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On a parabolic integrodifferential

equation of Barbashin type

B.G. Pachpatte

Abstract. In the present paper we study some basic qualitative properties of
solutions of a nonlinear parabolic integrodifferential equation of Barbashin type
which occurs frequently in applications. The fundamental integral inequality
with explicit estimate is used to establish the results.

Keywords: parabolic integrodifferential equation, Barbashin type, integral in-
equality, explicit estimate, approximate solutions, continuous dependence on pa-
rameters

Classification: 34K10, 35R10

1. Introduction

In [2], E.A. Barbashin first initiated the study of the integrodifferential equation
of the form

(1.0)
∂

∂t
u(t, x) = c(t, x)u(t, x) +

∫ b

a

k(t, x, y)u(t, y) dy + f(t, x),

which arises in mathematical modelling of many applied problems (see [1, Sec-
tion 19]). The equation (1.0) has been studied by many authors and is now
known in the literature as integrodifferential equation of Barbashin type or sim-
ply Barbashin equation (see [1, p. 1]). In this paper we consider the nonlinear
integrodifferential equation of Barbashin type

(1.1)
∂

∂t
u(t, x) = f(t, x, u(t, x)) +

∫ b

a

g(t, x, y, u(t, y)) dy + h(t, x),

which satisfies the initial condition

(1.2) u (0, x) = u0 (x) ,

for (t, x) ∈ ∆, where f ∈ C(∆ × R, R), g ∈ C(∆ × I × R, R), h ∈ C(∆, R),
u0 ∈ C(I, R) are given functions and u is the unknown function to be found.
Here I = [a, b] (a < b), R+ = [0,∞) are the given subsets of R, the set of real
numbers, ∆ = R+ × I and C(D1, D2) denotes the class of continuous functions
from the set D1 to the set D2. The problem of existence of solutions of (1.1)–
(1.2) can be dealt with the method employed in [4]–[6] (see also [3, p. 273]). For
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detailed account on the study of such equations, see [1] and the references cited
therein.

In the general case, solving (1.1)–(1.2) is a highly nontrivial problem. In dealing
with the equations like (1.1)–(1.2), the basic questions to be answered are:

(i) if solutions do exist, what are their nature ?
(ii) how can we find them or closely approximate them ?

The study of such questions is interesting and needs a fresh outlook for handling
the qualitative properties of solutions of (1.1)–(1.2). In the present work, we
study some fundamental qualitative properties of solutions of (1.1)–(1.2) by using
a certain variant of the integral inequality with explicit estimate established by
the present author in [8]. A particular feature of our approach here is that it is
elementary and provide some basic results for future advanced studies in the field.

2. A basic integral inequality

We require the following variant of the integral inequality given in [8].

Lemma. Let w, p ∈ C(∆, R+), q ∈ C(∆ × I, R+) and let c ≥ 0 be a constant. If

(2.1) w(t, x) ≤ c +

∫ t

0

[

p(s, x)w(s, x) +

∫ b

a

q(s, x, y)w(s, y) dy

]

ds

for (t, x) ∈ ∆, then

(2.2) w(t, x) ≤ cP (t, x) exp

(

∫ t

0

∫ b

a

q (s, x, y)P (s, y) dy ds

)

for (t, x) ∈ ∆, where

(2.3) P (t, x) = exp

(
∫ t

0

p(s, x) ds

)

.

Proof: Define a function m(t, x) by

(2.4) m(t, x) = c +

∫ t

0

∫ b

a

q(s, x, y)w(s, y) dy ds.

Then (2.1) can be restated as

(2.5) w(t, x) ≤ m(t, x) +

∫ t

0

p (s, x)w(s, x) ds.

It is easy to observe that m(t, x) is nonnegative for (t, x) ∈ ∆ and nondecreasing
in t ∈ R+ for every x ∈ I. Treating (2.5) as one-dimensional integral inequality
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in t ∈ R+ for every x ∈ I and a suitable application of the inequality given in [4,
p. 12 and also pp. 325–326] yields

(2.6) w (t, x) ≤ m (t, x)P (t, x) .

