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STATISTICAL CAUSALITY AND ADAPTED DISTRIBUTION
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Abstract. In the paper D.Hoover, J. Keisler : Adapted probability distributions, Trans.
Amer. Math. Soc. 286 (1984), 159–201 the notion of adapted distribution of two stochastic
processes was introduced, which in a way represents the notion of equivalence of those
processes. This very important property is hard to prove directly, so we continue the work
of Keisler and Hoover in finding sufficient conditions for two stochastic processes to have
the same adapted distribution. For this purpose we use the concept of causality between
stochastic processes, which is based on Granger’s definition of causality. Also, we provide
applications of our results to solutions of some stochastic differential equations.

Keywords: filtration, causality, adapted distribution, weak solution of stochastic differ-
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1. Introduction

Following the introduction, in the second section of this paper some preliminary

definitions are illustrated. Then various concepts of causality relationship between

flows of information (represented by filtrations) are considered. Also, a generalization

of a causality relationship “G entirely causesH within F” is included which (in terms

of σ-algebras) was first presented in [13] and is initially based on Granger’s definition

of causality (the nonlinear version) given in [6].

In the third section we present the different notions of equivalence of two stochastic

processes outlined by Aldous, Keisler, Hoover and Fajardo (in [1], [8], [7], [9], [10],

[11], [3]). We point out some connections between them and the given causality

concepts from the second part of this paper.

Our main results are stated in the fourth section. We prove several results which

link the given definition of causality with the concept of adapted distribution.

This research was supported by Science Fund of Serbia.
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Two processes with the same adapted distribution share many probabilistic prop-

erties (being adapted, being a martingale, having the Markov property, being a local

martingale and semimartingale, as was proved in [11]). We now prove that such

processes share causality properties, too. Also, in [11] it was proved that for Markov

processes to have the same adapted distribution is sufficient to have the same finite

dimensional distribution. In this paper we prove sufficient conditions for having the

same adapted distribution for a wider class of stochastic processes, which is defined

by properties of causality.

The last section contains of several results connected with causality, the weak

solutions of stochastic differential equations and the adapted distribution, which are

corollaries of results from the previous section.

2. Causality and related concepts

Let (Ω,F , P ) be an arbitrary probability space and let F = {Ft, t ∈ I, I ⊆ R
+}

be a family of sub-σ-algebras of F . The sub-σ-algebra Ft can be interpreted as a

set of events observed up to time t. Whether or not sup I = +∞ is true we define

F∞ as the smallest σ-algebra containing all the Ft (even when sup I < +∞). So,

we have F∞ =
∨
t∈I

Ft. The filtration F = {Ft, t ∈ I} is a nondecreasing family of

σ-subalgebras of F , that is

Fs ⊆ Ft, s 6 t.

A probabilistic model for a time-dependent system is described by (Ω,F ,Ft, P ),

where (Ω,F , P ) is a probability space and {Ft, t ∈ I} is a “framework” filtration,

that is, Ft are all events in the model up to and including time t and Ft is a sub-σ-

algebra of F . We suppose that the filtration (Ft) satisfies the usual conditions‰,

which means that (Ft) is right continuous and each Ft is complete.

Analogous notation will be used for filtrations H = {Ht, t ∈ I, I ⊆ R
+} and

G = {Gt, t ∈ I, I ⊆ R
+}.

The family of σ-algebras induced by a stochastic process X = {Xt, t ∈ I, I ⊆ R
+}

is given by F
X = {FX

t , t ∈ I}, where

F
X
t = σ{Xu, u ∈ I, u 6 t},

being the smallest σ-algebra with respect to which the random variables Xu, u 6 t,

are measurable. The filtration F
X = {FX

t , t ∈ I} is called a natural filtration of the

process X = {Xt}.

The process X = {Xt} is (Ft)-adapted (or adapted to the filtration F) if all Xu,

u 6 t, are Ft-measurable, that is, if FX
t ⊆ Ft for each t. The notation (Xt,Ft)

means that the process X = {Xt} is (Ft)-adapted.
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We now give some concepts of causality relationship between the flows of infor-

mation (represented by filtrations) and between the stochastic processes. Also we

provide some basic results that will be of use later.

Using the notion of conditional independence we introduce a statistical concept of

causality which unifies the nonlinear Granger-causality (see [6]) with some related

concepts given by Mykland (see [13]).

