solutions of the title equation (see Theorem 1).

1 Introduction
There are many results concerning the generalized Ramanujan-Nagell equation

x2 +D = yn, (1)

where D > 0 is a given integer and x, y, n are positive integer unknowns with
n ≥ 3. Results obtained for general superelliptic equations clearly provide effective
finiteness results for this equation, too (see for example [9], [45], [47], and the
references given there).

The first result concerning the above equation was due to V. A. Lebesque [28]
who proved that there are no solutions for D = 1. Ljunggren [29] solved (1) for
D = 2, and Nagell [39], [40] solved it for D = 3, 4 and 5. In his elegant paper
[21], Cohn gave a fine summary of the earlier results on equation (1). Further, he
developed a method by which he found all solutions of the above equation for 77
positive values of D ≤ 100. For D = 74 and D = 86, equation (1) was solved by
Mignotte and de Weger [35]. By using the theory of Galois representations and
modular forms Bennett and Skinner [8] solved (1) for D = 55 and D = 95. On
combining the theory of linear forms in logarithms with Bennett and Skinner’s
method and with several additional ideas, Bugeaud, Mignotte and Siksek [13] gave
all the solutions of (1) for the remaining 19 values of D ≤ 100.

Let S = {p1, . . . , ps} denote a set of distinct primes and S the set of non-zero
integers composed only of primes from S. Put P := max{p1, . . . , ps} and denote by
Q the product of the primes of S. In recent years, equation (1) has been considered
also in the more general case when D is no longer fixed but D ∈ S with D > 0.
It follows from Theorem 2 of [46] that in (1) n can be bounded from above by an
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effectively computable constant depending only on P and s. In [25] an effective
upper bound was derived for n which depends only on Q. Cohn [20] showed that
if D = 22k+1 then equation (1) has solutions only when n = 3 and in this case
there are three families of solutions. The case D = 22k were considered by Arif
and Abu Muriefah [2]. They conjectured that the only solutions are given by
(x, y) = (2k, 22k+1) and (x, y) = (11 · 2k−1, 5 · 22(k−1)/3), with the latter solution
existing only when (k, n) = (3M + 1, 3) for some integer M ≥ 0. Partial results
towards this conjecture were obtained in [2] and [19] and it was finally proved by
Arif and Abu Muriefah [5]. Arif and Abu Muriefah [3] proved that if D = 32k+1

then (1) has exactly one infinite family of solutions. The case D = 32k has been
solved by Luca [31] under the additional hypothesis that x and y are coprime. In
fact in [32] Luca solved completely equation (1) if D = 2a3b and gcd(x, y) = 1.
Abu Muriefah [1] established that equation (1) with D = 52k may have a solution
only if 5 divides x and p does not divide k for any odd prime p dividing n. The
case D = 2a3b5c7d with gcd(x, y) = 1, where a, b, c, d are non-negative integers was
studied by Pink [41]. The cases when D = 72k and D = 2a5b were also considered
by Luca and Togbe [33], [34]. For the case D = 2a5b13c, see Goins, Luca and Togbe
[24], while if D = 5a13b, see [38]. The cases D = 2a11b and D = 5a11b have been
recently considered in [17] and [16], respectively. Let p ≥ 5 be an odd prime with
p 6≡ 7 (mod 8). Arif and Abu Muriefah [6] determined all solutions of the equation
x2 + p2k+1 = yn, where gcd(n, 3h0) = 1 and n ≥ 3. Here h0 denotes the class
number of the field Q(

√
−p). They also obtained partial results [4] if D = p2k,

where p is an odd prime. In the particular case when gcd(x, y) = 1, D = p2, p
prime with 3 ≤ p < 100, Le [27] gave all the solutions of equation (1). The case
D = p2k with 2 ≤ p < 100 prime and gcd(x, y) = 1 was considered by Bérczes and
Pink [10]. If in (1) D = a2 with 3 ≤ a ≤ 501 and a is odd then Tengely [48] solved
completely equation (1) under the assumption (x, y) ∈ N2, gcd(x, y) = 1. The
equation A4 +B2 = Cn for AB 6= 0 and n ≥ 4 was completely solved by Bennett,
Ellenberg and Nathan [7] (see also Ellenberg [23]). For related results concerning
equation (1) see [43], [44] and the references given there. For a survey concerning
equation (1) see [14].