From (2.4) and (2.6), we observe that

(2.7) m(t, x) ≤ c +

∫ t

0

∫ b

a

q(s, x, y)P (s, y)m(s, y) dy ds.

Setting

(2.8) e(s) =

∫ b

a

q(s, x, y)P (s, y)m(s, y) dy,

for every x ∈ I, the inequality (2.7) can be restated as

(2.9) m (t, x) ≤ c +

∫ t

0

e (s) ds.

Let

(2.10) z (t) = c +

∫ t

0

e(s) ds.

Then z(0) = c and

(2.11) m (t, x) ≤ z (t)

for t ∈ R+ and for every x ∈ I. From (2.10), (2.8), (2.11), we observe that

(2.12)

z′(t) = e(t) =

∫ b

a

q(t, x, y)P (t, y)m(t, y) dy

≤ z(t)

∫ b

a

q(t, x, y)P (t, y) dy.

The inequality (2.12) implies

(2.13) z(t) ≤ c exp

(

∫ t

0

∫ b

a

q(s, x, y)P (s, y) dy ds

)

.

The required inequality in (2.2) follows from (2.13), (2.10) and (2.6). �

3. Estimates of the solutions

First we shall give the following theorem concerning the estimate of the solution
of (1.1)–(1.2).
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Theorem 1. Suppose that the functions f, g, h, u0 in (1.1)–(1.2) satisfy the con-
ditions

|f(t, x, u) − f(t, x, ū)| ≤ c(t, x) |u − ū| ,(3.1)

|g(t, x, y, u) − g(t, x, y, ū)| ≤ k(t, x, y) |u − ū| ,(3.2)

and

(3.3) d = sup
(t,x)∈∆

∣

∣

∣

∣

∣

φ(t, x) +

∫ t

0

[

f(s, x, 0) +

∫ b

a

g(s, x, y, 0) dy

]

ds

∣

∣

∣

∣

∣

< ∞,

where c ∈ C(∆, R+), k ∈ C(∆ × I, R+) and

(3.4) φ(t, x) = u0(x) +

∫ t

0

h(s, x) ds.

If u(t, x) is any solution of (1.1)–(1.2) on ∆, then

(3.5) |u(t, x)| ≤ dC(t, x) exp

(

∫ t

0

∫ b

a

k(s, x, y)C(s, y) dy ds

)

for (t, x) ∈ ∆, where

(3.6) C(t, x) = exp

(
∫ t

0

c(s, x) ds

)

.

Proof: Using the fact that u(t, x) is a solution of (1.1)–(1.2) on ∆ and the
hypotheses, we observe that

(3.7)

|u(t, x)| =

∣

∣

∣

∣

∣

φ(t, x) +

∫ t

0

[

{f(s, x, u(s, x)) − f(s, x, 0) + f(s, x, 0)}

+

∫ b

a

{g(s, x, y, u(s, y)) − g(s, x, y, 0) + g(s, x, y, 0)} dy

]

ds

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

φ(t, x) +

∫ t

0

[

f(s, x, 0) +

∫ b

a

g(s, x, y, 0) dy

]

ds

∣

∣

∣

∣

∣

+

∫ t

0

[

|f(s, x, u(s, x)) − f(s, x, 0)|

+

∫ b

a

|g(s, x, y, u(s, y)) − g(s, x, y, 0)| dy

]

ds

≤ d +

∫ t

0

[

c(s, x) |u(s, x)| +

∫ b

a

k(s, x, y) |u(s, y)| dy

]

ds.
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Now an application of Lemma to (3.7) yields (3.5). �

Remark 1. We note that the estimate obtained in (3.5) provides a bound on the
solution u(t, x) of (1.1)–(1.2) on ∆. In Theorem 1, if we assume that

∫

∞

0

c(s, x) ds < ∞,

∫

∞

0

∫ b

a

k(s, x, y)C(s, y) dy ds < ∞,

then the solution u(t, x) of (1.1)–(1.2) is bounded on ∆.

