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Abstract. In this paper, by using the Composition-Diamond lemma for non-associative
algebras invented by A. I. Shirshov in 1962, we give Gröbner-Shirshov bases for free Pre-
Lie algebras and the universal enveloping non-associative algebra of an Akivis algebra,
respectively. As applications, we show I. P. Shestakov’s result that any Akivis algebra is
linear and D. Segal’s result that the set of all good words in X

∗∗ forms a linear basis of the
free Pre-Lie algebra PLie(X) generated by the set X. For completeness, we give the details
of the proof of Shirshov’s Composition-Diamond lemma for non-associative algebras.
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1. Introduction

A.G. Kurosh [11] initiated the study of free non-associative algebras over a field

proving that any subalgebra of a free non-associative algebra is free. His student,

A. I. Zhukov, proved in [22] that the word problem is algorithmically decidable in the

class of non-associative algebras. Namely, he proved that the word problem is decid-

able for any finitely presented non-associative algebra. A. I. Shirshov, also a student

of Kurosh, proved in [16], [20], 1953, that any subalgebra of a free Lie algebra is free.

This theorem is now known as the Shirshov-Witt theorem (see, for example, [12]) for

it was proved also by E. Witt [21]. Some time later, Shirshov [17], [20] gave a direct

construction of a free (anti-) commutative algebra and proved that any subalgebra

of such an algebra is again free (anti-) commutative algebra. Almost ten years later,
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Shirshov came back to, we may say, the Kurosh programme, and published two pa-

pers [18] and [19]. In the former, he gave a conceptual proof that the word problem

is decidable in the class of (anti-) commutative non-associative algebras. Namely, he

created the theory that is now known as Gröbner-Shirshov bases theory for (anti-)

commutative non-associative algebras. In the latter, he did the same for Lie algebras

(explicitly) and associative algebras (implicitly). Their main applications were the

decidability of the word problem for any one-relator Lie algebra, the Freiheitsatz (the

Freeness theorem) for Lie algebras, and the algorithm for decidability of the word

problem for any finitely presented homogeneous Lie algebra. The same algorithm is

valid for any finitely presented homogeneous associative algebra as well. Shirshov’s

main technical discovery in [19], [20] was the notion of the composition of two Lie

polynomials and implicitly two associative polynomials. Based on it, he gave the

algorithm to construct a Gröbner-Shirshov basis for any ideal of a free Lie algebra.

The same algorithm is valid in the associative case. This algorithm is in general

infinite as well as, for example, the Knuth-Bendix algorithm [10]. Shirshov proved

that if a Gröbner-Shirshov basis of an ideal is recursive, then the word problem for

the quotient algebra is decidable. It follows from Shirshov’s Composition-Diamond

lemma that it is valid for free non-associative, free (anti-) commutative, free Lie

and free associative algebras (see [18], [19], [20]). Explicitly the associative case was

treated in the papers by L.A. Bokut [3] and G. Bergman [2].

Independently, B. Buchberger in his thesis (1965) (see [7]) created the Gröbner

bases theory for the classical case of commutative associative algebras. Also, H. Hi-

ronaka in his famous paper [9] did the same for (formal or convergent) infinite series

rather than polynomials. He called his bases the standard bases. This term has been

used until now as a synonym of Gröbner (in commutative case) or Gröbner-Shirshov

(in non-associative and non-commutative cases) bases.

There are a lot of sources of the history of the Gröbner and Gröbner-Shirshov

bases theory (see, for example, [8], [4], [5], [6]).

In the present paper we are dealing with the Composition-Diamond lemma for

a free non-associative algebra, calling it the non-associative Composition-Diamond

lemma. Shirshov mentioned in [18], [20] that all his results are valid for the case

of free non-associative algebras rather than free (anti-) commutative algebras. For

completeness, we prove this lemma in Section 2 in this paper. Then we apply this

lemma to the universal enveloping non-associative algebra of an Akivis algebra and

the Pre-Lie algebra to obtain the Gröbner-Shirshov bases for such algebras, respec-

tively. In particular, as applications, we show I. P. Shestakov’s result that any Akivis

algebra is linear (see [14]) and D. Segal’s result that the set of all good words in

X∗∗ forms a linear basis of the free Pre-Lie algebra PLie(X) generated by the set X

(see [13]).

