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STOCHASTIC BOTTLENECK TRANSPORTATION
PROBLEM WITH FLEXIBLE SUPPLY
AND DEMAND QUANTITY

Yue Ge and Hiroaki Ishii

We consider the following bottleneck transportation problem with both random and
fuzzy factors. There exist m supply points with flexible supply quantity and n demand
points with flexible demand quantity. For each supply-demand point pair, the transporta-
tion time is an independent positive random variable according to a normal distribution.
Satisfaction degrees about the supply and demand quantity are attached to each supply
and each demand point, respectively. They are denoted by membership functions of corre-
sponding fuzzy sets. Under the above setting, we seek a transportation pattern minimizing
the transportation time target subject to a chance constraint and maximizing the minimal
satisfaction degree among all supply and demand points. Since usually there exists no
transportation pattern optimizing two objectives simultaneously, we propose an algorithm
to find some non-dominated transportation patterns after defining non-domination. We
then give the validity and time complexity of the algorithm. Finally, a numerical example
is presented to demonstrate how our algorithm runs.

Keywords: bottleneck transportation, random transportation time, flexible supply and
demand quantity, non-dominated transportation pattern

Classification: 90C35, 90C15, 90C70, 68Q25

1. INTRODUCTION

The purpose of the classical transportation problem is to determine the optimal
transportation pattern of a certain good from suppliers to demand customers so
that the total transportation cost becomes minimum. It is also called the cost mini-
mizing transportation problem, which has been extensively studied in the literature
and several algorithms [2, 4, 5, 9, 14, 15] are available to solve it. Similarly, efficient
algorithm have been proposed by Hammer [8], Szwarc [16] and Garfinkel and Rao [6]
for solving the time minimizing (bottleneck) transportation problem, assuming that
all the transportation are allowed to commence simultaneously. This paper extends
the bottleneck transportation problem by considering randomness of transportation
time and flexibility of supply and demand quantity. Randomness means that trans-
portation time may change according to many factors. The flexibility reflects on the
actual situation that total quantity from suppliers is less than that to demand cus-
tomers. So two criteria are taken into account in this paper. One is to minimize the
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transportation time target subject to a chance constraint. The other is to maximize
the minimal satisfaction degree with respect to the flexibility of supply and demand
quantity. However, there usually exists no transportation pattern optimizing two
objectives simultaneously. So we seek some non-dominated transportation patterns
after defining non-domination. Our model is an extension of our previous models
[3, 11, 12, 17, 18] and a similar but different model due to Lin and Tsai [13]. As for
another fuzzy version, we have considered competitive transportation problem [10]
also in order to cope with an actual situation. Geetha and Nair [7] have considered
a stochastic bottleneck transportation problem and proposed an efficient solution,
which is very useful for our subproblem.

The rest of this paper is organized as follows. Our problem is first formulated in
Section 2, and then in Section 3 we present an algorithm to find some non-dominated
transportation patterns, demonstrate its validity and study its time complexity. Sec-
tion 4 shows how our algorithm runs using a numerical example. Finally, Section 5
concludes this paper and discusses further research problems.

2. PROBLEM FORMULATION

In this paper, we focus on the following bi-criteria stochastic bottleneck transporta-
tion problem with flexible supply and demand quantity.

(1) There exist a set of m supply points S = {S1, S2, . . . , Sm} and a set of n demand
points T = {T1, T2, . . . , Tn}.

(2) Edges set A is a set of routes connecting each supply point Si with each demand
point Tj denoted by (i, j), i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

(3) For each route (i, j) from Si to Tj , the transportation time tij is an independent
positive random variable according to the normal distribution N(mij , σ

2
ij). We

denote the transportation quantity using each route (i, j) by fij and assume
that these fij are nonnegative integer decision variables. The following chance
constraint is attached:

Pr{tij ≤ F} ≥ α for every (i, j)|fij > 0

where α > 1/2 and F is also a decision variable to be minimized.

(4) Let si, tj be the total flow value sent from Si and to Tj , respectively. Different to
the usual transportation problem, upper limit of supply quantity for each supply
point and lower limit of demand quantity for each demand point are flexible.
They are expressed by the following two kinds of membership functions µSi(si)
and µTj (tj) for fuzzy supply quantity from Si and fuzzy demand quantity to Tj ,
respectively, which characterizing the satisfaction degrees of supply and demand
points:

µSi(si) =


1 (si ≤ ai)
bi−si

bi−ai
(ai < si < bi)

0 (si ≥ bi)
,
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µTj (tj) =


0 (tj ≤ dj)
tj−dj

ej−dj
(dj < tj < ej)

1 (tj ≥ ej)
,

where ai < bi, dj < ej and ai, bi, dj , ej are positive integers.

