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PERFECT COMPACTIFICATIONS OF FRAMES
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Abstract. Perfect compactifications of frames are introduced. It is shown that the Stone-
Čech compactification is an example of such a compactification. We also introduce rim-
compact frames and for such frames we define its Freudenthal compactification, another
example of a perfect compactification. The remainder of a rim-compact frame in its Freuden-
thal compactification is shown to be zero-dimensional. It is shown that with the assumption
of the Boolean Ultrafilter Theorem the Freudenthal compactification for spaces, as well as
the Freudenthal-Morita Theorem for spaces, can be obtained from our frame constructions.
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1. Introduction

Perfect compactifications of topological spaces were introduced by Sklyarenko

(see [11]) as the compactifications Y of a space X having the property that

FrY O〈U〉 = ClY FrX U for every open subset U of X . Here Fr is the frontier

(or boundary) operator, and O〈U〉 = Y \ ClY (X \ U) which is the largest open

subset of Y whose intersection with X gives the set U . Examples of such com-

pactifications are the Stone-Čech compactification of a Tychonoff space and the

Freudenthal compactification of a rim-compact Hausdorff space [11].

The purpose of this paper is to define such compactifications for frames with the

main aim of defining the Freudenthal compactification for a class of frames which we

call rim-compact. We shall show that the Freudenthal compactification for spaces can

be obtained from the frame construction provided we assume the Boolean Ultrafilter

Theorem. It is a well known fact that the classical construction of the Freudenthal

compactification for spaces rests on the Boolean Ultrafilter Theorem. However, in
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the frame context we believe it is noteworthy to mention that our construction of

the Freudenthal compactification does not depend on any choice principles.

We also obtain the frame analog of the Freudenthal-Morita theorem for spaces [6],

[9] appearing in [11], namely: Every peripherally bicompact space X may be imbed-

ded in a bicompactum with zero-dimensional (in the sense of ind) annex. We then

show, and this is our final result, that this theorem for spaces follows from the frame

version if we again assume the Boolean Ultrafilter Theorem.

2. Preliminaries

A frame L is a complete lattice which satisfies the infinite distributive law:

x ∧
∨

S =
∨

{x ∧ s : s ∈ S}

for all x ∈ L, S ⊆ L. The top element of L is denoted by e and the bottom by 0.

A frame homomorphism is a map h : L → M between frames that preserve finitary

meets (including the top e) and arbitrary joins (including the bottom 0).

We thus have the category of frames and frame homomorphisms, which we denote

by Frm. A frame map h : L → M is called dense if x = 0 whenever h(x) = 0.

A frame L is called compact if whenever e =
∨

S, then there exists a finite F ⊆ S

such that e =
∨

F . For elements a, b ∈ L, we say that a is rather below b, written

a ≺ b, if there exists an element c ∈ L such that a ∧ c = 0 and c ∨ b = e. This is

equivalent to the condition that a∗ ∨ b = e, where a∗ is the pseudocomplement of a,

i.e. the largest element in L whose meet with a is 0. A frame L is called regular if

for each a ∈ L, a =
∨

{x ∈ L : x ≺ a}. A compactification of a frame L is a compact

regular frame M together with a dense onto homomorphism h : M → L.

The prototypical example of a frame is the frame OX of open sets of a topo-

logical space X , and of a frame homomorphism that is determined by any contin-

uous map f : X → Y between topological spaces, namely, Of : OY → OX tak-

ing U ∈ OY to f−1(U) ∈ OX . In fact, this determines a contravariant functor

O : Top → Frm from the category Top of topological spaces and continuous maps

to the category Frm of frames and their homomorphisms. There is also a con-

travariant functor Σ: Frm → Top. This is described as follows: For each frame L,

ΣL = {ξ : L → 2 : ξ is a frame homomorphism} (where 2 is the two-element frame),

with open sets Σa = {ξ ∈ ΣL : ξ(a) = 1} for a ∈ L. Also, for any frame homomor-

phism h : L → M , Σh : ΣM → ΣL is the map that acts by composition with h. The

functors O and Σ are adjoint on the right with adjunction maps

ηL : L → OΣL, a Σa
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and

εX : X → ΣOX, x x̃, x̃(U) = 1 ⇔ x ∈ U.

The space ΣL is called the spectrum of L, and L is said to be spatial if the map ηL

is an isomorphism.

A congruence on a frame L is an equivalence relation on L which is also a subframe

of L×L. The congruence lattice CL of L consists of all the congruences on L. It is a

frame with the bottom element ∆ = {(x, x) : x ∈ L} and the top element ∇ = L×L.

Two particular congruences associated with each a ∈ L are ∆a = {(x, y) ∈ L × L :

x ∧ a = y ∧ a} and ∇a = {(x, y) ∈ L × L : x ∨ a = y ∨ a}. These members of C L

are complementary to each other in the sense that their meet is the bottom and

their join is the top element. In general a congruence Θ does not necessarily have

a complement in CL though of course it must have a pseudocomplement which we

will denote by Θ∗.

A frame L is called completely regular if for each a ∈ L, a =
∨

{x ∈ L : x ≺≺ a}

where x ≺≺ a means that there exists a doubly indexed sequence of elements in L,

(xnk)n=0,1,... ; k=0,1,...,2n such that

x = xn0, xnk ≺ xnk+1, xn2n = a, xnk = xn+1 2k

for all n = 0, 1, . . . and k = 0, 1, . . . , 2n.

For general background on compactifications of frames the reader is referred to

Banaschewski (see [3]), and for frames in general to the book by Johnstone (see [8]).