708



An Akivis algebra is a vector space V over a field k endowed with a skew-

symmetric bilinear product [x, y] and a trilinear product (x, y, z) that satisfy the

identity [[x, y], z] + [[y, z], x] + [[z, x], y] = (x, y, z) + (z, x, y) + (y, z, x) − (x, z, y) −

(y, x, z) − (z, y, x). These algebras were introduced in 1976 by M.A. Akivis [1] as

tangent algebras of local analytic loops. For any (non-associative) algebra B one

may obtain an Akivis algebra Ak(B) by considering in B the usual commutator

[x, y] = xy − yx and associator (x, y, z) = (xy)z − x(yz). Let {ei}I be a linear

basis of an Akivis algebra A. Then the nonassociative algebra U(A) = M({ei}I |

eiej − ejei = [ei, ej], (eiej)ek − ei(ejek) = (ei, ej , ek), i, j, k ∈ I) given by the gen-

erators and relations is the universal enveloping non-associative algebra of A, where

[ei, ej ] =
∑
m

αm
ij em, (ei, ej , ek) =

∑
n

βn
ijken and each αm

ij , βn
ijk ∈ k. The linearity

of A means that A is a subspace of U(A) (see [14]). Let us remark also that any

subalgebra of a free Akivis algebra is again free (see [15]).

A Pre-Lie algebra A over a field k is a non-associative algebra with identity:

(x, y, z) = (x, z, y), x, y, z ∈ A.

2. Composition-Diamond lemma for non-associative algebras

Let X = {xi : i ∈ I} be a set, X∗ the set of all associative words u in X , and

X∗∗ the set of all non-associative words (u) in X . Let k be a field and M(X) a

k-linear space spanned by X∗∗. We define the product of non-associative words in

the following way:

(u)(v) = ((u)(v)).

Then M(X) is a free non-associative algebra generated by X .

Let I be a well-ordered set. We orderX∗∗ by the induction on the length |((u)(v))|

of the words (u) and (v) in X∗∗:

(i) If |((u)(v))| = 2, then (u) = xi > (v) = xj if and only if i > j.

(ii) If |((u)(v))| > 2, then (u) > (v) if and only if one of the following cases holds:

(a) |(u)| > |(v)|.

(b) If |(u)| = |(v)| and (u) = ((u1)(u2)), (v) = ((v1)(v2)), then (u1) > (v1) or

((u1) = (v1) and (u2) > (v2)).

It is easy to check that > is a monomial ordering on X∗∗ in the following sense:

(a) > is a well ordering.

(b) (u) > (v) =⇒ (u)(w) > (v)(w) and (w)(u) > (w)(v) for any (w) ∈ X∗∗.

Such an ordering is called deg-lex (degree-lexicographical) ordering and we use this

ordering throughout this paper.
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Given a polynomial f ∈ M(X), it has the leading word (f) ∈ X∗∗ according to

the deg-lex ordering on X∗∗ such that

f = α(f) +
∑

αi(ui),

where (f) > (ui), α, αi ∈ k, (ui) ∈ X∗∗. We call (f) the leading term of f . f is

called monic if α = 1.

Let S ⊂ M(X) be a set of monic polynomials, s ∈ S and (u) ∈ X∗∗. We define

an S-word (u)s by induction:

(i) (s)s = s is an S-word of S-length 1.

(ii) If (u)s is an S-word of S-length k and (v) is a non-associative word of length l,

then

(u)s(v) and (v)(u)s

are S-words of length k + l.

Note that for any S-word (u)s = (asb), where a, b ∈ X∗, we have (asb) = (as̄b).

Let f , g be monic polynomials in M(X). Suppose that there exist a, b ∈ X∗ such

that (f) = (a(g)b). Then we define the composition of inclusion

(f, g)(f) = f − (agb).