2 Results
Consider the following equation

x2 + 5k17l = yn (2)

in integer unknowns x, y, k, l, n satisfying

x ≥ 1 , y > 1 , n ≥ 3 , k ≥ 0 , l ≥ 0 and gcd(x, y) = 1 . (3)

Theorem 1. Consider equation (2) satisfying (3). Then all solutions of equation (2)
are:

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3), (8, 3, 0, 1, 4)} .

Remark 1. We may assume without loss of generality that in (2) n ≥ 5 prime or
n ∈ {3, 4}. The proof of our Theorem 1 is organized as follows. If n ≥ 5 prime we
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use some properties of Lucas sequences, to derive a sharp upper bound for n (see
also Pink [41], Theorem 2). Then we apply the result of Bilu, Hanrot and Voutier
[11] concerning the existence of primitive prime divisors in Lucas sequences.

If n ∈ {3, 4} there is a general method for giving all solutions of equations of
the form x2 + pkql = yn. Namely the problem is reduced to finding S-integral
points on several elliptic curves, where S = {p, q}. This works well, but in some
cases the computation of the rank and the Mordell-Weil group becomes very time
consuming so we need another approach. By using the parametrization provided
by Lemma 1 we get several equations of the form

X ± Y = 3u2,

where X, Y are S-units and S = {p, q}. These equations are considered locally
to get a contradiction or are transformed to Ljunggren-type equations. In fact, we
have to give all S-integral points on the resulting Ljunggren-type curves. Then,
using MAGMA we solve completely the equations under consideration.

3 Auxiliary results
Let S = {p1, . . . , ps} be a set of distinct primes and denote by S the set of non-zero
integers composed only of primes from S. Equation (2) is a special case of an
equation of the type

X2 +D = Y n, (4)

where

gcd(X,Y ) = 1 (5)

and

D ∈ S , D > 0 , X ≥ 1 , Y > 1 , n ≥ 3 . (6)

The next lemma provides a parametrization for the solutions of equation (4).

Lemma 1. Suppose that equation (4) has a solution under the assumptions (5)
and (6) with n ≥ 3 prime. Denote by d > 0 the square-free part of D = dc2 and
let h be the class number of the field Q(

√
−d). Then equation (5) has a solution

with d 6≡ 7 (mod 8) in one of the following cases:

(a) there exist u, v ∈ Z such that x+ c
√
−d = (u+ v

√
−d)n and y = u2 + dv2.

(b) d ≡ 3 (mod 8) and there exist U, V ∈ Z with U ≡ V ≡ 1 (mod 2) such that

x+ c
√
−d =

(
U+V

√
−d

2

)3

and y = U2+dV 2

4 .

(c) n = 3 if D = 3u2 ± 8 or if D = 3u2 ± 1 for some u ∈ Z.

(d) n = 5 if D ∈ {19, 341}.

(e) p | h.

Proof. This is a theorem of Cohn [22]. �
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Recall that a Lucas pair is a pair (α, β) of algebraic integers such that α+β and
αβ are non-zero coprime rational integers and α/β is not a root of unity. Given a
Lucas pair (α, β) one defines the corresponding sequence of Lucas numbers by

Ln =
αn − βn

α− β
, (n = 0, 1, 2, . . . ) .

A prime number p is called a primitive divisor of Ln if p divides Ln but does not
divide (α− β)2L1 · · ·Ln−1.

The next lemma gives a necessary condition for an odd prime p to be a primitive
prime divisor of the n-th term of a Lucas sequence if n is an odd prime. Namely
we have the following.

Lemma 2. Let Ln = αn−βn
α−β be a Lucas sequence and suppose that n is an odd

prime. Further, let A = (α − β)2. If p is a primitive prime divisor of Ln then

n | p−
(
A
p

)
, where

(
·
p

)
denotes the Legendre symbol with respect to the prime p.