The intuitively plausible notion of causality formulated in terms of Hilbert spaces,

is given in [15]. We shall use an analogous notion of causality in terms of filtrations

(see [17]). Let F, G and H be arbitrary filtrations on the same probability space.

We can say that “G entirely causes H within F” if H∞ and Ft are conditionally

independent when Gt is given, which we write in the following manner:

(2.1) H∞ ⊥ Ft | Gt,

because the essence of (2.1) is that all information about H∞ which Ft provides

comes via Gt for an arbitrary t. In other words, Gt contains all information from

the Ft needed for predicting H∞. Relation (2.1) is equivalent to H∞ ⊥ Ft ∨ Gt |

Gt. This relation means that the condition G ⊆ F does not represent an essential

restriction. Thus, it is natural to introduce the following definition of causality

between filtrations.

Definition 2.1 (see [15]). Let F, G and H be arbitrary filtrations on the same

probability space. It is said that G entirely causes (or briefly said “causes”) H

within F relative to P (written as H |< G;F;P ) if H∞ ⊆ F∞, G ⊆ F and if H∞ is

conditionally independent of Ft given Gt for each t, that is, if

(2.2) H∞ ⊥ Ft | Gt for each t,

or

(∀A ∈ H∞)P (A|Ft) = P (A|Gt).

If there is no doubt about P , we omit “relative to P”.

Remark 2.2. The condition (2.2) is equivalent to Hu ⊥ Ft | Gt for each t and

each u.

Intuitively, H |< G;F means that, for arbitrary t, information aboutH∞ provided

by Ft is not “bigger” than that provided by Gt, or that it is possible to reduce the

available information from Ft to Gt in order to predict H∞.

A definition similar to Definition 2.1 was first given in [13]: “It is said that G

entirely causes H within F relative to P (denoted as H |< G;F;P ) if H ⊆ F, G ⊆ F

and if H∞ ⊥ Ft | Gt for each t”. However, this definition (from [13]) contains the
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condition H ⊆ F, or equivalently Ht ⊆ Ft for each t (instead of H∞ ⊆ F∞) which

does not have intuitive justification. Since Definition 2.1 is more general than the

definition given in [13], all results resulting from Definition 2.1 will be true for the

definition from [13], when we add the condition H ⊆ F to them.

It should be mentioned that the definition of causality from [13] is equivalent to

the definition of strong global noncausality as given in [4]. So, Definition 2.1 is

a generalization of the notion of strong global noncausality.

If filtrations G and F are such that G |< G;G ∨ F (where G ∨ F is the family

determined by (G ∨F )t = Gt∨Ft), we shall say that F does not causeG. Obviously

the interpretation of Granger’s causality is that F does not causeG if G |< G;G∨F,

because this relation means that we are not able to predict more precisely G using

the additional information from F which does not exist in G.

It can be shown, without difficulty, that this term and the term “F does not

anticipate G” (as introduced in [20]) are identical.

Definition 2.3 (see [13]). When filtrations G and F are such that G |< G;F,

we say that G is its own cause within F.

Note that the notion of subordination (as introduced in [19]) is equivalent to the

notion of being one’s own cause, as defined here. Also “G is its own cause” sometimes

occurs as a useful assumption in the theory of martingales and stochastic integration

(see [2], [21], [17] and [22]).

These definitions can be applied to stochastic processes if we are talking about the

corresponding induced filtrations. For example, an (Ft)-adapted stochastic process

X = {Xt} is its own cause if (F
X
t ) is its own cause within (Ft), that is if

F
X |< F

X ;F;P.

The extensions of the definitions to vector processes are usually straightforward.

The following result shows that a process X which is its own cause is completely

described by its behavior relative to F
X .

Proposition 2.4. A process X = {Xt, t ∈ [0, T ]} is a Markov process relative to

the filtration F = {Ft, t ∈ [0, T ]} on a filtered probability space (Ω,F ,Ft, P ) if and

only if X is a Markov process relative to the filtration F
X and the process X is its

own cause within F relative to P .

P r o o f. Let X be a Markov process relative to F, that is, let

P (A ∩B|Xt) = P (A|Xt)P (B|Xt) a.s.
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for each t ∈ [0, T ], A ∈ Ft, B ∈ F[t,∞) = σ{Xs, s > t}, hold. Then we have

(∀t) (∀A ∈ F
X
∞

), E(χA|Ft) = E(χA|Xt) a.s.