It is clear that

(f, g)(f) ∈ Id(f, g) and (f, g)(f) < (f)

where Id(f, g) is the ideal of M(X) generated by f , g.

The composition (f, g)(f) is trivial modulo (S, (f)), if

(f, g)(f) =
∑

i

αi(aisibi)

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S, (aisibi) is an S-word and (ai(s̄i)bi) < (f). If

this is the case, then we write (f, g)(f) ≡ 0 mod(S, (f)). In general, for p, q ∈ M(X)

and (w) ∈ X∗∗, we write

p ≡ q mod(S, (w))

which means that p − q =
∑

αi(aisibi), where each αi ∈ k, ai, bi ∈ X∗, si ∈ S,

(aisibi) is an S-word and (ai(s̄i)bi) < (w).

Definition 2.1 ([18], [20]). Let S ⊂ M(X) be a nonempty set of monic poly-

nomials and let the ordering > be defined as before. Then S is called a Gröbner-

Shirshov basis in M(X) if any composition (f, g)(f) with f, g ∈ S is trivial modulo

(S, (f)), i.e., (f, g)(f) ≡ 0 mod(S, (f)).
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Lemma 2.2. Let (a1s1b1), (a2s2b2) be S-words. If S is a Gröbner-Shirshov basis

in M(X) and (w) = (a1(s1)b1) = (a2(s2)b2), then

(a1s1b1) ≡ (a2s2b2) mod(S, (w)).

P r o o f. We have a1s̄1b1 = a2s̄2b2 as associative words in the alphabet X . There

are two cases to consider.

Case 1. Suppose that subwords s̄1 and s̄2 of w are disjoint, say, |a2| > |a1| + |s̄1|.

Then we can assume that

a2 = a1s̄1c and b1 = cs̄2b2

for some c ∈ X∗, and so, w = (a1(s̄1)c(s̄2)b2). Now,

(a1s1b1) − (a2s2b2) = (a1s1c(s̄2)b2) − (a1(s̄1)cs2b2)

= (a1s1c((s̄2) − s2)b2) + (a1(s1 − (s̄1))cs2b2).

Since ((s2) − s2) < (s̄2) and (s1 − (s1)) < (s̄1), we conclude that

(a1s1b1) − (a2s2b2) =
∑

i

αi(uis1vi) +
∑

j

βj(ujs2vj)

for some αi, βj ∈ k, and S-words (uis1vi) and (ujs2vj) such that

(ui(s̄1)vi), (uj(s̄2)vj) < (w).

Thus,

(a1s1b1) ≡ (a2s2b2) mod(S, (w)).

Case 2. Suppose that the subword s̄1 of w contains s̄2 as a subword. We assume

that

(s̄1) = (a(s̄2)b), a2 = a1a and b2 = bb1, that is, (w) = (a1a(s̄2)bb1)

for some S-word (as2b). We have

(a1s1b1) − (a2s2b2) = (a1s1b1) − (a1(as2b)b1)

= (a1(s1 − (as2b))b1)

= (a1(s1, s2)(s1)b1).
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Since S is a Gröbner-Shirshov basis, (s1, s2)(s1) =
∑
i

αi(cisidi) for some αi ∈ k, and

S-words (cisidi) with each (ci(s̄i)di) < (s̄1). Then

(a1s1b1) − (a2s2b2) = (a1(s1, s2)(s1)b1)

=
∑

i

αi(a1(cisidi)b1) =
∑

j

βj(ajsjbj)

for some βj ∈ k, and S-words (ajsjbj) with each (aj(s̄j)bj) < (w) = (a1(s̄1)b1).

Thus,

(a1s1b1) ≡ (a2s2b2) mod(S, (w)).

�

Lemma 2.3. Let S ⊂ M(X) be a subset of monic polynomials and let Irr(S) =

{(u) ∈ X∗∗ : (u) 6= (a(s̄)b), a, b ∈ X∗, s ∈ S and (asb) is an S-word}. Then for any

f ∈ M(X),

f =
∑

(ui)6(f)

αi(ui) +
∑

(aj(sj)bj)6(f)

βj(ajsjbj)

where αi, βj ∈ k, (ui) ∈ Irr(S) and (ajsjbj) is an S-word.

