
Commentationes Mathematicae Universitatis Carolinae

Francisco Javier González Vieli
A multidimensional distribution sampling theorem

Commentationes Mathematicae Universitatis Carolinae, Vol. 52 (2011), No. 3, 341--347

Persistent URL: http://dml.cz/dmlcz/141606

Terms of use:
© Charles University in Prague, Faculty of Mathematics and Physics, 2011

Institute of Mathematics of the Academy of Sciences of the Czech Republic provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This paper has been digitized, optimized for electronic delivery and stamped with digital
signature within the project DML-CZ: The Czech Digital Mathematics Library
http://project.dml.cz

http://dml.cz/dmlcz/141606
http://project.dml.cz


Comment.Math.Univ.Carolin. 52,3 (2011) 341–347 341

A multidimensional distribution sampling theorem

Francisco Javier González Vieli

Abstract. Using Bochner-Riesz means we get a multidimensional sampling the-
orem for band-limited functions with polynomial growth, that is, for functions
which are the Fourier transform of compactly supported distributions.
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1. Introduction

Let S ∈ L2(R) have support in [−1/2, 1/2] and let FS(y) :=
∫

R
S(x) e−2πixy dx

be its Fourier transform. The classical sampling theorem states that

FS(y) =
+∞∑

m=−∞

FS(m)
sinπ(y −m)

π(y −m)

uniformly on R (see [2] for the history of this result). When S is a distribution
with support in ]−1/2, 1/2[, its Fourier transform, which is still a function, is
also determined by its values at the points m ∈ Z; but the series above does not
converge. However, it is possible to generalize the sampling formula in this case:
Walter showed in 1988 that the series is summable in Cesàro and Abel means to
FS(y) uniformly on bounded sets in R [5, Corollary 4.4, p. 1203], [6, Theorem,
p. 353] ([5] was improved by Liu in 1996 [3, Theorem 5, p. 1155]).

Although extensions of the classical sampling theorem to several real variables
are well known [2, pp. 76–82], the case of distributions in several variables does not
seem to have been much studied, perhaps because of the mainly one-dimensional
tools in the proofs of Walter and Liu.

Using Bochner-Riesz means we prove here the following multidimensional ge-
neralization.

Theorem. Let V be a convex bounded open set in R
n such that −V = V and

2V ∩ Z
n = {0}. Let S be a distribution on R

n of order p with support in V .

Then, for k > p+ (n− 1)/2,

FS(y) = lim
N→+∞

∑

m∈Zn, ‖m‖≤N

(1 − ‖m‖2/N2)k FS(m)FχV (y −m),

uniformly on every compact set in R
n (with χV the indicator function of V ).
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If V is the cube ]−1/2, 1/2[n this gives

FS(y) = lim
N→+∞

∑

m∈Zn, ‖m‖≤N

(1 − ‖m‖2/N2)k FS(m)

n∏

j=1

sinπ(yj −mj)

π(yj −mj)
;

and if V is the ball B(0, 1/2) it gives

FS(y) = lim
N→+∞

∑

m∈Zn, ‖m‖≤N

(1 − ‖m‖2/N2)k FS(m)
Jn/2(π‖y −m‖)
(2‖y −m‖)n/2

,

where Jν is the Bessel function of the first kind and order ν.
The proof of the theorem is given in Section 3. In Section 2 we introduce useful

notations and study in some detail the Bochner-Riesz kernel.

2. Preliminaries

If f is a function on R
n and a ∈ R

n, we write, for all x ∈ R
n, f∨(x) := f(−x),

τaf(x) := f(x − a) and ea(x) := e2πia·x; moreover, if f is real valued we put
f+(x) := max(f(x), 0). We write ωn := 2πn/2/Γ(n/2), so that ωnr

n/n is the
Lebesgue measure (volume) of any ball B(a, r) in R

n with radius r > 0.
Let now k ≥ 0 and N > 0. According to [4, Theorem IV.4.15],

F [(1 − ‖x‖2/N2)k
+](y) =

Γ(k + 1)

πk

N−k+n/2

‖y‖k+n/2
Jk+n/2(2πN‖y‖)

for any y ∈ R
n. We now put

kK
n
N (y) :=

Γ(k + 1)