Concerning spaces the central source from which the frame concepts and ideas were

developed was the paper by Sklyarenko [11], to which we are greatly indebted.

3. Perfect compactifications

Definition 3.1. Let h : M → L be a compactification of L, r : L → M its

right adjoint. Then (M, h) is said to be perfect with respect to an element u ∈ L

if r(u ∨ u∗) = r(u) ∨ r(u∗). The compactification (M, h) is said to be a perfect

compactification of L if it is perfect with respect to every element of L.

The point-free Stone-Čech compactification was introduced by Banaschewski and

Mulvey in [5]. As an immediate consequence we have the following:

Theorem 3.2. The Stone-Čech compactification of a completely regular frame is

perfect.

P r o o f. This follows from the corollary to Lemma 5 in the paper [1] where it is

shown that the right adjoint of the compactification map preserves disjoint binary

joins. �
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Remark 3.3. The purpose of this remark is to provide a motivation for the

above definition of perfect compactification of a frame. We see that this arises

quite naturally from the work of Sklyarenko. We also show how, under certain

circumstances, we can recover the perfect compactification for spaces from the frame

counterpart. To this end let i : X →֒ Y be a compactification (more generally an

extension) of the space X . For any U ∈ OX (the open subsets of X), O〈U〉 (in the

notation of Sklyarenko) = Y \ClY (X \U), and is the largest open subset of Y whose

meet with X is U .

Now the frame map Oi : OY → OX has the right adjoint (Oi)∗ given by

(Oi)∗(U) =
⋃

(V ∈ OY )((Oi)V = U) =
⋃

(V ∈ OY )(V ∩ X = U) and there-

fore (Oi)∗(U) = O〈U〉 for any U ∈ OX . Let U∗ represent the pseudocomplement

of U in OX , i.e. X \ ClX U .

Then

ClY (FrX U) = FrY O〈U〉

⇔ ClY (ClX U \ U) = ClY O〈U〉 \ O〈U〉

⇔ Y \ ClY (ClX U \ U) = Y \ (ClY O〈U〉 \ O〈U〉)

= (Y \ ClY O〈U〉) ∪ O〈U〉

= (Y \ ClY (O〈U〉 ∩ X)) ∪ O〈U〉

(since X is dense in Y )

= (Y \ ClY U) ∪ O〈U〉

= (Y \ ClY ClX U) ∪ O〈U〉

(since ClY U = ClY (ClX U))

= [Y \ ClY (X \ (X \ ClX U))] ∪ O〈U〉

= O〈U∗〉 ∪ O〈U〉

⇔ Y \ ClY (X \ (X \ (ClX U \ U))) = O〈U∗〉 ∪ O〈U〉

⇔ O〈X \ (ClX U \ U)〉 = O〈U∗〉 ∪ O〈U〉

⇔ O〈U ∪ (X \ ClX U)〉 = O〈U∗〉 ∪ O〈U〉

⇔ O〈U ∪ U∗〉 = O〈U∗〉 ∪ O〈U〉

⇔ (Oi)∗(U ∪ U∗) = (Oi)∗(U) ∪ (Oi)∗(U
∗).

We can therefore conclude from the above calculation that i : X →֒ Y is a per-

fect compactification of the topological space X iff Oi : OY → OX is a perfect

compactification of the frame OX .
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Thus, given just the data that i : X →֒ Y is an extension with Y Hausdorff and

Oi : OY → OX a perfect frame compactification, we can conclude that i : X →֒ Y

is a perfect compactification of X .

We can then recover the perfect compactification i : X →֒ Y by noting that i :

X →֒ Y factorizes as

X
εX−→ ΣOX

ΣOi
−→ ΣOY ∼= Y

where we note that Y
εY−→ ΣOY is a homeomorphism since Y is Hausdorff and

therefore sober.

We have the following lemma which comes from Banaschewski [2], the proof of

which is recorded here for the sake of completeness.

Lemma 3.4. Let h : M → L be dense and onto, with r its right adjoint. Then

(1) r(a∗) = r(a)
∗ for all a ∈ L,

(2) h(x∗) = h(x)
∗ for all x ∈ M .

P r o o f. (1) h(r(a)∧r(a∗)) = a∧a∗ = 0 implies r(a)∧r(a∗) = 0 since h is dense,

and hence r(a∗) 6 r(a)
∗. Furthermore, r(a) ∧ r(a)

∗
= 0 implies a ∧ h(r(a)

∗
) = 0

which implies h(r(a)∗) 6 a∗ and hence r(a)∗ 6 r(a∗).

(2) 0 = x ∧ x∗ ⇒ 0 = h(0) = h(x) ∧ h(x∗) ⇒ h(x∗) 6 h(x)
∗. Furthermore,

r(h(x)
∗
) = r(h(x))

∗
6 x∗ since x 6 r(h(x)). Thus hr(h(x)

∗
) 6 h(x∗), i.e. h(x)∗ 6

h(x∗). �

We shall say that in a frame L, the pair (u, v) disconnects w in L if w = u ∨ v,

u ∧ v = 0 and u 6= 0, v 6= 0. We then have:

Theorem 3.5. The following conditions are equivalent for a compactification

h : M → L of L, r being the right adjoint of h.

(1) h : M → L is a perfect compactification.

(2) If a pair (u, v) disconnects w in L, then the pair (r(u), r(v)) disconnects r(w)

in M .

(3) r preserves disjoint binary joins.