P r o o f. Let f =
∑
i

αi(ui) ∈ M(X), where 0 6= αi ∈ k and (u1) > (u2) > . . .. If

(u1) ∈ Irr(S), then let f1 = f − α1(u1). If (u1) 6∈ Irr(S), then there exist s ∈ S and

a1, b1 ∈ X∗ such that (f) = (u1) = (a1(s̄1)b1). Let f1 = f − α1(a1s1b1). In both

cases, we have (f̄1) < (f). Then the result follows by the induction on (f). �

The proof of the next theorem is analogous to the one in Shirshov [18]. For

convenience, we give the details.

Theorem 2.4 (A. I. Shirshov [18], [20], Composition-Diamond lemma for non-

associative algebras). Let S ⊂ M(X) be a nonempty set of monic polynomials,

Id(S) the ideal of M(X) generated by S and let the ordering > on X∗∗ be defined

as before. Then the following statements are equivalent.

(i) S is a Gröbner-Shirshov basis in M(X).

(ii) f ∈ Id(S) ⇒ (f) = (a(s̄)b) for some s ∈ S and a, b ∈ X∗, where (asb) is an

S-word.

(iii) Irr(S) = {(u) ∈ X∗∗ : (u) 6= (a(s̄)b), a, b ∈ X∗, s ∈ S and (asb) is an S-word}

is a linear basis of the algebra M(X |S).
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P r o o f. (i) ⇒ (ii). Let S be a Gröbner-Shirshov basis and 0 6= f ∈ Id(S). Then

we have

f =

n∑

i=1

αi(aisibi)

where each αi ∈ k, ai, bi ∈ X∗, si ∈ S and (aisibi) is an S-word. Let

(wi) = (ai(si)bi), (w1) = (w2) = . . . = (wl) > (wl+1) > . . .

We will use the induction on l and (w1) to prove that (f) = (a(s)b) for some s ∈ S

and a, b ∈ X∗.

If l = 1, then (f) = (a1s1b1) = (a1(s1)b1) and hence the result holds. Assume

that l > 2. Then, by Lemma 2.2, we have

(a1s1b1) ≡ (a2s2b2) mod(S, (w1)).

Thus, if α1 + α2 6= 0 or l > 2, then the result holds. For the case α1 + α2 = 0 and

l = 2, we use the induction on (w1). Now, the result follows.

(ii) ⇒ (iii). Suppose that
∑
i

αi(ui) = 0 in M(X |S), where αi ∈ k, (ui) ∈ Irr(S).

It means that
∑
i

αi(ui) ∈ Id(S). Then all αi must be equal to zero. Otherwise,

∑
i

αi(ui) = (uj) ∈ Irr(S) for some j, which contradicts (ii).

Now, by Lemma 2.3, (iii) follows.

(iii) ⇒ (i). For any f, g ∈ S, by Lemma 2.3 and (iii), we have (f, g)(f) ≡

0 mod(S, (f)). Therefore, S is a Gröbner-Shirshov basis. �

3. Gröbner-Shirshov basis for the universal enveloping algebra

of an Akivis algebra

In this section, we obtain a Gröbner-Shirshov basis for the universal enveloping

non-associative algebra of an Akivis algebra.

Theorem 3.1. Let (A, +, [−,−], (−,−,−)) be an Akivis algebra over a field k

with a well-ordered k-basis {ei : i ∈ I}. Let

[ei, ej ] =
∑

m

αm
ij em, (ei, ej, ek) =

∑

n

βn
ijken,

where αm
ij , βn

ijk ∈ k. We denote
∑
m

αm
ij em and

∑
n

βn
ijken by {eiej} and {eiejek},

respectively. Let

U(A) = M({ei}I | eiej − ejei = {eiej}, (eiej)ek − ei(ejek) = {eiejek}, i, j, k ∈ I)
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be the universal enveloping non-associative algebra of A. Let

S = {fij = eiej − ejei − {eiej} (i > j),

gijk = (eiej)ek − ei(ejek) − {eiejek} (i, j, k ∈ I),

hijk = ei(ejek) − ej(eiek) − {eiej}ek − {ejeiek} + {eiejek} (i > j, k > j)}.