We assume that
∑m

i=1 ai <
∑n

j=1 ej , otherwise our problem becomes trivial,
since all values of membership functions can be set to 1; besides, we assume that∑m

i=1 bi >
∑n

j=1 dj , otherwise the value of the second objective of our problem
is 0. Note that si =

∑n
j=1 fij , i = 1, 2, . . . ,m, tj =

∑m
i=1 fij , j = 1, 2, . . . , n.

(5) We consider two criteria: one is to minimize F , the other is to maximize the
minimal satisfaction degree with respect to the flexibility of supply and demand
quantity.

From the above setting, our transportation problem TP can be formulated as
follows:

TP : Minimize F

Maximize min
i,j

{µSi(si), µTj (tj)}

Subject to Pr{tij ≤ F} ≥ α for every (i, j)|fij > 0
n∑

j=1

fij = si, i = 1, 2, . . . ,m

m∑
i=1

fij = tj , j = 1, 2, . . . , n

fij : nonnegative integer, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

Since for every (i, j)|fij > 0,

Pr{tij ≤ F} ≥ α ⇔ Pr
{

tij −mij

σij
≤ F −mij

σij

}
≥ α

and
tij −mij

σij

is a random variable according to the standard normal distribution N(0, 1), the
chance constraint is equivalent to the following deterministic constraint:

F −mij

σij
≥ Kα ⇔ F ≥ mij + Kασij ,

where Kα is the α percentile point of the cumulative distribution function of N(0, 1)
and note that Kα > 0 since we assume α > 1/2.
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Since F should be minimized, then problem TP is transformed into the following
equivalent problem P.

P : Minimize max
i,j

{mij + Kασij |fij > 0}

Maximize min
i,j

{µSi(si), µTj (tj)}

Subject to
n∑

j=1

fij = si, i = 1, 2, . . . ,m

m∑
i=1

fij = tj , j = 1, 2, . . . , n

fij : nonnegative integer, i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Next, we define the bi-objective vector v(f) = (v(f)1, v(f)2) of a transportation
pattern f = (fij) as

v(f)1 = max
i,j

{mij + Kασij |fij > 0}, v(f)2 = min
i,j

{µSi
(si), µTj

(tj)}.

Generally, a transportation pattern optimizing two objectives simultaneously does
not exist. So we seek some non-dominated transportation patterns, the definition of
which is given as follows.

Definition 2.1. Let fa, f b be two transportation patterns, we say that fa domi-
nates f b, if v(fa)1 ≤ v(f b)1, v(fa)2 ≥ v(f b)2 and at least one inequality holds as a
strict inequality. If there exists no transportation pattern dominating f , f is called
a non-dominated transportation pattern.

3. SOLUTION PROCEDURE

Note that si, tj are integers, then we can denote ranges of µSi(si) and µTj (tj) with
{µSi,1, µSi,2, . . . , µSi,ki} and {µTj ,1, µTj ,2, . . . , µTj ,lj}, respectively, i = 1, 2, . . . ,m,
j = 1, 2, . . . , n. Now sorting them, let the result be 0 < µ1 < µ2 < . . . < µg ≤ 1,
where g is the number of different values of them. In order to solve our bi-criteria
problem P, first we solve single criterion subproblems Pu with fixed parameter u
which will be given soon.

For fixed u ∈ {1, 2, . . . , g}, we only consider µSi(si) ≥ µu, µTj (tj) ≥ µu, that is,
si ≤ bi − µu(bi − ai), tj ≥ dj + µu(ej − dj), i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

As it is easily seen, the total supply quantity should be not less than the total
demand quantity. Otherwise, the problem becomes infeasible. So we assume

m∑
i=1

{bi − µu(bi − ai)} ≥
n∑

j=1

{dj + µu(ej − dj)},
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that is,

µu ≤
∑m

i=1 bi −
∑n

j=1 dj∑m
i=1(bi − ai) +

∑n
j=1(ej − dj)

, µ̄.

In order to find non-dominated transportation patterns, we consider the fol-
lowing subproblem Pu, u = 1, 2, . . . , h, where h = max{u ∈ {1, 2, . . . , β}|β ∈
{1, 2, . . . , g}, µβ ≤ µ̄ < µβ+1,

∑m
i=1bbi −µu(bi − ai)c ≥

∑n
j=1ddj + µu(ej − dj)e}, b·c

is the greatest integer not greater than · and d·e is the smallest integer not smaller
than ·.