Proof. See Carmichael [18]. �

The next lemma is a deep result of Bilu, Hanrot and Voutier [11] concerning
the existence of primitive prime divisors in a Lucas sequence.

Lemma 3. Let Ln = Ln(α, β) be a Lucas sequence. If n ≥ 5 is a prime then Ln has
a primitive prime divisor except for finitely many pairs (α, β) which are explicitly
determined in Table 1 of [11].

Proof. This follows from Theorem 1.4 of [11] and Theorem 1 of [49]. �

The following lemma of Holzer gives a criterium for the existence of solutions
of ternary quadratic equations.

Lemma 4. Let a, b, c be coprime integers, and consider the equation

ax2 + by2 + cz2 = 0 (7)

where x, y, z are unknown integers. If there is a non-trivial solution for (7), then
there is one satisfying

|x| ≤
√
|bc| , |y| ≤

√
|ac| , |z| ≤

√
|ab| .

Proof. See [37]. �

4 Proof of the Theorem
We introduce some notations which will be used in the course of the proof of our
Theorem. Consider equation (2) satisfying the assumptions (3). Denote by d > 0
the square-free part of 5k17l that is 5k17l = d(5a17b)2 where d ∈ {1, 5, 17, 85}
and a, b ∈ Z≥0. Further, let K be the imaginary quadratic field K = Q(

√
−d)

and denote by h the class number of K. As was mentioned in Remark 1, we have
to distinguish essentially three cases without loss of generality. Namely, we may
assume that in equation (2) n ≥ 5 prime or n ∈ {3, 4}.
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Case 1: n ≥ 5 prime. Suppose first that (2) holds satisfying (3) with n ≥ 5 prime.
If in (2) y > 1 is even we obviously have that x is odd. Since for any odd integer t
we have t2 ≡ 1 (mod 8) we get that 1 + d ≡ 0 (mod 8) by reducing (2) modulo 8.
This leads to d ≡ 7 (mod 8) for d ∈ {1, 5, 17, 85} which is clearly a contradiction.
Hence in what follows we may assume that in (2) y > 1 is odd (and hence x ≥ 1
is even). Since for d ∈ {1, 5, 17, 85} the class number of the field K = Q(

√
−d) is

1 or 2m, (m ≥ 1) we get by Lemma 1 that equation (2) can have a solution under
assumption (3) with n ≥ 5 prime only in the cases (a) and (d). Since k ≥ 1 and
l ≥ 1 we see that in (2) D = 19 cannot occur. Further, if D = 341 = 11 · 31 then
since D = 5k · 17l this choice for D is impossible, too. Hence equation (2) can
have a solution only in case (a) of Lemma 1. Namely, using the parametrization
provided by Lemma 1 and taking complex conjugation, we get

(x+ 5a17b
√
−d) = (u+ v

√
−d)n and (x− 5a17b

√
−d) = (u− v

√
−d)n (8)

for some u, v ∈ Z. Further, we also have y = u2 +dv2. By (9) we see that u | x and
since y > 1 is odd and gcd(x, y) = 1 we get that gcd(2u, y) = 1. Let α = u+v

√
−d

and β = u−v
√
−d. Then gcd(αβ, α+β) = gcd(y, 2u) = 1. If α/β is a root of unity

then since n ≥ 5 is prime we have α/β ∈ {±1,±i} if d = 1. This leads to u = 0 or
u = ±v. Now u = 0 yields x = 0 which is a contradiction by (4). If u = ±v then
2 | y = u2 +v2 which contradicts the fact that y is odd. If d ∈ {5, 17, 85}, then α/β
is a root of unity if α/β ∈ {±1}, which leads to either u = 1, v = 0 or u = 0, v = 1.
If u = 1, v = 0, then we get a contradiction with y ≥ 3. If u = 0, v = 1, then y = d
holds, which leads to a contradiction with gcd(x, y) = 1. Thus