Then

(i) S is a Gröbner-Shirshov basis in M({ei}I).

(ii) Irr(S) = {u : u ∈ {ei : i ∈ I}∗∗ and u does not contain one of the words eiej

(i > j), (eiej)ek (i, j, k ∈ I), ei(ejek) (i > j, k > j) as a subword} is a linear

basis of the universal enveloping non-associative algebra U(A) of A.

(iii) A can be embedded into its universal enveloping non-associative algebra U(A).

P r o o f. (i) It is easy to check that

fij = eiej (i > j), gijk = (eiej)ek (i, j, k ∈ I), hijk = ei(ejek) (i > j, k > j).

So, we have only two kinds of compositions to consider:

(gijk, fij)(eiej)ek
(i > j, j 6 k) and (gijk, fij)(eiej)ek

(i > j > k).

For (gijk, fij)(eiej)ek
(i > j, j 6 k), we have, mod(S, (eiej)ek),

(gijk, fij)(eiej)ek
= (ejei)ek − ei(ejek) + {eiej}ek − {eiejek}

≡ − ei(ejek) + ej(eiek) + {eiej}ek + {ejeiek} − {eiejek}

≡ 0.

For (gijk, fij)(eiej)ek
(i > j > k), by noting that, in A,

[[ei, ej ], ek] + [[ej , ek], ei] + [[ek, ei], ej]

= (ei, ej , ek) + (ek, ei, ej) + (ej , ek, ei) − (ei, ek, ej) − (ej , ei, ek) − (ek, ej , ei),
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we have, mod(S, (eiej)ek),

(gijk, fij)(eiej)ek

= (ejei)ek − ei(ejek) + {eiej}ek − {eiejek}

≡ − ei(ejek) + ej(eiek) + {eiej}ek + {ejeiek} − {eiejek}

≡ − ei(ekej) − ei{ejek} + ej(eiek) + {eiej}ek + {ejeiek} − {eiejek}

≡ ej(eiek) − ek(eiej) − {eiek}ej + {eiej}ek − ei{ejek}

− {ekeiej} + {eiekej} + {ejeiek} − {eiejek}

≡ ej(ekei) + ej{eiek} − ek(ejei) − ek{eiej} − {eiek}ej + {eiej}ek

− ei{ejek} − {ekeiej} + {eiekej} + {ejeiek} − {eiejek}

≡ ek(ejei) + {ejek}ei + {ekejei} − {ejekei} + ej{eiek}

− ek(ejei) − ek{eiej} − {eiek}ej + {eiej}ek − ei{ejek} − {ekeiej}

+ {eiekej} + {ejeiek} − {eiejek}

≡ {ejek}ei − ei{ejek} + ej{eiek} − {eiek}ej + {eiej}ek − ek{eiej}

+ {ekejei} + {eiekej} + {ejeiek} − {ejekei} − {ekeiej} − {eiejek}

≡ {ejek}ei − ei{ejek} + {ekei}ej − ej{ekei} + {eiej}ek − ek{eiej}

+ {ekejei} + {eiekej} + {ejeiek} − {ejekei} − {ekeiej} − {eiejek}

≡ {{ejek}ei} + {{ekei}ej} + {{eiej}ek}

+ {ekejei} + {eiekej} + {ejeiek} − {ejekei} − {ekeiej} − {eiejek}

≡ 0.

Thus, S is a Gröbner-Shirshov basis in M({ei}I).

(ii) follows from Theorem 2.4.

(iii) follows directly from (ii).

This completes our proof. �

4. Gröbner-Shirshov bases for free Pre-Lie algebras

In this section, we represent the free Pre-Lie algebra by considering the free non-

associative algebra and give a Gröbner-Shirshov basis for a free Pre-Lie algebra. As

a result, we re-show that the set of all good words in X∗∗ forms a linear basis of the

free Pre-Lie algebra PLie(X) generated by the set X (see [13]).