P r o o f. (1) ⇒ (3): Take any u, v ∈ L, u ∧ v = 0. We shall show the non-trivial

inequality r(u ∨ v) 6 r(u) ∨ r(v). Now u ∧ v = 0 ⇒ v 6 u∗ ⇒ u ∨ v 6 u ∨ u∗ ⇒
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r(u ∨ v) 6 r(u ∨ u∗) = r(u) ∨ r(u∗). Similarly r(u ∨ v) 6 r(v) ∨ r(v∗). Hence

r(u ∨ v) 6 (r(u) ∨ r(u∗)) ∧ (r(v) ∨ r(v∗))

= [(r(u) ∨ r(u∗)) ∧ r(v)] ∨ [(r(u) ∨ r(u∗)) ∧ r(v∗)]

= (r(u) ∧ r(v)) ∨ (r(u∗) ∧ r(v)) ∨ (r(u) ∧ r(v∗)) ∨ (r(u∗) ∧ r(v∗))

= r(u ∧ v) ∨ r(u∗ ∧ v) ∨ r(u ∧ v∗) ∨ r(u∗ ∧ v∗)

= r(0) ∨ r(v) ∨ r(u) ∨ r((u ∨ v)∗)

= 0 ∨ r(v) ∨ r(u) ∨ (r(u ∨ v))∗

since h is dense and by virtue of Lemma 3.4. Thus r(u∨v) 6 r(u)∨r(v) as required.

(3) ⇒ (2): Suppose w = u ∨ v, with u ∧ v = 0, u 6= 0, v 6= 0 in L. Then

r(w) = r(u) ∨ r(v), with r(u) 6= 0, r(v) 6= 0 and r(u) ∧ r(v) = r(u ∧ v) = r(0) = 0.

Thus (r(u), r(v)) disconnects r(w) in M .

(2) ⇒ (1): Take any u ∈ L. Let w = u ∨ u∗. If either u = 0 or u∗ = 0, then

r(u) = 0 or r(u∗) = 0 by denseness of h, and the equality r(u ∨ u∗) = r(u) ∨ r(u∗)

must certainly hold. If u 6= 0 and u∗ 6= 0, then (u, u∗) disconnects w, and thus the

pair (r(u), r(u∗)) disconnects r(w). Hence r(u ∨ u∗) = r(u) ∨ r(u∗). �

In [3] Banaschewski introduces the concept of a strong inclusion on a frame L. We

recall this:

Definition 3.6. A strong inclusion on a frame L is a binary relation ⊳ on L such

that

(1) if x 6 a ⊳ b 6 y then x ⊳ y;

(2) ⊳ is a sublattice of L × L;

(3) a ⊳ b ⇒ a ≺ b;

(4) a ⊳ b ⇒ a ⊳ c ⊳ b for some c in L;

(5) a ⊳ b ⇒ b∗ ⊳ a∗;

(6) for each a ∈ L, a =
∨

x(x ⊳ a).

Let K(L) be the set of all compactifications of L, partially ordered by (M, h) 6

(N, f) iff there exists a frame homomorphism g : M → N making the following

diagram commute:

M
g //

h

��

N

f

��
L L

Also, let S(L) be the set of all strong inclusions on L, partially ordered by set

inclusion. Banaschewski [3] shows that K(L) is isomorphic to S(L) by exhibiting
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maps K(L) → S(L) and S(L) → K(L) which are order preserving and inverses of

each other. The map K(L) → S(L) is given as follows: For a compactification (M, h)

of L, let r : L → M be the right adjoint of h. Then for any x, y ∈ L define x ⊳ y to

mean that r(x) ≺ r(y). Then ⊳ turns out to be a strong inclusion on L. For the map

S(L) → K(L), let ⊳ be any strong inclusion on L. Let γL be the set of all strongly

regular ideals of L relative to ⊳, i.e. those ideals J of L for which x ∈ J implies there

exists y ∈ J such that x ⊳ y. Then ∨ : γL → L is dense, onto, and γL is a regular

subframe of Idl(L), the frame of ideals of L, so that (γL,∨) is a compactification

of L. This is the compactification associated with the given ⊳.

If (M, h) is a compactification of a frame L, it is of interest then to know what

additional properties the associated strong inclusion must satisfy if (M, h) is already

a perfect compactification. This is given in the next

Proposition 3.7. Let h : M → L be a compactification of L, ⊳ the associated

strong inclusion. If (M, h) is a perfect compactification, then ⊳ satisfies

For all x, y ∈ L, x 6 y, x ⊳ y ∨ y∗ implies x ⊳ y.

P r o o f. Suppose x 6 y, x ⊳ y ∨ y∗. Then r(x) ≺ r(y ∨ y∗) = r(y) ∨ r(y∗), since

(M, h) is a perfect compactification. Let t ∈ L such that r(x)∧t = 0, t∨r(y)∨r(y∗) =

e. Then r(x)∧(t∨r(y∗) = (r(x)∧t)∨(r(x)∧r(y∗ )) = 0∨(r(x)∧r(y∗)) = r(x)∧r(y∗) 6

r(x) ∧ r(x∗) = r(x ∧ x∗) = r(0) = 0, by the denseness of h. Thus r(x) ≺ r(y), with

the separating element t ∨ r(y∗). Hence x ⊳ y. �

If, on the other hand, a strong inclusion ⊳ on L satisfies that x 6 y, x ⊳ y ∨ y∗

implies x ⊳ y, then the associated compactification (γL,∨) must be perfect, as the

following result shows.

Proposition 3.8. Let ⊳ be a strong inclusion on L, and (γL,∨) the compactifi-

cation associated with ⊳. If ⊳ satisfies

x 6 y, x ⊳ y ∨ y∗ implies x ⊳ y for all x, y ∈ L

then (γL,∨) is a perfect compactification of L.