Pu : Minimize max
i,j

{mij + Kασij |fij > 0}

Subject to
n∑

j=1

fij ≤ si(u), i = 1, 2, . . . ,m

m∑
i=1

fij ≥ tj(u), j = 1, 2, . . . , n

fij : nonnegative integer, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

where si(u) = bbi − µu(bi − ai)c, tj(u) = ddj + µu(ej − dj)e.

For fixed u ∈ {1, 2, . . . , h}, a procedure to solve problem Pu is based on a bi-
nary search over the values arranged in ascending order of mij + Kασij to find the
smallest of these values for which a feasible transportation pattern exists; this value
is the optimal value of problem Pu. Next we present the solution procedure in detail.

Compute mij + Kασij , i = 1, 2, . . . ,m, j = 1, 2, . . . , n, and arrange these values
in ascending order. Let the result be

c1 < c2 < . . . < cl

where l is the number of different values of them.

For k = 1, 2, . . . , l, set

ck
ij =

{
0 if mij + Kασij ≤ ck

∞ otherwise , i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

Denote the matrices C = (mij + Kασij)m×n and Ck = (ck
ij)m×n.

For u = 1, 2, . . . , h, k = 1, 2, . . . , l, denote the cost minimizing transportation
problem with the above defined cost values as follows:
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Pk
u : Minimize

m∑
i=1

n∑
j=1

ck
ijfij

Subject to
n∑

j=1

fij ≤ si(u), i = 1, 2, . . . ,m

m∑
i=1

fij ≥ tj(u), j = 1, 2, . . . , n

fij : nonnegative integer, i = 1, 2, . . . ,m, j = 1, 2, . . . , n

Now we give the following algorithm to solve problem P1.

Algorithm 1

Step 1 Set L = 1 and check whether PL
1 is feasible or not. If feasible, go to Step 4

after setting q1 = L. Otherwise, set U = l and check whether PU
1 is feasible

or not. If feasible, go to Step 2. Otherwise, terminate as an infeasibility.

Step 2 When U −L > 1, set K = b(L+U)/2c and check whether PK
1 is feasible or

not. If feasible, set U = K and repeat Step 2. Otherwise, set L = K and
repeat Step 2. When U − L = 1, go to Step 3.

Step 3 If PL
1 is feasible, set q1 = L. Otherwise, set q1 = U .

Step 4 A feasible transportation pattern f(1) for Pq1
1 exists, which is optimal for

P1 and the corresponding cq1 is the optimal value of P1.

Remark 3.1. Pq1
1 is feasible, it means that there exists a feasible transportation

pattern, which is obviously optimal for Pq1
1 , and its optimal value is 0.

Next, we show the validity of Algorithm 1.

Proposition 3.2. Algorithm 1 is valid.

P r o o f . Algorithm 1 is based on a binary search to find the smallest q1 ∈ {1, 2, . . . , l}
for which a feasible transportation pattern f(1) of Pq1

1 exists and the corresponding
cq1 is the optimal value of P1, it is valid. �

The time complexity of Algorithm 1 is given as follows.

Theorem 3.3. The time complexity of Algorithm 1 is

O((m + n)3 log(mn) log(m + n)).

P r o o f . The time complexity of Algorithm 1 follows from the fact that the binary
search over l = O(mn) values has time complexity O(log l) and every step in the
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binary search results in solving a transportation problem whose solution method is
of time complexity O((m + n)3 log(m + n)) [1]. Hence, in the worst case analysis,
Algorithm 1 is of time complexity O((m + n)3 log(mn) log(m + n)). �

For Pu, u = 2, 3, . . . , h, the algorithm is very similar to P1; the only difference
is we first set L = qu−1, where qu−1 is the superscript of the optimal value cqu−1 of
Pu−1.

Then, we give the following algorithm for P, where NDT and NDV denote the
set of non-dominated transportation patterns and corresponding bi-objective vec-
tors, respectively.

Algorithm 2

Step 1 Set u = 1, NDT = ∅, NDV = ∅.

Step 2 Solve Pu, we obtain an optimal transportation pattern f(u) = (fij(u)) and
the optimal value is cqu . If

min
i,j

{
µSi

( n∑
j=1

fij(u)
)
, µTj

( m∑
i=1

fij(u)
)}

6= µu,

go to Step 3. Otherwise, check whether f(u) dominates the transportation
patterns in NDT or not. If so, update NDT and NDV by deleting the dom-
inated transportation patterns and the corresponding bi-objective vectors,
respectively, and then adding {f(u)} and {(cqu , µu)}, respectively. Other-
wise, update NDT and NDV directly by adding {f(u)} and {(cqu , µu)},
respectively. Go to Step 3.