Now, from F
X ⊆ F we have

(∀t) (∀A ∈ F
X
∞

), P (A|Ft) = P (A|FX
t ) a.s.

Therefore, we conclude that

F
X |< F

X ;F;P ,

and it is clear that X is a Markov process relative to F
X .

It is easy to see that the converse is true. �

Corollary 2.5. The Brownian motion W = {Wt,Ft, t ∈ [0, T ]} on a filtered

probability space (Ω,F ,Ft, P ) is its own cause within the filtration F = {Ft, t ∈

[0, T ]} relative to the probability P .

We shall give a few properties of the causality relationship from Definition 2.1

which we will need later.

Proposition 2.6 (see [16]). From H |< G;F and H ⊆ F it follows that H ⊆ G.

It follows from the following result that the relationship “being one’s own cause”

is a transitive relationship.

Proposition 2.7 (compare with [5] and [16]). From H |< H;G and G |< G;F it

follows that H |< H;F.

The following result gives the invariance under convergence for the causality rela-

tionship from Definition 2.1.

Proposition 2.8 ([13]). Let F and G be filtrations on the probability space

(Ω,F , P ). Let {X(n)} be a sequence of stochastic processes satisfying

X
(n)
t

P
−→ Xt, when n→ +∞, for every t ∈ I ⊂ R

and

F
X(n)

|< G; F, for every n.

Then the process X satisfies

F
X |< G; F.
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3. Adapted distribution

In this section we consider several notions of equivalence of two stochastic processes

originally given by Aldous, Keisler, Hoover and Fajardo (in [1], [8], [7], [9], [11], [10],

[3]). After that we link these notions to the causality relationship which we defined

earlier.

If two stochastic variables have the same distribution then that is a very strong

notion of equivalence of those two variables. But, when two processes have the

same distribution we know much less about them, because we do not have any

information about those properties of processes which take into account the relations

of the processes to their underlying filtrations (for instance being adapted, being a

martingale). Therefore it is natural to make an attempt to discover more general

notions of equivalence for processes which involve filtrations.

Aldous introduced in [1] the weakest of those notions—the synonymity of two

processes.

Definition 3.1 ([8]). Let (Xt,Ft)t∈R+ be a stochastic process on a stochastic

base Ω and let (Yt,Gt)t∈R+ be another process on a possibly different base. We say

X = {Xt} and Y = {Yt} are synonymous, and write X ≡1 Y, if and only if for any

n ∈ N, any t1, . . . , tn, u1, . . . , un > 0, and any bounded Borel functions ϕ,ϕ1, . . . , ϕn:

R
n → R we have

E[ϕ(E[ϕ1(Xu1 , . . . , Xun
)|Ft1 ], . . . , E[ϕn(Xu1 , . . . , Xun

)|Ftn
])]

= E[ϕ(E[ϕ1(Yu1 , . . . , Yun
)|Gt1 ], . . . , E[ϕn(Yu1 , . . . , Yun

)|Gtn
])].

In [1] it is shown that several important properties of stochastic processes (being

adapted, being a martingale, and having the Markov property) are preserved under

the synonymity relation X ≡1 Y. However, the same cannot be concluded for any

property of stochastic processes.

Keisler and Hoover introduced in [11] a stronger notion—two processes have the

same adapted distribution or have the same adapted law. Their thesis was that two

processes with the same adapted distribution share the same probabilistic properties.

They proved that fact for all the most interesting probabilistic properties (being

adapted, being a martingale, having the Markov property, being a local martingale

and semimartingale). The most powerful property of ≡AD which they proved is

the existence of spaces with a saturation property, which fails to be the case with

synonymity.

Some preliminary definitions are given before the definition of the adapted distri-

bution. Let M be a Polish space (complete separable metrizable topological space)

which remains fixed throughout our discussion.
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Definition 3.2 ([11]). For each n, each bounded continuous function Φ: Mn →

R and each stochastic process X with values in M , Φ̂X is the n-fold stochastic

process

Φ̂X(t1, . . . , tn) = Φ(Xt1 , . . . , Xtn
).

Remark 3.3. Two stochastic processesX andY have the same finite dimensional

distribution if and only if

E[Φ̂X(t1, . . . , tn)] = E[Φ̂Y(t1, . . . , tn)]

for all Φ and all t1, . . . , tn.