P r o o f. We recall first from Banaschewski [3] that the right adjoint k : L → γL

of ∨ : γL → L is given by: k(a) = {x ∈ L : x⊳ a}. We have to show that k(a∨a∗) =

k(a) ∨ k(a∗) for any a ∈ L. Suppose that x ∈ k(a ∨ a∗). Then x ⊳ a ∨ a∗. Further

x = (x∧ a)∨ (x∧ a∗). Now x∧ a 6 a, x∧ a 6 x ⊳ a∨ a∗ implies x∧ a ⊳ a∨ a∗, which

by virtue of the condition satisfied by ⊳ implies x ∧ a ⊳ a. Furthermore x ⊳ a ∨ a∗

implies x ⊳ a∗ ∨ a∗∗, since a 6 a∗∗. Hence x ∧ a∗ ⊳ a∗ ∨ a∗∗. Since x ∧ a∗ 6 a∗, by

the condition satisfied by ⊳ again, we have x ∧ a∗ ⊳ a∗. Thus x ∈ k(a) ∨ k(a∗). The

reverse inclusion being clear, this proves that k(a ∨ a∗) = k(a) ∨ k(a∗). �
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In view of the isomorphism between K(L) and S(L) mentioned above, the two

propositions above imply

Proposition 3.9. A compactification (M, h) of a frame L is perfect iff its asso-

ciated strong inclusion ⊳ satisfies

x 6 y, x ⊳ y ∨ y∗ ⇒ x ⊳ y for all x, y ∈ L.

Remark 3.10. The above proof shows in effect that (M, h) is perfect with re-

spect to y ∈ L iff whenever x 6 y, x ⊳ y ∨ y∗ then x ⊳ y.

Given an arbitrary compactification (M, h) of L, we do not in general expect its

right adjoint r to preserve disjoint binary joins. However, if elements u, v ∈ L are

not just disjoint but such that u ⊳ v∗ then r(u ∨ v) = r(u) ∨ r(v) always holds as we

show below.

Proposition 3.11. Let h : M → L be a compactification of L, ⊳ the induced

strong inclusion. If u, v ∈ L and u ⊳ v∗ then r(u ∨ v) = r(u) ∨ r(v)

P r o o f. Since u ⊳ v∗, we have r(u) ≺ r(v∗) and hence r(u)∗ ∨ r(v)∗ = e. Thus

r(u∗) ∨ r(v∗) = e, since r(u)∗ = r(u∗) by Lemma 3.4. Hence

r(u ∨ v) = r(u ∨ v) ∧ [r(u∗) ∨ r(v∗)]

= [r(u ∨ v) ∧ r(u∗)] ∨ [r(u ∨ v) ∧ r(v∗)]

= r((u ∨ v) ∧ u∗) ∨ r((u ∨ v) ∧ v∗)

= r(v ∧ u∗) ∨ r(u ∧ v∗)

6 r(u) ∨ r(v)

proving the non-trivial inequality. �

4. Rim-compact frames and the Freudenthal compactification

We now introduce the concept of a rim-compact frame. This is the frame analogue

of the well-known concept of rim-compactness for topological spaces which is that

the space possesses a basis for its topology consisting of open sets with compact

frontiers.

Definition 4.1. A regular frame L is called rim-compact if each a ∈ L is a join

of elements u such that ↑(u ∨ u∗) is compact
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Remark 4.2. Rim-compact spaces (also called peripherally (bi)compact spaces)

are the Hausdorff topological spaces having a basis for the topology consisting of open

sets with compact frontier (see [11]). Let X be a topological space. For U ∈ OX ,

FrX U = ClX U \U . Now for any V ∈ OX , ↑V ∼= O(X \V ) as frames. Thus we have

that ↑U ∪ U∗ is compact ⇔ O(X \ (U ∪ U∗) is compact ⇔ O((X \ U) ∩ (X \ U∗))

is compact ⇔ O((X \ U) ∩ ClX U) is compact ⇔ O(FrX U) is compact ⇔ FrX U is

compact. Therefore X is rim-compact as a topological space ⇔ OX is rim-compact

as a frame.

We recall that the functors Σ and O induce a dual equivalence between the cat-

egory of spatial frames and the category of sober topological spaces. Since every

rim-compact space is sober and OX is rim-compact for such spaces, the functor O

embeds the category of rim-compact spaces into the category of rim-compact frames.

Therefore we may view the category of rim-compact frames (strictly speaking the

rim-compact locales) as a generalization of the category of rim-compact spaces.

Definition 4.3. Let L be a rim-compact frame. A π-compact basis B for L is

a basis B for L such that

(1) a ∈ B ⇒ ↑(a ∨ a∗) is compact,

(2) a ∈ B ⇒ a∗ ∈ B,

(3) a, b ∈ B ⇒ a ∧ b ∈ B and a ∨ b ∈ B.

Remark 4.4. Let L be a rim-compact frame. Observe that L always has at least

one π-compact basis: Indeed, let B be the basis for L consisting of all elements b

such that ↑(b∨ b∗) is compact. We have to show (2) and (3) in the above definition.

Let a ∈ B. Since a ∨ a∗ 6 a∗ ∨ a∗∗ we have ↑(a∗ ∨ a∗∗) compact since ↑(a ∨ a∗) is,

proving (2).

For (3) let a, b ∈ B. We have to show ↑((a∧b)∨(a∧b)∗), ↑((a∨b)∨(a∨b)∗) compact.

First we note the easily proved fact that ↑ c and ↑ d are compact if and only if ↑(c∧d)

is compact. Now (a ∧ b)∨ (a∧ b)∗ = (a∨ (a ∧ b)∗ ∧ (b∨ (a∧ b)∗) > (a∨ a∗)∧ (b∨ b∗).