The proof of the next theorem is straightforward and we hence omit the details.
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Theorem 4.1. LetM(X) be the free non-associative algebra generated by X and

let

S = {((u)(v))(w) − (u)((v)(w)) − ((u)(w))(v) + (u)((w)(v)) : (u), (v), (w) ∈ X∗∗

and (v) > (w)}.

Then the algebraM(X |S) = M(X)/Id(S) is the free Pre-Lie algebra generated byX .

We now cite the definition of good words (see [13]) in X∗∗ by induction on length:

1) xi is a good word for any xi ∈ X .

Suppose that we define good words of length < n.

2) A word ((v)(w)) is called a good word if and only if

(a) both (v) and (w) are good words,

(b) if (v) = ((v1)(v2)), then (v2) 6 (w).

We denote (u) by [u], if (u) is a good word. Let

S0 = {([u][v])[w] − [u]([v][w]) − ([u][w])[v] + [u]([w][v]) : [u], [v], [w]

are good words and [v] > [w]}.

Lemma 4.2. Let W be the set consisting of all good words. Then

Irr(S0) = {(u) ∈ X∗∗ : (u) 6= (a(s̄)b), a, b ∈ X∗, s ∈ S0 and (asb) is an s-word}

= W.

P r o o f. Suppose that (u) ∈ Irr(S0). We will show that (u) is a good word by

using induction on |(u)| = n. If n = 1, then (u) = xi which is already a good word.

Let n > 1 and (u) = ((v)(w)). This case has two subcases. By induction, we see

immediately that (v), (w) are both good words.

Subcase 1. If |(v)| = 1, then (u) is a good word.

Subcase 2. If |(v)| > 1 and (v) = ((v1)(v2)), then (v2) 6 (w) for (u) ∈ Irr(S0).

Hence (u) is a good word.

It is clear that every good word is in Irr(S0) since every subword of a good word

is still a good word. �

The following lemma follows from Lemmas 2.3 and 4.2.

Lemma 4.3. In M(X), any word (u) has the presentation

(u) =
∑

i

αi[ui] +
∑

j

βj(ajsjbj),

where αi, βj ∈ k, [ui] are good words, (ajsjbj) are S0-words, sj ∈ S0, [ui] 6 (u),

(aj(sj)bj) 6 (u). Moreover, each [ui] has the same length as (u).
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Lemma 4.4. Suppose that S and S0 are the sets defined as above. Then inM(X),

we have

Id(S) = Id(S0).

P r o o f. Since S0 is a subset of S, we only need to prove that M(X |S0) is a

Pre-Lie algebra. In fact, we only need to prove that the following holds inM(X |S0):

((u)(v))(w) − (u)((v)(w)) − ((u)(w))(v) + (u)((w)(v)) = 0

where (u), (v), (w) ∈ X∗∗ and (v) > (w). By Lemma 4.3, it suffices to prove that for

good words [u], [v], [w] with [v] > [w],

([u][v])[w] − [u]([v][w]) − ([u][w])[v] + [u]([w][v]) = 0.

This is trivial by the definition of S0. �

Theorem 4.5. Let the ordering > be defined as before and

S0 = {([u][v])[w] − [u]([v][w]) − ([u][w])[v] + [u]([w][v]) : [v] > [w]

and [u], [v], [w] are good words}.

Then S0 is a Gröbner-Shirshov basis in M(X).

P r o o f. To simplify our notation, we shall use u for [u] and u1u2 . . . un for

(((u1u2) . . .)un). Let

fuvw = uvw − u(vw) − uwv + u(wv)

where u, v, w are good words and v > w. It is easy to check that fuvw = uvw.

Suppose that fu1v1w1
is a subword of fuvw. Since u, v, w are good words, we have

u1v1w1 = uv, u = u1v1, v = w1 and v1 > w1 = v > w. We will prove that the

composition (fuvw, fu1v1w1
)uvw is trivial modulo (S0, uvw).