The finite dimensional distribution of a process X depends only on (Ω, P,X) and

not on the filtration (Ft). The next notion depends strongly on the filtration (Ft).

The class CP is a family of functions f , called conditional processes, which asso-

ciate with each stochastic process X on Ω an n-fold stochastic process fX on Ω.

Definition 3.4 ([11]). The class CP of conditional processes (in M) is defined

inductively as follows:

(i) (Basis) For each n and bounded continuous Φ: Mn → R, Φ̂ ∈ CP.

(ii) (Composition) If f1, . . . , fn ∈ CP and ϕ : R
n → R is a bounded continuous

function, then ϕ(f1, . . . , fn) ∈ CP, where ϕ(f1, . . . , fn)X = ϕ(f1X, . . . , fnX).

(iii) (Conditional Expectation) If f is an n-fold conditional process fX(t1, . . . , tn)

then E[f |t] is an (n+1)-fold conditional process, where E[f |t]X(t, t1, . . . , tn) is

a version of E[fX(t1, . . . , tn)|Ft].

The number of iterations of the unexpected value operation in f is called the rank

of f .

Definition 3.5 ([11]). The rank of conditional processes is defined by:

(i) for each n and Φ, the conditional process Φ̂ has rank zero;

(ii) the rank of the composition ϕ(f1, . . . , fn) is the maximum of the ranks of the

conditional processes f1, . . . , fn;

(iii) if f is a conditional process of rank r, then E[f |t] is a conditional process of

rank r + 1.

Now we are ready to introduce the main notion.

Definition 3.6 ([11]). Two stochastic processes X and Y (on perhaps different

adapted spaces) have the same adapted distribution (or adapted law), in symbols

X ≡AD Y, if

(3.1) E[fX(t1, . . . , tn)] = E[fY(t1, . . . , tn)]

holds for every n-fold conditional process f and all (t1, . . . , tn) ∈ (R+)n.
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Definition 3.7 ([11]). Processes X and Y have the same adapted distribution

up to rank r, in symbols X ≡r Y, if (3.1) holds for every f of rank at most r and

all (t1, . . . , tn) ∈ (R+)n.

Remark 3.8. Notice that X ≡0 Y means that the processes X and Y have the

same finite dimensional distribution.

Of course, X ≡AD Y implies X ≡r Y for every r, and the reverse is not true.

Several very interesting notions concerning stochastic processes and filtrations

given by Hoover in [10], have many similarities with our notion of causality from

Definition 2.1.

Definition 3.9 ([10]). A subfiltration G of a filtration F is self-contained in F

(F is an extension ofG) if for each t ∈ R
+ the σ-algebras G∞ andFt are conditionally

independent given Gt, that is, if

(∀A ∈ G∞)P (A|Ft) = P (A|Gt).

In terms of causality, the notion self-contained is analogous to the notion be its

own cause.

We have already mentioned that this relation arises in many parts of the stochastic

theory with different names applied by different authors.

In the paper [10] the notion intrinsic filtration of X is defined.

IfX = (X,F) is a random variable with filtration, then there exists a smallest self-

contained subfiltration I(X) of F such that X is I (X)∞-measurable. That filtration

I(X) we call the intrinsic filtration of X.

In terms of causality, the intrinsic filtration of a process X, defined on (Ω,F ,

Ft, P ), means the smallest filtration which is its own cause and which entirely causes

the natural filtration F
X of the process X within (Ft).

In the paper [10] (Theorem 2.3) it was proved that processes X and Y have the

same adapted distribution if and only if there is a filtration isomorphism h : I(X) →

I(Y) such that h(X) = Y .

Often, especially when we are solving same stochastic differential equation and

trying to find a weak solution, we must enlarge the probability space. In [10] Hoover

gave one very useful definition of extension of a probability space with filtration

(Ω,F ,Ft, P ).

Definition 3.10 ([10]). An extension of a probability space with filtration

(Ω,F ,Ft, P ) is a space (Ω̇,G ,Gt, Q) satisfying:

(i) Ω̇ = Λ1 × Ω × Λ2 for some sets Λ1, Λ2, and G = H 1 × Ω × H 2, G = (Gt) is

the smallest filtration such that for each t, Gi ⊇ H 1
t × Ft × H 2

t , for some H i
t

σ-algebras and H
i filtrations on Λi, i = 1, 2;
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(ii) for each F ∈ F , Ḟ = Λ1 × F × Λ2 ∈ G and Q(Ḟ ) = P (F );

(iii) for all s, Ḟ∞ and Gs are conditionally independent given Ḟs.