πk

N−k+n/2

‖y‖k+n/2
Jk+n/2(2πN‖y‖);

this defines kK
n
N not only on R

n but in fact on every R
q, q ∈ N. Clearly kK

n
N is

analytic. If we differentiate it in R
n, we find, because (z−νJν(z))′ = −z−νJν+1(z),

that (∂/∂j)kK
n
N (y) = −2πyj · kKn+2

N (y). Hence, for every multiindex α ∈ N
n
0 and

all y ∈ R
n,

Dα
kK

n
N(y) =

|α|∑

r=0

(−2π)rPα
r (y) · kK

n+2r
N (y),

where the Pα
r are polynomials. We immediately have P 0

0 = 1. Put Pα
r := 0 if

r < 0 or r > |α|; the Pα
r can be defined by the recurrence formula

P
α+ej

l (y) = yj · Pα
l−1(y) + (∂Pα

l /∂yj)(y).

From this we get Pα
|α|(y) = yα and, by induction, 2(|α| − r)Pα

r (y) = ∆Pα
r+1(y)

if r = 0, . . . , |α| − 1. We then find Pα
|α|−l(y) = ∆lyα/2ll!. In particular, Pα

r is

a polynomial of degree ≤ r which only depends on α and r. Hence there exists
cαr > 0 such that |Pα

r (y)| ≤ cαr (1 + ‖y‖r) for all y ∈ R
n.
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Given any ν ∈ 1
2Z≥0, there exists ℓν > 0 such that |Jν(x)| < ℓν/

√
x for all

x > 0 [7, p. 199]. Put Lk := max{ℓν : ν ∈ 1
2Z≥0, ν ≤ n

2 + k + p}. Then, if
0 ≤ r ≤ p,

|kKn+2r
N (y)| ≤ Γ(k + 1)Lk√

2πk+1/2

N r−k+(n−1)/2

‖y‖r+k+(n+1)/2

for all y ∈ R
n \ {0}. Hence, for any multiindex α with |α| ≤ p and for all

y ∈ R
n \ {0}, we have:

|Dα
kK

n
N(y)| ≤ Cα

k

N |α|−k+(n−1)/2

‖y‖k+(n+1)/2
,

where the constant Cα
k > 0 also depends on p. It follows that the function kK

n
N

is integrable on R
n if k > n−1

2 , in which case all its derivatives are also integrable

and moreover (1 − ‖x‖2/N2)k
+ = FkK

n
N (x) for any x ∈ R

n.

3. Proof

We divide the proof of the theorem in seven steps.

Step 1. We have just seen that (1 − ‖m‖2/N2)k
+ = FkK

n
N(m). Moreover

FχV (m − y) = F(χV ey)(m). Since χV ey is integrable with compact support
and kK

n
N is integrable and C∞, their convolution, kK

n
N ⋆ χV ey, is integrable and

C∞ with, for any multiindex α, Dα(kK
n
N ⋆ χV ey) = (Dα

kK
n
N) ⋆ χV ey. Hence

S ⋆ (kK
n
N ⋆ χV ey) ∈ C∞(Rn) and, for all a ∈ R

n,

[S ⋆ (kK
n
N ⋆ χV ey)](a) = S(τa[kK

n
N ⋆ χV ey]∨).

From

F [S ⋆ (kK
n
N ⋆ χV ey)] = FS · F(kK

n
N ⋆ χV ey) = FS · FkK

n
N · F(χV ey)

we deduce

∑

m∈Zn

(1 − ‖m‖2/N2)k
+ FS(m)FχV (y −m) =

∑

m∈Zn

F [S ⋆ (kK
n
N ⋆ χV ey)](m).

Step 2. There exists 0 ≤ λ < 1 such that suppS ⊂ λV . We define U := λV ;
hence suppS ⊂ U ⊂ U ⊂ V . By assumption there exists C > 0 such that, for all
ϕ ∈ C∞(Rn),

(1) |S(ϕ)| ≤ C sup
|α|≤p

sup
x∈U

|Dαϕ(x)|.