First, we prove that the following statements hold mod(S0, uvw):

1) u1(v1w)v − u1(v1wv) − u1v(v1w) + u1(v(v1w)) ≡ 0,

2) u1wv1v − u1w(v1v) − u1wvv1 + u1w(vv1) ≡ 0,

3) u1(wv1)v − u1(wv1v) − u1v(wv1) + u1(v(wv1)) ≡ 0,

4) u1(v1v)w − u1(v1vw) − u1w(v1v) + u1(w(v1v)) ≡ 0,

5) u1vv1w − u1v(v1w) − u1vwv1 + u1v(wv1) ≡ 0,

6) u1(vv1)w − u1(vv1w) − u1w(vv1) + u1(w(vv1)) ≡ 0,

7) u1(vw)v1 − u1(vwv1) − u1v1(vw) + u1(v1(vw)) ≡ 0,

8) u1v1(wv) − u1(v1(wv)) − u1(wv)v1 + u1(wvv1) ≡ 0.
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We only prove 1). 2)–8) can be proved similarly. Denote g = u1(v1w)v −

u1(v1wv) − u1v(v1w) + u1(v(v1w)). By Lemma 4.3, we have

v1w =
∑

i

αiui +
∑

j

βj(ajsjbj)

where ui are good words, (ajsjbj) are S0-words, sj ∈ S0, ui, (aj(sj)bj) 6 v1w. More-

over, each ui has the same length as v1w.

By noting that u1(aj s̄jbj)v, u1((aj s̄jbj)v), u1v(aj s̄jbj), u1(v(aj s̄jbj)) < uvw, we

have

g ≡
∑

i

αigi mod(S0, uvw)

where gi = u1uiv − u1(uiv) − u1vui + u1(vui). Now gi = 0 or ḡi < uvw implies that

gi ≡ 0 mod(S0, uvw) and so g ≡ 0 mod(S0, uvw).

Secondly, we have

(fuvw, fu1v1w1
)uvw = fuvw − (fu1v1w1

)w

= − u1v1(vw) − u1v1wv + u1v1(wv) + u1(v1v)w

+ u1vv1w − u1(vv1)w.

Then by 1)–6) we have, mod(S0, uvw),

−u1v1wv ≡ − u1(v1w)v − u1wv1v + u1(wv1)v

≡ − u1((v1w)v) − u1v(v1w) + u1(v(v1w)) − u1w(v1v) − u1wvv1

+ u1w(vv1) + u1(wv1v) + u1v(wv1) − u1(v(wv1))

≡ − u1((v1w)v) − u1v(v1w) + u1(v(v1w)) − u1w(v1v)

− u1wvv1 + u1w(vv1)

+ u1(w(v1v)) + u1(wvv1) − u1(w(vv1)) + u1v(wv1) − u1(v(wv1)),

u1(v1v)w ≡ u1(v1vw) + u1w(v1v) − u1(w(v1v))

≡ u1(v1(vw)) + u1(v1wv) − u1(v1(wv)) + u1w(v1v) − u1(w(v1v)),

u1vv1w ≡ u1v(v1w) + u1vwv1 − u1v(wv1)

≡ u1v(v1w) + (u1(vw))v1 + u1wvv1 − u1(wv)v1 − u1v(wv1),

−u1(vv1)w ≡ − u1(vv1w) − u1w(vv1) + u1(w(vv1))

≡ − u1(v(v1w)) − u1(vwv1) + u1(v(wv1)) − u1w(vv1)

+ u1(w(vv1)).
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So, by 7)–8) we have, mod(S0, uvw),

(fuvw, fu1v1w1
)uvw ≡ − u1v1(vw) + u1(v1(vw)) + u1(vw)v1 − u1(vwv1)

+ u1v1(wv) + u1(wvv1) − u1(v1(wv)) − u1(wv)v1 ≡ 0.

This completes the proof. �

The following corollary follows from Lemmas 4.2, 4.4 and Theorems 4.1, 4.5, 2.4.

Corollary 4.6. Let PLie(X) be the free Pre-Lie algebra over the field k generated

by X . Then the set of all good words in X∗∗ is a linear basis of PLie(X).

Acknowledgement. The authors would like to express their deepest gratitude

to Professor L.A. Bokut for his kind guidance, useful discussions and enthusiastic

encouragement.