The purpose of this definition is to make sure that an induced process Ẋ on Ω̇,

given by

Ẋ(λ1, ω, λ2) = X(ω),

has the same properties relative to the filtration G = (Gt) as X has relative to the

filtration F = (Ft), that is, (X,F) ≡AD (Ẋ,G).

The essence of this definition is condition (iii) which means Ḟ |< Ḟ;G;Q, (Ḟ is its

own cause within G), and we explained earlier the effects of this property.

4. Causality and adapted distribution

We have already pointed out similarity in defining the adapted distribution and

the causality. Now we give some connections between these two notions.

Theorem 4.1. Let X = {Xt} be a process on (Ω,F ,Ft, P ) and let G = (Gt) be

subfiltration of F = (Ft). Then

F
X |< G;F if and only if (X,G) ≡AD (X,F).

P r o o f. From (X,G) ≡AD (X,F) it follows that

(∀A ∈ F
X
∞

)E(IA|Ft) = E(IA|Gt),

that is,

(∀A ∈ F
X
∞

)P (A|Ft) = P (A|Gt),

or simply

F
X |< G;F.

On the other hand, from F
X |< G;F we have

(∀A ∈ F
X
∞

)P (A|Ft) = P (A|Gt),

that is,

(∀A ∈ F
X
∞

)E(IA|Ft) = E(IA|Gt).

Then for every simple (step) function fN (ω) =
N∑

n=1
cnIAn

(ω) we also have

E(fN |Ft) = E(fN |Gt) < E(fN ) < +∞.
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For every bounded continuous function f there exists a sequence of simple (step)

functions (fN ) which converges almost surely to it. Now, when N → +∞, by

Lebesgue’s dominated convergence theorem, for every bounded continuous function

f we have

(4.1) E(f |Ft) = E(f |Gt).

From the equality (4.1) and the definition of the n-fold conditional process f it follows

that (4.1) is true for every n-fold conditional process f , as well. �

Corollary 4.2. Let X be a process on (Ω,F ,Ft, P ) and let G and H be sub-

filtrations of F such that G ⊆ H ⊆ F. Then from F
X |< G;F it follows that

(X,G) ≡AD (X,H).

Theorem 4.3. Let X be a process on (Ω,F ,Ft, P ), let the probability space

(Ω̇,G ,Gt, Q) be an extension of the space (Ω,F ,Ft, P ) in the sense of Definition

3.10 and let Ẋ be the induced process (on (Ω̇,G ,Gt, Q) ) of the process X. Then

F
X |< F

X ;F;P implies F
Ẋ |< F

Ẋ ;G;Q.

P r o o f. Because of FX |< F
X ;F;P we have I(X) = F

X . Since the probability

space (Ω̇,G ,Gt, Q) is an extension of the space (Ω,F ,Ft, P ) we have (X,F) ≡AD

(Ẋ,G). So, there is a filtration isomorphism h : F
X → I(Ẋ). Further, have h(FX) =

F
Ẋ . This implies I(Ẋ) = F

Ẋ , or equivalently, FẊ |< F
Ẋ ;G;Q. �

It has already been proved in [10] and [11] that many properties of stochastic

processes (probably all of some significance) are preserved under the relation ≡AD.

We prove that the properties of causality are preserved, too.

Theorem 4.4. LetX be a process on (Ω,F , Ft, P ); Y a process on (Ω̄,G ,Gt, Q),

and (X,F) ≡AD (Y,G). Then

F
X |< F

X ;F;P implies F
Y |< F

Y ;G;Q.