Step 3 If u = h, terminate. Otherwise, set u = u + 1 and return to Step 2.

The validity of Algorithm 2 may be proved as follows.

Proposition 3.4. Algorithm 2 is valid.

P r o o f . Algorithm 2 checks all possibilities (i. e., µ1, µ2, . . . , µh) of the second com-
ponents of bi-objective vectors, that is, we solve corresponding problems P1, P2, . . .,
Ph, which are subproblems of problem P. Then obtain an optimal transportation
pattern f(u) and the optimal value cqu for each Pu, u = 1, 2, . . . , h. From the defi-
nition of non-domination, Algorithm 2 is valid. �

The time complexity of our solution procedure for problem P is shown in the
following theorem.

Theorem 3.5. The time complexity of our solution procedure for problem P is

O(M ·max{log M, (m + n)3 log(mn) log(m + n)}),

where M =
∑m

i=1(bi − ai) +
∑n

j=1(ej − dj).
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Tab. 1 The values of ai, bi, dj , ej and the distribution of tij .

i\j 1 2 3 ai bi

1 N(3, 0.52) N(7, 0.42) N(4, 1.22) 10 14
2 N(6, 0.82) N(5, 0.32) N(1, 0.72) 12 18
3 N(7, 0.32) N(4, 0.62) N(8, 1.02) 5 8
dj 12 6 10
ej 15 8 13

P r o o f . We consider integer problem, then h ≤ M holds, so sorting µ1, µ2, . . . , µh

takes at most O(M log M) operations. Solving each Pu, u = 1, 2, . . . , h takes at most
O((m+n)3 log(mn) log(m+n)) operations. In Step 2, check whether f(u) dominates
the transportation patterns in NDT or not needs at most O(h) operations. As Step
2 to Step 3 is repeated at most h times. Therefore, the total time complexity is
O(max{M log M,M(m + n)3 log(mn) log(m + n)}). �

4. NUMERICAL EXAMPLE

Consider problem TP with α = 0.9987, tij ∼ N(mij , σ
2
ij) and the values of ai, bi,

dj , ej are given in Table 1.

Our problem TP reduces to problem P.

P : Minimize max
i,j

{mij + 3.0σij |fij > 0}

Maximize min
i,j

{µSi(si), µTj (tj)}

Subject to
3∑

j=1

fij = si, i = 1, 2, 3

3∑
i=1

fij = tj , j = 1, 2, 3

fij : nonnegative integer, i, j = 1, 2, 3.

Since si, tj are integers, sorting the values of µSi(si) and µTj (tj), we obtain

0 < µ1 = 1/6 < µ2 = 1/4 < µ3 = 1/3 < µ4 = 1/2

< µ5 = 2/3 < µ6 = 3/4 < µ7 = 5/6 < µ8 = 1.

Note that, µ̄ = 12/21, so µ4 < µ̄ < µ5 and β = 4. Further, we get h = 4.
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We only need to solve the following subproblem Pu, u = 1, 2, 3, 4.

Pu : Minimize max
i,j

{mij + 3.0σij |fij > 0}

Subject to
3∑

j=1

fij ≤ si(u), i = 1, 2, 3

3∑
i=1

fij ≥ tj(u), j = 1, 2, 3

fij : nonnegative integer, i, j = 1, 2, 3

Compute mij + 3.0σij , i, j = 1, 2, 3, we obtain

C =

 4.5 8.2 7.6
8.4 5.9 3.1
7.9 5.8 11.0

 .

Arrange these values in ascending order, that is,

c1 = 3.1 < c2 = 4.5 < c3 = 5.8 < c4 = 5.9 < c5 = 7.6

< c6 = 7.9 < c7 = 8.2 < c8 = 8.4 < c9 = 11.0.

For k = 1, 2, . . . , 9, set

ck
ij =

{
0 if mij + 3.0σij ≤ ck

∞ otherwise , i, j = 1, 2, 3.

For u = 1, 2, 3, 4, k = 1, 2, . . . , 9, problem Pk
u has the following form:

Pk
u : Minimize

3∑
i=1

3∑
j=1

ck
ijfij

Subject to
3∑

j=1

fij ≤ si(u), i = 1, 2, 3

3∑
i=1

fij ≥ tj(u), j = 1, 2, 3

fij : nonnegative integer, i, j = 1, 2, 3.