Hence ↑((a ∧ b) ∨ (a ∧ b)∗) is compact since ↑(a ∨ a∗) ∧ (b ∨ b∗) is compact by the

above note.

Also ((a∨b)∨(a∨b)∗) = (a∨b)∨(a∗∧b∗) = (a∨b∨a∗)∧(a∨b∨b∗) > (a∨a∗)∧(b∨b∗)

and so ↑((a ∨ b) ∨ (a ∨ b)∗) is compact as well.

Lemma 4.5. Let L be rim-compact and let B be a π-compact basis for L. If

w ∈ L and u ∈ B with w ∨ u = e, then there exists v ∈ B such that v ≺ u and

w ∨ v = e.

P r o o f. Using regularity and the fact that B is a basis for L, we have w =
∨

x(x ≺ w, x ∈ B). Then u ∨
∨

x(x ≺ w, x ∈ B) = e and hence u ∨ u∗ ∨
∨

x(x ≺
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w, x ∈ B) = e. Since ↑ u∨u∗ is compact, we can find xi ∈ B, xi ≺ w for i = 1, 2, . . . , n

(say) such that u ∨ u∗ ∨
∨n

i=1xi = e. Putting x =
∨

xi (i = 1, 2, . . . , n), we have

x ∈ B, x ≺ w and u ∨ u∗ ∨ x = e. Let v = u ∧ x∗. Then v ∈ B, and furthermore

w ∨ v = w ∨ (u ∧ x∗) = (w ∨ u) ∧ (w ∨ x∗) = e ∧ e = e. Also, v ≺ u : v ∧ (u∗ ∨ x) =

(v ∧ u∗) ∨ (v ∧ x) = (u ∧ x∗ ∧ u∗) ∨ (v ∧ x) = 0 and u ∨ (u∗ ∨ x) = e. �

Proposition 4.6. Let B be a π-compact basis for a rim-compact frame L. De-

fine ⊳ on L by: a ⊳ b ⇔ there exists u ∈ B such that a ≺ u ≺ b. Then ⊳ is a strong

inclusion on L.

P r o o f. (i) x 6 a ⊳ b 6 y ⇒ x ⊳ y: Find u ∈ B such that a ≺ u ≺ b. Then, of

course, x ≺ u ≺ y and so x ⊳ y.

(ii) ⊳ is a sublattice of L × L: Condition 3 together with 2 of the definition of

a π-compact basis gives us 0, e ∈ B, and then of course 0 ⊳ 0, e ⊳ e. Furthermore, the

implications x ⊳ a, b implies x ⊳ a ∧ b, and x, y ⊳ a implies x ∨ y ⊳ a follow from the

properties of the rather below relation ≺ and the fact that B is closed under finite

meet and finite joins.

(iii) x ⊳ a implies x ≺ a trivially.

(iv) Now suppose x ⊳ y. Then there exists u ∈ B such that x ≺ u ≺ y. Now

x∗∨u = e, and so by the above lemma, there exists v ∈ B, v ≺ u such that x∗∨v = e.

Hence x ≺ v ≺ u ≺ y. Similarly we can get w ∈ B such that x ≺ v ≺ w ≺ u ≺ y.

Thus x ⊳ w ⊳ y.

(v) Also, x ⊳ a implies a∗ ⊳ x∗ follows from the properties of ≺ and the fact that

B is closed under pseudocomplementation.

(vi) Now for any a ∈ L, a =
∨

x(x ≺ a, x ∈ B). For x ∈ B and x ≺ a we have

x∗ ∈ B and a∨x∗ = e. By the above lemma there exists v ∈ B, v ≺ x∗ and a∨v = e.

Hence x ≺ v∗ ≺ a with v∗ ∈ B. Thus x ⊳ a. Thus a =
∨

x(x ⊳ a). �

Let L be any rim-compact frame, and let B be any π-compact basis for L. Let

γBL denote the compactification of L associated with the strong inclusion ⊳B given

as in the above proposition, i.e. a ⊳B b ⇔ there exists u ∈ B such that a ≺ u ≺ b.

We then have the following:

Proposition 4.7. Let γBL be the compactification associated with the π-compact

basis B of a rim-compact frame L, and let (M, h) be any compactification of L such

that (γBL,∨) 6 (M, h). Then (M, h) is perfect with respect to every element of B.

P r o o f. By Remark 3.10 we have to show that for each u ∈ B, whenever x 6 u

and x⊳u∨u∗, then x⊳u. Here ⊳ is induced by (M, h). For x 6 u, x⊳u∨u∗, we have

x ≺ u ∨ u∗ and thus x∗ ∨ u ∨ u∗ = e. Hence x∗ ∨ u = e, since x 6 u. By Lemma 4.5
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there exists v ∈ B, v ≺ u such that x∗ ∨ v = e. Then x ≺ v ≺ u with v ∈ B. Thus

x ⊳B u, and hence x ⊳ u, since (γBL,∨) 6 (M, h). �

Remark 4.8. Note in particular that (γBL,
∨

) is a compactification of a rim-

compact L which is perfect with respect to every element of B. It need not be

perfect with respect to every element of L, and consequently need not be a perfect

compactification.

Let us call a compactification (M, h) of a rim-compact L a π-compactification of L

if there exists a π-compact basis B of L such that (M, h) ∼= (γBL,∨). Of independent

interest is that such compactifications of L possess a base intimately connected with

the given π-compact base for L, as we show below.

Proposition 4.9. Let (γBL,∨) be the π-compactification of the rim-compact

frame L with π-compact basis B. Let k : L → γBL be the right adjoint of ∨ : γBL →

L, i.e. k(a) = {x ∈ L : x ⊳B a}. Then k(B) = {k(u) : u ∈ B} is a basis for γBL.