P r o o f. From (X,F) ≡AD (Y,G) we have that there is a filtration isomorphism

h : I(X) → I(Y). From F
X |< F

X ;F;P it follows that I(X) = F
X . Then, according

to the Amalgamation Theorem (Theorem 3.2 in [10]), there exists a common ex-

tension (Ω̃, H̃ , H̃t, P̃ ) of spaces (Ω,F ,Ft, P ) and (Ω̄,G ,Gt, Q). On that extension

there are processes h1(X) = Ẋ = (Ẋ, H̃) and h2(Y) = Ẏ = (Ẏ , H̃) such that

(Ẋ, H̃) ≡AD (X,F) and (Ẏ, H̃) ≡AD (Y,G).
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From the last two relations and (X,F) ≡AD (Y,G) we have that (Ẋ, H̃) ≡AD (Ẏ, H̃)

and there is a filtration isomorphism ḣ : I(Ẋ) → I(Ẏ). Now, for every set AY ∈ FY
∞

we have
Q(AY |Gt) = P̃ (ȦY |H̃t) = P̃ (ȦX |H̃t)

= P (AX |Ft) = P (AX |FX
t )

= Q(h(AX)|FY
t ) = Q(AY |FY

t ),

and we conclude that FY |< F
Y ;G;Q. �

The next theorem follows directly from the Adjunction Theorem (Theorem 3.3)

in [10].

Theorem 4.5. Let X and Y be processes defined on a filtered probability

space (Ω,F ,Ft, P ) and let F
X |< F

Y ;F;P hold. Let X be a process defined on

(Ω,F ,Ft, P ) and (X,F) ≡AD (X,F). Then there exists an extension (Ω̇, Ḟ , Ḟt, Ṗ )

of the space (Ω,F ,Ft, P ) and processes Ẋ and Ẏ defined on it such that F
Ẋ |<

F
Ẏ ; Ġ; Q̇ and (X,Y,F) ≡AD (Ẋ, Ẏ, Ġ).

One of the aims of the paper [11] was to find classes of processes for which we can

get the adapted distribution under a weaker condition. We have proved one result

of that type (Theorem 4.7), too. That is our main result. But first we shall prove

the next lemma, which is needed for proving Theorem 4.7.

Lemma 4.6. Let X = (Xt) and Y = (Yt) be stochastic processes. If for ev-

ery bounded continuous function h : Mn → R, for every n ∈ N and for every

(t1, t2, . . . , tn) ∈ (R+)n the equality

E[h(Xt1 , Xt2 , . . . , Xtn
)] = E[h(Yt1 , Yt2 , . . . , Ytn

)]

holds, then

E[h(Xt1 , Xt2 , . . . , Xtn
, . . .)] = E[h(Yt1 , Yt2 , . . . , Ytn

, . . .)]

holds for every bounded continuous function h : MN → R and for every sequence

(t1, t2, . . . , tn, . . .) ∈ (R+)N.

P r o o f. We shall use a shorter notation

hX = h(Xt1 , Xt2 , . . . , Xtn
, . . .), hY = h(Yt1 , Yt2 , . . . , Ytn

, . . .)

and

hX
n = h(Xt1 , Xt2 , . . . , Xtn

, 0, 0, . . .), hY
n = h(Yt1 , Yt2 , . . . , Ytn

, 0, 0, . . .).
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Because the function h is bounded, there is a constant M such that for every n

hX
n 6 M and hY

n 6 M.

Also, we have almost sure convergence of the sequence (Xt1 , Xt2 , . . . , Xtn
, 0, 0, . . .),

that is,

xn = (Xt1 , Xt2 , . . . , Xtn
, 0, 0, . . .)

a.s.
−→ x = (Xt1 , Xt2 , . . . , Xtn

, . . .), n→ +∞.

For the process Y the same holds. Since the function h is continuous we have, also,

the almost sure convergence of the sequences (hX
n ) and (hY

n ), that is,

hX
n

a.s.
−→ hX , n→ +∞,

and

hY
n

a.s.
−→ hY , n→ +∞.

Now, by Lebesgue’s dominated convergence theorem, it follows that

(4.2) lim
n→+∞

E[hX
n ] = E[hX ] and lim

n→+∞

E[hY
n ] = E[hY ].

We define functions h
X

n : Mn → R, h
Y

n : Mn → R by

h
X

n (Xt1 , Xt2 , . . . , Xtn
) = hX

n = h(Xt1 , Xt2 , . . . , Xtn
, 0, 0, . . .),

h
Y

n (Yt1 , Yt2 , . . . , Ytn
) = hY

n = h(Yt1 , Yt2 , . . . , Ytn
, 0, 0, . . .).

Now, because of X ≡0 Y, for every n we have

E[hX
n ] = E[h

X

n (Xt1 , Xt2 , . . . , Xtn
)] = h

Y

n (Yt1 , Yt2 , . . . , Ytn
)] = E[hY

n ].