References

[1] M.A. Akivis: The local algebras of a multidimensional three-web. Sibirsk. Mat. Z. 17
(1976), 5–11 (In Russian.); English translation: Siberian Math. J. 17 (1976), 3–8.

[2] G.M. Bergman: The diamond lemma for ring theory. Adv. Math. 29 (1978), 178–218.
[3] L.A. Bokut: Embeddings into simple associative algebras. Algebra Log. 15 (1976),
73–90.

[4] L.A. Bokut, Y. Fong, W.-F. Ke, P. S. Kolesnikov: Gröbner and Gröbner-Shirshov bases
in algebra and conformal algebras. Fundam. Appl. Prikl. Mat. 6 (2000), 669–706.

[5] L.A. Bokut, P. S. Kolesnikov: Gröbner-Shirshov bases: from their inception to the
present time. J. Math. Sci. 116 (2003), 2894–2916.

[6] L.A. Bokut, P. S. Kolesnikov: Gröbner-Shirshov bases, conformal algebras and pseudo-
algebras. J. Math. Sci. 131 (2005), 5962–6003.

[7] B. Buchberger: An algorithmical criteria for the solvability of algebraic systems of equa-
tions. Aequationes Math. 4 (1970), 374–383. (In German.)

[8] D. Eisenbud, ed.: Commutative Algebra. With a View Toward Algebraic Geometry.
Graduate Texts in Mathematics, Vol. 150. Springer, Berlin, 1995.

[9] H. Hironaka: Resolution of singularities of an algebraic variety over a feild of character-
istic zero. I, II. Ann. Math. 79 (1964), 109–203, 205–326.

[10] D.E. Knuth, P. B. Bendix: Simple word problems in universal algebras. Comput. Probl.
Abstract Algebra. Proc. Conf. Oxford 1967 (1970), 263–297.

[11] A.G. Kurosh: Nonassociative free algebras and free products of algebras. Mat. Sb.
N. Ser. 20 (1947), 239–262. (In Russian.)

[12] C. Reutenauer: Free Lie Algebras. Clarendon Press, Oxford, 1993.
[13] D. Segal: Free left-symmetric algebras and an analogue of the Poincaré-Birkhoff-Witt

Theorem. J. Algebra 164 (1994), 750–772.
[14] I. P. Shestakov: Every Akivis algebra is linear. Geom. Dedicata 77 (1999), 215–223.
[15] I. P. Shestakov, U. Umirbaev: Free Akivis algebras, primitive elements and hyperalge-

bras. J. Algebra 250 (2002), 533–548.
[16] A. I. Shirshov: Subalgebras of free Lie algebras. Mat. Sb., N. Ser. 33 (1953), 441-452.

(In Russian.)

719



[17] A. I. Shirshov: Subalgebras of free commutative and free anti-commutative algebras.
Mat. Sbornik 34 (1954), 81–88. (In Russian.)

[18] A. I. Shirshov: Certain algorithmic problems for ε-algebras. Sib. Mat. Zh. 3 (1962),
132–137.

[19] A. I. Shirshov: Certain algorithmic problems for Lie algebras. Sib. Mat. Zh. 3 (1962),
292–296. (In Russian.)

[20] Selected Works of A. I. Shirshov Series. Contemporary Mathematicians (L.A. Bokut,
V. Latyshev, I. Shestakov, E. Zelmanov, eds.). Basel, Boston, Berlin, 2009.

[21] E. Witt: Subrings of free Lie rings. Math. Z. 64 (1956), 195–216. (In German.)
[22] A. I. Zhukov: Reduced systems of defining relations in nonassociative algebras. Mat. Sb.,

N. Ser. 27 (1950), 267–280. (In Russian.)

Authors’ address: Y . C h e n, Y . L i, School of Mathematical Sciences, South China Nor-
mal University, Guangzhou 510631, P.R.China, e-mail: yqchen@scnu.edu.cn, LiYu820615
@126.com.

720


		webmaster@dml.cz
	2020-07-03T19:27:20+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