P r o o f. For any J ∈ γBL, J =
⋃

k(a)(a ∈ J). Since B is a basis for L, we have

for each a ∈ J , a =
∨

u(u ∈ B, u 6 a). We shall show k(a) =
∨

k(u)(u ∈ B, u 6 a).

Let x ∈ k(a). Then x ⊳B a and thus, since ⊳B interpolates, there exists c ∈ L such

that x ⊳B c ⊳B a. Hence we can find u, v ∈ B such that x ≺ u ≺ c ≺ v ≺ a. Thus

k(a) =
∨

k(u)(u ∈ B, u 6 a), and we are done. �

Referring to an earlier remark, it would be nice if there were a π-compact basis B

for a rim-compact L for which γBL is perfect with respect to every element of L and

not just to those elements in B. This is indeed the case, as we show below, if we

take B to consist of the totality of all elements u of L such that ↑ u∨ u∗ is compact.

(Note that such a B is a π-compact basis of L as we showed earlier.)

Denote this compactification with the above mentioned basis B by (γL,∨). We

call this the Freudenthal compactification of the rim-compact frame L.

Proposition 4.10. The Freudenthal compactification γL of L is perfect.

P r o o f. Let u ∈ L be arbitrary, x 6 u, x⊳u∨u∗, where ⊳ is the strong inclusion

associated with B mentioned above. We must show x ⊳ u. Now find v such that

↑ v ∨ v∗ is compact and x ≺ v ≺ u ∨ u∗. Let w = v ∧ u.

Then x ≺ w. Indeed x 6 u, x ≺ u∨u∗ implies x∗∨u∨u∗ = e and hence x∗∨u = e.

Thus x ≺ u, and since x ≺ v as well, we have x ≺ u ∧ v = w. Furthermore w ≺ u:

Find t such that v ∧ t = 0, t ∨ u ∨ u∗ = e. Then w ∧ (t ∨ u∗) = (w ∧ t) ∨ (w ∧ u∗) =

(v ∧ u ∧ t) ∨ (v ∧ u ∧ u∗) = 0. Thus w ≺ u, with a separating element t ∨ u∗.

We claim that v ∨ v∗ 6 w∨w∗: Clearly v∗ 6 w∗ since w 6 v. Hence v∗ 6 w∨w∗.

Also, v ≺ u ∨ u∗ implies v = (v ∧ u) ∨ (v ∧ u∗) = w ∨ (v ∧ u∗) 6 w ∨ u∗ 6 w ∨ w∗.

Thus v ∨ v∗ 6 w ∨ w∗ and hence ↑w ∨ w∗ is compact. �
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5. Recovering the Freudenthal compactification for spaces

1. We first show that if we assume the Boolean ultrafilter theorem (abbreviated

by BUT) then we can recover the Samuel compactification of a uniform space X

from the Samuel compactification of the corresponding uniform frame OX . Let us

first recall that the Samuel compactification of a uniform space X is the completion

of the totally bounded reflection of X . Now for the details. A uniformity on L is

a collectionU of covers of L which is a filter relative to 6, satisfies the star-refinement

property and is admissible. U ⊆ Cov(L) is said to have the star-refinement property

if for each A ∈ U , there exists a B ∈ U such that B∗ 6 A, i.e. {Bb : b ∈ B} 6 A,

where Bb =
∨

x(x ∈ b, x∧b 6= 0). The collectionU ⊆ Cov(L) is said to be admissible

if for each a ∈ L, a =
∨

{x ∈ L : x⊳ a}. The expression x⊳ a is read as “x is strongly

below a” and means that Cx 6 a for some C ∈ U . A uniform frame is a frame L

together with a specified uniformity U , members of which are called the uniform

covers of L.

For a uniform frame (L, U ) the Samuel compactification of L is the frame RL

together with the join map ∨ : RL → L, where RL is the frame of all regular ideals

of L (see [4]). An ideal J is said to be regular whenever x ∈ J implies there exists

y ∈ J such that x ⊳ y.

We recall also the construction of the Cauchy spectrum ΨL of a uniform frame

(L, U ) due to [4], which is the uniform space whose points are the regular Cauchy

filters of L endowed with the uniformity generated by the covers

ΨA = {Ψa : a ∈ A}, Ψa = {F ∈ ΨL : a ∈ F} (A ∈ U ).

If (X, µ) is a uniform space then, as implicit in [4], the Cauchy spectrum of the

corresponding uniform frame OX is just the uniform completion of the space X .

Now we come to recovering the Samuel compactification for spaces. Let X be

a uniform space, and denote by X∗ its totally bounded reflection (we do not indicate

their uniformities). Let CX and CX∗ denote their respective uniform space com-

pletions, and let OX and OX∗ denote the respective uniform frames. The Samuel

compactification of X is then

CX∗ = ΨOX∗
∼= Σ(COX∗) = Σ(ROX);

making use of the fact that for a uniform frame L with L∗ its totally bounded

coreflection and CL the completion of L, we have from [4] that ΨL ∼= Σ(CL) and

RL = CL∗ where RL is the Samuel compactification of L. It should be pointed out

that the above equation holds even without any assumptions of choice principles.
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However, to infer the compactness of CX∗ requires BUT, either for using the well-

known result in frame theory that under BUT the spectrum of a compact regular

frame is compact Hausdorff, or for using the, perhaps, less well-known result that

BUT is equivalent to the result for uniform spaces X , namely that X is compact if

and only if X is complete and totally bounded (see Schechter [10]).