A slight variant of Theorem 1 is embodied in the following theorem.

Theorem 2. Suppose that the functions f, g, h, u0 in (1.1)–(1.2) satisfy the con-
ditions (3.1), (3.2) and

(3.8) d̄ =

∫

∞

0

[

|f(s, x, φ(s, x))| +

∫ b

a

|g(s, x, y, φ(s, y))| dy

]

ds < ∞,

where φ(t, x) is defined by (3.4). If u(t, x) is any solution of (1.1)–(1.2) on ∆,
then

(3.9) |u(t, x) − φ(t, x)| ≤ d̄C(t, x) exp

(

∫ t

0

∫ b

a

k(s, x, y)C(s, y) dy ds

)

,

for (t, x) ∈ ∆, where C(t, x) is given by (3.6).

The proof follows by the similar arguments as in the proof of Theorem 1 with
suitable modifications. We omit the details.

4. Approximate solutions

In this section we focus on the approximation of solutions to (1.1)–(1.2). We
obtain conditions under which we can estimate errors between true solutions and
approximate solutions.

Let u(t, x) ∈ C(∆, R), let ∂
∂t

u(t, x) exist on ∆ and satisfy the inequality

∣

∣

∣

∣

∣

∂

∂t
u(t, x) − f(t, x, u(t, x)) −

∫ b

a

g(t, x, y, u(t, y)) dy − h(t, x)

∣

∣

∣

∣

∣

≤ ε,

for a given constant ε ≥ 0, where it is supposed that (1.2) holds. Then we call
u(t, x) the ε-approximate solution with respect to the equation (1.1).

Our main result in this section concerning the estimate on the difference be-
tween the two approximate solutions of (1.1)–(1.2) is given in the following theo-
rem.
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Theorem 3. Suppose that the functions f, g in (1.1) satisfy the conditions (3.1),
(3.2). Let ui(t, x) (i = 1, 2), (t, x) ∈ ∆ be respectively εi-approximate solutions
of (1.1) with

(4.1) ui (0, x) = ūi (x) ,

where ūi ∈ C(I, R), and let

(4.2) φi(t, x) = ūi(x) +

∫ t

0

h(s, x) ds.

Suppose that

(4.3) |φ1(t, x) − φ2 (t, x)| ≤ δ,

where δ ≥ 0 is a constant and

(4.4) M = sup
t∈R+

[(ε1 + ε2) t + δ] < ∞.

Then

(4.5) |u1(t, x) − u2(t, x)| ≤ MC(t, x) exp

(

∫ t

0

∫ b

a

k(s, x, y)C(s, y) dy ds

)

for (t, x) ∈ ∆, where C(t, x) is given by (3.6).

Proof: Since ui(t, x) (i = 1, 2), (t, x) ∈ ∆ are respectively εi-approximate solu-
tions of (1.1) with (4.1) on ∆, we have

(4.6)

∣

∣

∣

∣

∣

∂

∂t
ui(t, x) − f (t, x, ui(t, x)) −

∫ b

a

g (t, x, y, ui(t, y)) dy − h(t, x)

∣

∣

∣

∣

∣

≤ εi.

By taking t = s in (4.6) and integrating both sides with respect to s from 0 to t

for t ∈ R+, we get

εit ≥

∫ t

0

∣

∣

∣

∣

∣

∂

∂s
ui(s, x) − f (s, x, ui(s, x)) −

∫ b

a

g (s, x, y, ui(s, y)) dy − h(s, x)

∣

∣

∣

∣

∣

ds

(4.7)

≥

∣

∣

∣

∣

∣

∫ t

0

{

∂

∂s
ui(s, x) − f (s, x, ui(s, x)) −

∫ b

a

g (s, x, y, ui(s, y)) dy − h(s, x)