From this equality and (4.2) we get

E[hX ] = E[hY ].

�
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Theorem 4.7. Let a process X be defined on a probability space (Ω,F ,Ft, P )

and let X be its own cause within the filtration F = (Ft), that is F
X |< F

X ;F;P ,

and let a process Y be defined on a probability space (Ω,G ,Gt, Q) and let Y be its

own cause within the filtration G = (Gt), that is, F
Y |< F

Y ;G;Q. Then X ≡AD Y

if and only if X ≡1 Y.

P r o o f. Implication X ≡AD Y ⇒ X ≡1 Y is obvious.

To prove the converse we shall show, by induction, that for every n-fold conditional

process f and every ~t ∈ (R+)N there is a bounded Borel function ψf,~t : MN → R

such that

(4.3) fX(~t ) = ψf,~t (Xt1 , . . . , Xtn
, . . .) a.s.

and

(4.4) fY(~t ) = ψf,~t (Yt1 , . . . , Ytn
, . . .) a.s.

For each bounded continuous function Φ: MN → R, the function ψΦ̂,~t = Φ has

the required properties (4.3) and (4.4). If f ∈ CP is of the form f = ϕ(f1, . . . , fm),

we take

ψf,~t = ϕ(ψf1,~t , . . . , ψfm,~t ).

This takes care of the basis step and the composition step in the induction. For

the conditional expectation step, let g = E[f |s] where f is an n-fold conditional

process and suppose s ∈ R
+, ~t ∈ (R+)N and ψf,~t satisfies (4.3). Since the process X

is its own cause within the filtration F and ψf,~t is bounded, we have

E[ψf,~t (Xt1 , . . . , Xtn
, . . .)|Fs] = E[ψf,~t (Xt1 , . . . , Xtn

, . . .)|FX
s ].

Because E[ψf,~t (Xt1 , . . . , Xtn
, . . .)|FX

s ] is measurable with respect to FX
s , we have

E[ψf,~t (Xt1 , . . . , Xtn
, . . .)|FX

s ] = h(Xs1 , . . . , Xsn
, . . .) a.s.

where s1, s2, . . . , sn, . . . ∈ [0, s] and h is a Bs-measurable function (see [12], p. 22).

Therefore there is a bounded Borel function ψg,~s such that

(4.5) gX(s~t ) = E[ψf,~t (Xt1 , . . . , Xtn
, . . .)|Fs] = ψg,~s (Xs1 , . . . , Xsn

, . . .).

From X ≡1 Y and the causality relationships FX |< F
X ;F;P and F

Y |< F
Y ;G;Q it

follows that

E[h(Xt1 , . . . , Xtn
, . . .)|FX

s ] = E[h(Yt1 , . . . , Ytn
, . . .)|FY

s ].
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Due to the previous equality (X and Y have the same transition function), equalities

(4.4) and (4.5) hold forY with the same choice of ψg,~s . This completes the induction.

Finally, using Lemma 4.6, we get that

E[fX(~t )] = E[ψf,~t (Xt1 , . . . , Xtn
, . . .)] = E[ψf,~t (Yt1 , . . . , Ytn

, . . .)] = E[fY(~t )]

is true for all f ∈ CP and all ~t , that is, X ≡AD Y. �

In [11] it was proved that for Markov processes X and Y, from X ≡0 Y it follows

that X ≡AD Y. The previous theorem gives us a similar conclusion for a wider class

of stochastic processes, processes which are their own cause in their spaces. For such

two processes X and Y, X ≡1 Y implies X ≡AD Y.

5. Applications to stochastic differential equations

Now, we will consider some stochastic differential equations, and give a few results

about their weak solutions and the adapted distribution.

In general, when we solve some equation on a specifically given filtered probability

space with a known driving process we try to find a strong solution of that equation.

But if for some equation we have only prescribed nonanticipative functionals and we

try to find the filtered probability space in which the solution process X and the

driving process exist which satisfy the equation, we speak about a weak solution.

Let BH = {BH
t , t ∈ [0, T ]} be a fractional Brownian motion with Hurst parameter

H ∈ (0, 1) defined on a probability space (Ω,F , P ). That is, B
H is a centered

Gaussian process with covariance

RH(t, s) = E(BH
t B

H
s ) =

1

2

{
|t|2H + |s|2H − |t− s|2H

}
.