2. Now let X be a rim-compact Hausdorff space. We now show that we can recover

the Freudenthal compactification of such a space from the Freudenthal compactifica-

tion of the frame OX as we have defined it. Note that if X is rim-compact then it is

completely regular (hence regular), being a subspace of a compact Hausdorff space.

Thus OX is rim-compact and regular as a frame, which are the conditions for the

general L in our situation.

We recall the Freudenthal compactification of X as given in Isbell [7]. Let δ be

the (Efremovič) proximity on X given by: A¬δB ⇔ ∃ compact K such that X \K =

G ∪ H ; G, H non-empty disjoint open sets in X with A ⊆ G and B ⊆ H . Then δ is

induced by a unique totally bounded uniformity µδ on X . The completion of the

uniform space (X, µδ) is then the Freudenthal compactification of X .

Any proximity relation δ can be described equivalently in terms of the relation≪

of strong inclusion according to the formula: A¬δB ⇔ A ≪ X \ B. That this is

a strong inclusion on OX (in the sense introduced by Banaschewski in [3]) is well

known or may be deduced from the theorems on the binary relation≪ discussed in,

for example, [13] or [12].

We now show that if ⊳ is the strong inclusion on OX defining the Freudenthal

compactification of OX then ⊳ = ≪. For this let A, B ∈ OX and suppose A ≪ B.

Then there exists C ∈ OX such that A ≪ C ≪ B. Since C ≪ B we can find

a compactK such thatX\K = G∪H , with G, H non-empty open and disjoint in OX

and C ⊆ G, X \ B ⊆ H . Now G ≪ B so G ≺ B. Also A ≪ C ⊆ G implies A ≺ G.

Hence A ≺ G ≺ B. Also G disjoint fromH implies that Cl(G)\G ⊆ X\(G∪H) ⊆ K,

so Fr(G) is compact, proving that A ⊳ B. On the other hand if A ⊳ B in OX

then there exists W ∈ OX such that A ≺ W ≺ B and Fr(W ) is compact. Now

X\Fr(W ) = X\(Cl(W )\W ) = W∪(X\Cl(W )) with A ⊆ W andX\B ⊆ X\Cl(W ).

Hence A ≪ B.

For the X we are considering, let µδ be the uniformity as above and let all the

objects described below be given relative to this uniformity. Further, let FX denote

the Freudenthal compactification. Then

FX = CX = ΨOX ∼= Σ(COX) = Σ(ROX) = Σ(γOX),

which follows from (1) above except for the last equality, which holds because ⊳ = ≪.

Of course, as in (1), BUT has to be assumed here in order to guarantee that FX is

compact.

857



6. Remainder of a frame compactification

For any compactification h : M → L we define the remainder of L in the com-

pactification to be M/Θ where Θ = (kerh)∗, the pseudocomplement of kerh in the

congruence lattice C M ofM . We now show that for a rim-compact L the remainder

of L in its Freudenthal compactification is zero-dimensional, i.e. it has a basis of

complemented elements. We require first the following

Lemma 6.1. ↑ k(b∨b∗)
∨R→ ↑ b∨b∗ is an isomorphism for all b ∈ B, where ∨R acts

as ∨ on the sublocale ↑ k(b ∨ b∗) of γBL.

P r o o f. That ∨R is a dense onto frame homomorphism follows immediately

since ∨ : γBL → L is. Also ↑ k(b ∨ b∗) and ↑ b ∨ b∗ are regular (being sublocales of

regular locales), indeed compact regular (↑ b∨ b∗ from definition, whereas ↑ k(b∨ b∗)

is a closed sublocale of compact γBL). Thus ∨R (being dense onto between compact

regular frames) must be an isomorphism. �

Recall from Banaschewski [2] that for congruences Θ, Ψ of L we have Θ → Ψ =
⋂

(a,b)∈Θ+

∇a ∨∆b ∨Ψ. Of course Θ → 0 is Θ∗ (in CL), so that Θ∗ =
⋂

(a,b)∈Θ+

∇a∨∆b.

Here Θ+ = {(a, b) ∈ Θ: a 6 b}.

Theorem 6.2. The remainder of L in its Freudenthal compactification is zero-

dimensional.

P r o o f. We have to show that γL/(ker∨)∗ is zero-dimensional. Let ϕ : γL →

γL/(ker∨)∗ be the quotient map. The collection {ϕk(b) : b ∈ B} is clearly a basis

for γL/(ker∨)∗ since, as we showed earlier, k(B) is a basis for γL and ϕ is onto. We

now show that each ϕk(b) is complemented.

Claim: ϕk(b)∨ϕk(b∗) = e. In order to show this we need to show ϕk(b∨b∗) = ϕ(L)

since k preserves disjoint binary joins. Thus we have to show (k(b∨b∗), L) ∈ (ker∨)∗.

For this take I, J : I 6 J ,
∨

I =
∨

J . We ought to show (k(b ∨ b∗), L) ∈ ∇I ∨ ∆J ,

i.e. to show (k(b ∨ b∗) ∨ I) ∩ J = (L ∨ I) ∩ J , i.e. to show (k(b ∨ b∗) ∨ I) ∩ J = J ,

i.e. to show J ⊆ k(b ∨ b∗) ∨ I. Now ↑ k(b ∨ b∗)
∨R→ ↑ b ∨ b∗ is an isomorphism, so is

one-to-one. We have
∨

(k(b∨ b∗)∨ I) = b∨ b∗ ∨
∨

I = b∨ b∗ ∨
∨

J =
∨

(k(b∨ b∗)∨J)

so by the fact that ∨R is one-to-one, we have k(b ∨ b∗) ∨ I = k(b ∨ b∗) ∨ J . Thus

J ⊆ k(b ∨ b∗) ∨ I as required.