}

ds

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

ui(t, x) − φi(t, x) −

∫ t

0

[

f (s, x, ui(s, x)) +

∫ b

a

g (s, x, y, ui(s, y)) dy

]

ds

∣

∣

∣

∣

∣

.
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From (4.7) and using the elementary inequalities

(4.8) |v − z| ≤ |v| + |z|, |v| − |z| ≤ |v − z|,

for v, z ∈ R+, we observe that

(ε1 + ε2) t ≥

∣

∣

∣

∣

∣

u1 (t, x) − φ1(t, x)

(4.9)

−

∫ t

0

[

f (s, x, u1(s, x)) +

∫ b

a

g (s, x, y, u1(s, y)) dy

]

ds

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

u2(t, x) − φ2(t, x) −

∫ t

0

[

f (s, x, u2(s, x)) +

∫ b

a

g (s, x, y, u2(s, y)) dy

]

ds

∣

∣

∣

∣

∣

≥

∣

∣

∣

∣

∣

{

u1(t, x) − φ1(t, x) −

∫ t

0

[

f (s, x, u1(s, x)) +

∫ b

a

g (s, x, y, u1(s, y)) dy

]

ds

}

−

{

u2(t, x) − φ2(t, x) −

∫ t

0

[

f (s, x, u2(s, x)) +

∫ b

a

g (s, x, y, u2(s, y)) dy

]

ds

}
∣

∣

∣

∣

∣

≥ |u1 (t, x) − u2(t, x)| − |φ1(t, x) − φ2 (t, x)|

−

∣

∣

∣

∣

∣

∫ t

0

[

f (s, x, u1(s, x)) +

∫ b

a

g (s, x, y, u1(s, y)) dy

]

ds

−

∫ t

0

[

f (s, x, u2(s, x)) +

∫ b

a

g (s, x, y, u2(s, y)) dy

]

ds

∣

∣

∣

∣

∣

.

Let u(t, x) = |u1(t, x)−u2(t, x)|, (t, x) ∈ ∆. From (4.9) and using the hypotheses,
we observe that

(4.10)

u(t, x) ≤ (ε1 + ε2) t + δ +

∫ t

0

[

c(s, x)u(s, x) +

∫ b

a

k(s, x, y)u(s, y) dy

]

ds

≤ M +

∫ t

0

[

c(s, x)u(s, x) +

∫ b

a

k(s, x, y)u(s, y) dy

]

ds.

Now an application of Lemma to (4.10) yields (4.5). �

Remark 2. In case u1(t, x) is a solution of (1.1) with u1(0, x) = ū1(x), we have
ε1 = 0 and from (4.5), we see that u2(t, x) → u1(t, x) as ε2 → ε1 and δ → 0.
Furthermore, if we put (i) ε1 = ε2 = 0, ū1(x) = ū2(x) in (4.5), then the uniqueness
of solutions of (1.1) is established and (ii) ε1 = ε2 = 0 in (4.5), then we get the
bound which shows the dependency of solutions of (1.1) on given initial values.
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Consider (1.1)–(1.2) together with the following integrodifferential equation

(4.11)
∂

∂t
v (t, x) = f̄ (t, x, v (t, x)) +

∫ b

a

ḡ (t, x, y, v (t, y)) dy + h̄(t, x),

with the given initial condition

(4.12) v (0, x) = v0 (x)

for (t, x) ∈ ∆, where f̄ ∈ C(∆ × R, R), ḡ ∈ C(∆ × I × R, R), h̄ ∈ C(∆, R),
v0 ∈ C(I, R).

In the following theorem we provide conditions concerning the closedness of
solutions of (1.1)–(1.2) and (4.11)–(4.12).