Next we solve problem P1, note that s1(1) = 13, s2(1) = 17, s3(1) = 7, t1(1) = 13,
t2(1) = 7, t3(1) = 11.

Algorithm 1 for problem P1 performs as follows:

Step 1. Set L = 1 and P1
1 is infeasible. Set U = 9 and P9

1 is feasible. Go to Step 2.
Step 2. U −L = 8 6= 1. Set K = 5 and P5

1 is feasible. Set U = 5 and repeat Step 2.
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Step 2. U −L = 4 6= 1. Set K = 3 and P3
1 is feasible. Set U = 3 and repeat Step 2.

Step 2. U − L = 2 6= 1. Set K = 2 and P2
1 is infeasible. Set L = 2, repeat Step 2.

Step 2. U − L = 1, so go to Step 3.
Step 3. P2

1 is infeasible, so set q1 = 3.
Step 4. An feasible transportation pattern f(1) of problem P3

1 is given as follows:
f11 = 13, f23 = 11, f32 = 7. It is optimal for problem P1 and the optimal value is 5.8.

For Pu, u = 2, 3, 4, it is similar to P1. Solve them, we obtain an optimal trans-
portation pattern and the optimal value for each problem, which are given as follows:

P2 : f11 = 13, f23 = 11, f32 = 7; the optimal value is 5.8.

P3 : f11 = 12, f22 = 1, f23 = 11, f31 = 1, f32 = 6; the optimal value is 7.9.

P4 : f11 = 12, f22 = 3, f23 = 12, f31 = 2, f32 = 4; the optimal value is 7.9.

Finally, we solve our problem P.

Algorithm 2 for problem P performs as follows:

Step 1. Set u = 1, NDT = ∅, NDV = ∅.
Step 2. Solve P1. An optimal transportation pattern f(1) is given as follows:
f11 = 13, f23 = 11, f32 = 7 and the optimal value is 5.8. Since

min{µS1(13), µS2(11), µS3(7), µT1(13), µT2(7), µT3(11)} = 1/4 6= µ1 = 1/6,

so go to Step 3.
Step 3. u = 1 6= 4, so set u = 2 and return to Step 2.
Step 2. Solve P2. An optimal transportation pattern f(2) is given as follows:
f11 = 13, f23 = 11, f32 = 7 and the optimal value is 5.8. Since

min{µS1(13), µS2(11), µS3(7), µT1(13), µT2(7), µT3(11)} = 1/4 = µ2,

so set NDT = {f(2)}, NDV = {(5.8, 1/4)}, and then go to Step 3.
Step 3. u = 2 6= 4, so set u = 3 and return to Step 2.
Step 2. Solve P3. An optimal transportation pattern f(3) is given as follows:
f11 = 12, f22 = 1, f23 = 11, f31 = 1, f32 = 6 and the optimal value is 7.9. Since

min{µS1(12), µS2(12), µS3(7), µT1(13), µT2(7), µT3(11)} = 1/3 = µ3,

and f(2) is not dominated by f(3), so set

NDT = {f(2), f(3)}, NDV = {(5.8, 1/4), (7.9, 1/3)},

then go to Step 3.
Step 3. u = 3 6= 4, so set u = 4 and return to Step 2.
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Step 2. Solve P4. An optimal transportation pattern f(4) is given as follows:
f11 = 12, f22 = 3, f23 = 12, f31 = 2, f32 = 4 and the optimal value is 7.9. Since

min{µS1(12), µS2(15), µS3(6), µT1(14), µT2(7), µT3(12)} = 1/3 6= µ4 = 1/2,

then go to Step 3.
Step 3. u = 4, terminate. A set of some non-dominated transportation patterns
and corresponding bi-objective vectors for problem P are given as follows:

NDT = {f(2), f(3)}, NDV = {(5.8, 1/4), (7.9, 1/3)}.

5. CONCLUSION

In this paper, we considered a bi-criteria stochastic bottleneck transportation prob-
lem with flexible supply and demand quantity and developed an algorithm to find
some non-dominated transportation patterns. Further, we proved the validity of the
algorithm, studied its time complexity and illustrated it using a numerical example.
As a further research problem, we should consider the preference of the route used
in a transportation. This case makes the problem three criteria one and we are now
attacking this case. Anyway, there remain many other network problems with both
random and fuzzy factors to be investigated.

(Received June 8, 2010)
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