Obviously ϕk(b) ∧ ϕk(b∗) = ϕ(k(0)) = ϕ(0) = 0. Hence the ϕk(b) are comple-

mented, thus showing that the remainder is zero-dimensional. �

We can now obtain the analog in frames of the Freudenthal-Morita theorem for

spaces [6], [9] appearing in [11], namely: Every peripherally bicompact space X may

be imbedded in a bicompactum with zero-dimensional (in the sense of ind) annex.
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Corollary 6.3. Every rim-compact frame L has a compactification such that the

remainder of L in it is zero-dimensional.

We now show that the frame version of the Freudenthal-Morita Theorem implies

the classical theorem for spaces. In order to see this consider the general situation of

a space X as a subspace of the space Y . The embedding i : X →֒ Y gives rise to the

surjective frame homomorphism Oi : OY → OX given by U  U ∩ X . The kernel

of this map is given by

kerOi = {(U, V ) ∈ OY × OY : U ∩ X = V ∩ X}.

A calculation of its pseudocomplement gives

(kerOi)∗ =
⋂

(U,V )∈Φ+

∇U ∨ ∆V

= {(G, H) ∈ OY × OY : (G, H) ∈ ∇U ∨ ∆V

for all U ⊆ V, U ∩ X = V ∩ X}

= {(G, H) ∈ OY × OY : (G ∩ V ) ∪ U = (H ∩ V ) ∪ U

for all U ⊆ V, U ∩ X = V ∩ X}

= {(G, H) ∈ OY × OY : (G ∩ (V \ U) ∪ U = (H ∩ (V \ U) ∪ U

for all U ⊆ V, U ∩ X = V ∩ X}

= {(G, H) ∈ OY × OY : (G ∩ (V \ U) = (H ∩ (V \ U)

for all U ⊆ V, U ∩ X = V ∩ X}.

We now show that in the case where Y is a T1 space, the latter set is precisely

the set of those (G, H) ∈ OY × OY such that (G ∩ (Y \ X) = H ∩ (Y \ X). To

this end assume G ∩ (V \ U) = H ∩ (V \ U) for all U ⊆ V , U ∩ X = V ∩ X . To

show G ∩ (Y \ X) = H ∩ (Y \ X), take p ∈ G ∩ (Y \ X). Now put U = Y \ {p},

V = Y . Then U and V are open in Y , U ⊆ V and U ∩ X = V ∩ X . Hence

G ∩ (V \ U) = H ∩ (V \ U), i.e. G ∩ {p} = H ∩ {p}. Since p ∈ G we have p ∈ H so

that p ∈ H ∩ (Y \ X). By symmetry, we then have G ∩ (Y \ X) = H ∩ (Y \ X). On

the other hand suppose G ∩ (Y \ X) = H ∩ (Y \ X). Take U ⊆ V , U ∩ X = V ∩ X .

To show G∩ (V \U) = H ∩ (V \U), take p ∈ G∩ (V \U). Now since U ∩X = V ∩X

and p ∈ V , p 6∈ U we cannot have p ∈ X . Thus p ∈ Y \ X , so p ∈ G ∩ (Y \ X) and

hence p ∈ H . Thus G ∩ (V \ U) ⊆ H ∩ (V \ U) and by symmetry we have equality.

Hence for a T1 space Y with X ⊆ Y we have

(kerOi)∗ = {G, H) ∈ OY × OY : G ∩ (Y \ X) = H ∩ (Y \ X)}.

859



We have of course that

OY/(kerOi)
∗ ∼= O(Y \ X).

It follows from the above analysis that if Y is a T1 space and f : X → Y is an

embedding, then

OY/(kerOf)∗ ∼= O(Y \ f(X)).

The Freudenthal-Morita Theorem for spaces can then be obtained in the following

way. Consider a rim-compact Hausdorff space X . We have seen in Section 5 that

assuming BUT the Freudenthal compactification FX can be given by Σγ(OX). We

now show

Proposition 6.4. Under BUT the following diagram commutes:

OΣγ(OX)
OΣ∨ // OΣOX

γ(OX)

ηγ(OX)

OO

∨

// OX

ηOX

OO

P r o o f. γ(OX) is compact regular and hence spatial by BUT. Hence the map

ηγ(OX) is an isomorphism. So is also ηOX of course. Also for any J ∈ γ(OX)

(OΣ∨)ηγ(OX)(J) = (OΣ∨)(ΣJ ) = (Σ∨)−1(ΣJ ) = Σ⋃
J

and

η(OX) ∨ (J) = η(OX)

(

⋃

J
)

= Σ⋃
J

so we are done. �

We also require the following result: If h : L → M is an onto frame homomorphism

then Σh : ΣM → ΣL is an embedding. To see this recall that Σh is continuous and

one to one, and that Σh is an open map because for arbitrary a ∈ M , (Σh)(Σa) =

Σr(a) ∩ (Σh)(ΣM), where r is the right adjoint of h.

In our situation the join map ∨ : γ(OX) → OX is onto, so Σ∨ : ΣOX → Σγ(OX)

is an embedding. Since FX ∼= Σγ(OX) and X ∼= ΣOX we have

O(FX \ X) ∼= O(Σγ(OX) \ (Σ∨)(ΣOX))

∼= OΣγ(OX)/(ker(OΣ∨))∗

∼= γ(OX)/(ker∨)∗,

the last step following from the above proposition. Thus O(FX \ X) is zero-

dimensional and thus FX \ X is zero-dimensional.
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