Theorem 4. Suppose that the functions f, g in (1.1) satisfy the conditions (3.1),
(3.2), and that there exist constants ε̄i ≥ 0, δ̄i ≥ 0 (i = 1, 2) such that

∣

∣f(t, x, u) − f̄(t, x, u)
∣

∣ ≤ ε̄1,(4.13)

|g(t, x, y, u) − ḡ(t, x, y, u)| ≤ ε̄2,(4.14)
∣

∣h(t, x) − h̄(t, x)
∣

∣ ≤ δ̄1,(4.15)

|u0(x) − v0(x)| ≤ δ̄2,(4.16)

where f, g, h, u0 and f̄ , ḡ, h̄, v0 are the functions in (1.1)–(1.2) and (4.11)–(4.12)
and

(4.17) M̄ = sup
t∈R+

[

δ̄2 +
[

δ̄1 + ε̄1 + ε̄2(b − a)
]

t
]

< ∞.

Let u(t, x) and v(t, x) be respectively the solutions of (1.1)–(1.2) and (4.11)–(4.12)
for (t, x) ∈ ∆. Then

(4.18) |u(t, x) − v(t, x)| ≤ M̄C(t, x) exp

(

∫ t

0

∫ b

a

k(s, x, y)C(s, y) dy ds

)

,

for (t, x) ∈ ∆, where C(t, x) is given by (3.6).

Proof: Let z(t, x) = |u(t, x) − v(t, x)|, (t, x) ∈ ∆. Using the facts that u(t, x),
v(t, x) are respectively the solutions of (1.1)–(1.2), (4.11)–(4.12) on ∆ and the
hypotheses, we observe that

z(t, x) ≤

∣

∣

∣

∣

u0(x) +

∫ t

0

h(s, x) ds − v0(x) −

∫ t

0

h̄(s, x) ds

∣

∣

∣

∣

(4.19)

+

∫ t

0

[|f(s, x, u(s, x)) − f(s, x, v(s, x))| +
∣

∣f(s, x, v(s, x)) − f̄(s, x, v(s, x))
∣

∣
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+

∫ b

a

{|g(s, x, y, u(s, y)) − g(s, x, y, v(s, y))|

+ |g(s, x, y, v(s, y)) − ḡ(s, x, y, v(s, y))|} dy] ds

≤ |u0(x) − v0(x)| +

∫ t

0

∣

∣h(s, x) − h̄ (s, x)
∣

∣ ds

+

∫ t

0

[

c(s, x)z(s, x) + ε̄1 +

∫ b

a

{k(s, x, y)z(s, y) + ε̄2} dy

]

ds

≤
[

δ̄2 + δ̄1t + ε̄1t + ε̄2(b − a)t
]

+

∫ t

0

[

c(s, x)z(s, x) +

∫ b

a

k(s, x, y)z(s, y) dy

]

ds

≤ M̄ +

∫ t

0

[

c(s, x)z(s, x) +

∫ b

a

k(s, x, y)z(s, y) dy

]

ds.

Now an application of Lemma to (4.19) yields (4.18). �

Remark 3. We note that the result given in Theorem 4 relates the solutions of
(1.1)–(1.2) and (4.11)–(4.12) in the sense that if f, g, h, u0 are respectively close
to f̄ , ḡ, h̄, v0; then the solutions of (1.1)–(1.2) and (4.11)–(4.12) are also close
together.

5. Continuous dependence on parameters

In this section we shall deal with the continuous dependence of solutions of
equations of the form (1.1) on parameters.

We consider the following integrodifferential equations of Barbashin type

∂

∂t
u(t, x) = f(t, x, u(t, x), µ) +

∫ b

a

g(t, x, y, u(t, y), µ) dy + h(t, x),(5.1)

∂

∂t
u(t, x) = f(t, x, u(t, x), µ0) +

∫ b

a

g(t, x, y, u(t, y), µ0) dy + h(t, x),(5.2)

with the given initial condition (1.2), where f ∈ C(∆×R×R, R), g ∈ C(∆× I ×
R × R, R), h ∈ C(∆, R) and µ, µ0 are parameters.

The following theorem deals with the dependency of solutions of (5.1)–(1.2)
and (5.2)–(1.2) on parameters.