If H = 1
2 the process B

H is the standard Brownian motion.

For each t ∈ [0, T ] we denote byFBH

t the σ-algebra generated by random variables

BH
s , s ∈ [0, t] and the sets of probability zero. So, FBH

= {FBH

t , t ∈ [0, T ]} is the

natural filtration of the fractional Brownian motion B
H = {BH

t , t ∈ [0, T ]}.

Consider the stochastic differential equation (see [14])

(5.1) Xt = x+BH
t +

∫ t

0

b(s,Xs) ds, t ∈ [0, T ]

where b is a Borel function on [0, T ]× R.

By a weak solution of equation (5.1) we mean a couple of adapted continuous

processes (BH ,X) on a filtered probability space (Ω,F ,Ft, P ), such that:
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(i) B
H is a (Ft)-fractional Brownian motion,

(ii) X and B
H satisfy equation (5.1).

Also, sometimes, we say that the process X is a weak solution of equation (5.1).

Theorem 5.1. Suppose that the process (BH ,X) on a filtered probability space

(Ω,F ,Ft, P ) and the process (BH ,Y) on a filtered probability space (Ω,F ,F t, P )

are weak solutions of equation (5.1). If (BH ,X) ≡1 (BH ,Y) then X ≡AD Y and

B
H ≡AD BH .

P r o o f. In [18] (Theorem 2.1) it is proved that every process of fractional Brow-

nian motion is its own cause and that every weak solution (process X) of equation

(5.1) is its own cause (Theorem 1.3). Now, from B
H ≡1 BH together with the

fact that both the processes BH and BH are their own cause, using Theorem 4.7 of

the present paper, we conclude that B
H ≡AD BH . In a similar way, we have that

X ≡AD Y. �

Remark 5.2. The essence of Theorem 5.1 is that if weak solutions of some

equation (5.1) are unique up to synonymity then they are unique up to the same

adapted distribution (or adapted law).

Corollary 5.3. When every two weak solutions of equation (5.1) are synony-

mous, then if a strong solution of that equation exists, it also has the same adapted

distribution (or the adapted law).

P r o o f. The result follows from the fact that every strong solution is a weak

solution, too. �

For similar stochastic differential equations, but with a Wiener process, we have

an even better result.

For a given interval [0, T ] let α : [0, T ] × R → R be a measurable nonanticipative

function andW = {Wt,Ft, 0 6 t 6 T } a Wiener process.

We say that a stochastic differential equation

(5.2) dXt = α(t,X) dt+ dWt

with an initial condition η, having the prescribed distribution function F (x) has

a weak solution if there exist:

(i) a probability space (Ω,F , P ),

(ii) a nondecreasing family of sub-σ-algebras (Ft), 0 6 t 6 T ,

(iii) a continuous random process X = (Xt,Ft),
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(iv) a Wiener processW = (Wt,Ft) such that

P

( ∫ T

0

|α(t,X)| dt <∞ = 1

)

and

(v) with probability 1 for each t, 0 6 t 6 T ,

Xt = η +

∫ t

0

α(s,X) ds+Wt.

The process X given above will be called weak a solution of equation (5.2).

Proposition 5.4. If for every two weak solutions X and Y (defined on a possibly

different probability spaces) of equation (5.2) we have X ≡0 Y, then every weak

solution of that equation has the same adapted distribution (adapted law).

P r o o f. Every weak solution of equation (5.2) is a Wiener process (a consequence

of the Girsanov theorem), so it has the Markov property. Therefore, X and Y are

Markov processes with the property X ≡0 Y. From Proposition 2.4 it follows that

any Markov process on (Ω,F ,Ft, P ) is its own cause within the filtration (Ft).

Now, using Theorem 2.8. in [11], we can conclude that X ≡AD Y. �

Remark 5.5. The essence of this proposition is that weakly unique weak solutions

(having the same distribution) of an equation (5.2) are unique in the AD sense (have

the same adapted distribution or adapted law).

Corollary 5.6. If for every two weak solutions X and Y of equation (5.2) we

have X ≡0 Y, then a strong solution of that equation, if it exists, has the same

adapted distribution (or the adapted law).

P r o o f. Since every strong solution is a weak solution, the statement holds. �
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