Ln :=
(u+ v

√
−d)n − (u− v

√
−d)n

2v
√
−d

(9)

is a Lucas sequence.
Further, by (9) we have

Ln =
5a17b

v

for some non-negative integers a, b. By Lemma 3 we get that Ln has a primitive
divisor for n ≥ 5 prime. Also the only prime divisors of Ln can be 5 or 17. By
Lemma 2 we get that if p is a primitive divisor of Ln, then p ≡ ±1 (mod n), so
n | p± 1 holds. Since p ∈ {5, 17}, we have that one of the following cases holds:

n | 4 = 22 , n | 6 = 2 · 3 , n | 16 = 24 , n | 18 = 2 · 32

Since n ≥ 5 we get a contradiction for all cases, which implies that (2) does not
have a solution for n ≥ 5.

Case 2: n = 3. At first, we point out that the usual method concerning the search
for S-integral points on certain elliptic curves proves to be time consuming in this
case, so we show a different approach.

By Lemma 1, we see that

x+ 5a17b
√
−d = (u+ v

√
−d)3 (10)
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holds, where d ∈ {1, 5, 17, 85} and u, v ∈ Z. After expanding the right handside of
equation (10), and comparing the imaginary parts, we get that

5a17b = v(3u2 − dv2) . (11)

In (11) gcd(v, 3u2 − dv2) = 1 holds, since otherwise we would get gcd(u, v) 6= 1,
which implies gcd(x, y) 6= 1, which is clearly a contradiction. From this, we get the
following type of equations: {

3u2 − dv2 = f

v = g
(12)

where

(f, g) ∈ {(±1,±5a17b), (±5a,±17b), (±17b,±5a), (±5a17b,±1)} .

Since d ∈ {1, 5, 17, 85}, we get a total of 16 cases, we have to deal with. We will
illustrate the method in one of the more interesting cases, all the others can be
done in the same way. Let d = 5, f = ±17b, g = ±5a. From this, we get that

3u2 − 52a+1 = ±17b (13)

holds. Our main goal is to transform this to Ljunggren-type curves. To reduce the
number of curves, and so the time of the computation we write (13) to the form
of Ax2 +By2 +Cz2 = 0. Now using Holzer’s theorem (see Lemma 4) we get, that
(13) has a nontrivial solution if and only if b is odd and 3u2− 52a+1 = −17b holds.
Now we transform this to the following type.

3
( u

172b1

)2

= 5i+1

(
5a1

17b1

)4

− 17j+1 (14)

where i, j ∈ {0, 2}, and a = 4a1 + i+ 1, b = 4b1 + j+ 1. So, the problem is reduced
to finding all the {17}-integral points on quartics of the form of

3Y 2 = 5i+1X4 − 17j+1 , i, j ∈ {0, 2} , where X =
5a2

17b2
and Y =

u

172b2
.

Now, we can use MAGMA to determine all the solutions of the above equations.
Repeating this for all the 16 cases we get that all the solutions of (2) with n = 3
are:

(x, y, k, l, n) ∈ {(94, 21, 2, 1, 3), (2034, 161, 3, 2, 3)} .

We point out that, in many of the above cases the method used can be combined
with local methods to simplify the computations. AMdemo

Case 3: n = 4. If n = 4 holds, then we can write the following:

y4 − x2 = 5k17l
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which can be factored as

(y2 − x)(y2 + x) = 5k17l. (15)

In (15) gcd(y2 − x, y2 + x) = 1 holds, else we would get a contradiction with
gcd(x, y) = 1. So, we get that {

y2 − x = f

y2 + x = g

where (f, g) ∈ {(1, 5k17l), (5k, 17l), (17l, 5k), (5k17l, 1)}. Now, by adding the first
equation to the second, we get, that

2y2 = f + g

holds. Now using the same method as in the n = 3 case we get that with n = 4 all
the solutions of (2) are

(x, y, k, l, n) ∈ {(8, 3, 0, 1, 4)} .
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[9] A. Bérczes, B. Brindza and L. Hajdu: On power values of polynomials. Publ. Math.
Debrecen 53 (1998) 375–381.
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