Theorem 5. Suppose that the functions f, g in (5.1), (5.2) satisfy the conditions

|f(t, x, u, µ) − f(t, x, ū, µ)| ≤ c̄(t, x) |u − ū| ,(5.3)

|f(t, x, u, µ) − f (t, x, u, µ0)| ≤ n1(t, x) |µ − µ0| ,(5.4)

|g(t, x, y, u, µ) − g(t, x, y, ū, µ)| ≤ k̄(t, x, y) |u − ū| ,(5.5)

|g(t, x, y, u, µ) − g (t, x, y, u, µ0)| ≤ n2(t, x, y) |µ − µ0| ,(5.6)



400 B.G. Pacgpatte

where c̄, n1 ∈ C(∆, R+), k̄, n2 ∈ C(∆ × I, R+) and

(5.7) N = sup
(t,x)∈∆

∫ t

0

[

n1(s, x) +

∫ b

a

n2(s, x, y) dy

]

ds < ∞.

Let u1(t, x) and u2(t, x) be respectively, the solutions of (5.1)–(1.2) and (5.2)–(1.2)
on ∆. Then

(5.8) |u1(t, x) − u2(t, x)| ≤ |µ − µ0| C̄(t, x) exp

(

∫ t

0

∫ b

a

k̄(s, x, y)C̄(s, y) dy ds

)

for (t, x) ∈ ∆, where C̄(t, x) is given by (3.6) with c(t, x) replaced by c̄(t, x).

The proof can be completed by following the proofs of the above given results
and closely looking at the proof of Theorem 3.3 given in [7]. We leave the details
to the reader.

Remark 4. We note that, by obtaining a suitable variant of Lemma one can
obtain results similar to those given above to the following Barbashin type inte-
grodifferential equation

(5.9)
∂

∂t
u(t, x) = f(t, x, u(t, x)) +

∫

G

k(t, x, y, u(t, y)) dy + h(t, x),

with the given initial condition, under some suitable conditions on the functions
involved in (5.10), where G is a compact subset of R

n. For more results on the
equations of the type (5.10), we refer the interested readers to [1], [4]–[6] and the
references cited therein.

6. Remarks and comments

In [1], the topological, monotonicity and variational methods are used to study
the various Barbashin type integrodifferential equations and also partial integral
equations of Barbashin type. The results obtained in this paper point out the
well known truth that the technique of inequalities with explicit estimates is re-
ally a powerful tool for the study of important qualitative properties of solutions
of (1.1)–(1.2). Suppose we are interested in finding a solution u of the integrod-
ifferential equation of Barbashin type (1.0) satisfying the initial condition (1.2).
Putting ∂

∂t
u(t, x) := w(t, x) in (1.0)–(1.2), we arrive at the equation (see [1, p. 5])

(6.1) w(t, x) = h(t, x) +

∫ t

0

c(t, x)w(τ, x) dτ +

∫ t

0

∫ b

a

k(t, x, σ)w(τ, σ) dσ dτ,

where

(6.2) h(t, x) = f(t, x) + c(t, x)u0(x) +

∫ b

a

k(t, x, σ)u0(σ) dσ.
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Problems of this type lead to partial integral equations of the form (see [1, p. 476])

(6.3) u(t, x) = f(t, x) + Ku(t, x),

where

(6.4)

Ku(t, x) = e(x)

∫ t

0

l(t, τ)u(τ, x) dτ + c(t)

∫ b

a

m(x, σ)u(t, σ) dσ

+ d(t, x)

∫ t

0

∫ b

a

n(t, τ)m(x, σ)u(τ, σ) dσ dτ,

or Ku may be written in the more general forms as noted in the introduction
of [1]. As far as equations of the forms (1.0)–(1.2) and (6.3) are concerned,
numerous models arise whose detailed treatment is desired. Usually, it is hoped
and expected that the analysis presented in Theorems 1–5 will also be equally
useful in the study of equations like (6.3). In fact, it involves the task of designing
a new inequality similar to the one given in Lemma, which will allow applications
in the discussion of equations like (6.3). Indeed, it is not an easy matter but a
challenging problem for future investigations.
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