We also define δ := d(U + V ,Zn \ {0}) and η := d(U + V c, {0}); remark that δ,

η > 0. Finally, we choose r > 0 such that U + V ⊂ B(0, r).
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Step 3. We have, for a ∈ R
n,

|[S ⋆ (kK
n
N ⋆ χV ey)](a)| = |S(τa[kK

n
N ⋆ χV ey]∨)|

≤ C sup
|α|≤p

sup
x∈U

|Dα τa[kK
n
N ⋆ χV ey]∨(x)|

= C sup
|α|≤p

sup
x∈U

|[(Dα
kK

n
N) ⋆ χV ey](a− x)|.

Take now ‖a‖ ≥ 2r, so that in particular a − U − V ⊂ B(0, ‖a‖ − r)c and
‖a‖ − r ≥ ‖a‖/2. We get, for x ∈ U ,

|[(Dα
kK

n
N) ⋆ χV ey](a− x)| =

∣∣∣∣
∫

Rn

(Dα
kK

n
N)(t)(χV ey)(a− x− t) dt

∣∣∣∣

≤
∫

a−U−V

|(Dα
kK

n
N)(t)| dt

≤ sup
‖t‖≥‖a‖−r

|Dα
kK

n
N (t)| · ωnr

n/n

≤ Cα
k · 2k+(n+1)/2 N

|α|−k+(n−1)/2

‖a‖k+(n+1)/2

ωnr
n

n
.

Hence, for all a ∈ R
n with ‖a‖ ≥ 2r,

|[S ⋆ (kK
n
N ⋆ χV ey)](a)| ≤ C̃p

k

Np−k+(n−1)/2

‖a‖k+(n+1)/2
,

where the constant C̃p
k > 0 also depends on C, r and n. Since k > p+ n−1

2 , k +
n+1

2 > n and we may apply the Poisson summation formula [4, Corollary VII.2.6]:

∑

m∈Zn

F [S ⋆ (kK
n
N ⋆ χV ey)](m) =

∑

m∈Zn

[S ⋆ (kK
n
N ⋆ χV ey)](m).

Step 4. Because k > p+ n−1
2 , we get

lim
N→+∞

∑

m∈Zn

‖m‖≥2r

|[S ⋆ (kK
n
N ⋆ χV ey)](m)| ≤ lim

N→+∞

∑

m∈Zn

‖m‖≥2r

C̃p
k

Np−k+(n−1)/2

‖m‖k+(n+1)/2
= 0.

Take now m ∈ Z
n with 0 < ‖m‖ < 2r. From Step 3 we know that

|[S ⋆ (kK
n
N ⋆ χV ey)](m)| ≤ C sup

|α|≤p

sup
t∈m−U−V

|(Dα
kK

n
N )(t)| · ωnr

n/n.

From Section 2 we deduce that

sup
t∈m−U−V

|(Dα
kK

n
N )(t)| ≤ Cα

k

N |α|−k+(n−1)/2

δk+(n+1)/2
.
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Therefore

lim
N→+∞

∑

m∈Zn\{0}

[S ⋆ (kK
n
N ⋆ χV ey)](m) = 0,

uniformly (in y) on the whole R
n.

Step 5. We must now study the limit

lim
N→+∞

[S ⋆ (kK
n
N ⋆ χV ey)](0) = lim

N→+∞
S([kK

n
N ⋆ χV ey]

∨).

We use an auxiliary function ψ ∈ C∞(Rn) with compact support such that ψ = 1
on V and 0 ≤ ψ ≤ 1. Let W = B(0, ρ) ⊃ suppψ. We have 0 ≤ ψ − χV ≤ 1 and
(ψ − χV )(u) = 0 if u ∈ V ∪W c. Then, for all x ∈ U ,

|Dα[kK
n
N ⋆ (ψ − χV ) ey]∨(x)| =

∣∣∣∣
∫

Rn

Dα
kK

n
N (t) · {(ψ − χV ) ey}(−x− t) dt

∣∣∣∣

≤
∫

t∈−U−(W\V )

|Dα
kK

n
N(t)| dt;

and we get

S([kK
n
N ⋆ (ψ − χV ) ey]∨)| ≤ C sup

|α|≤p

sup
x∈U

|Dα[kK
n
N ⋆ (ψ − χV ) ey]∨(x)|

≤ C · vol(U + (W \ V )) · sup
|α|≤p

Cα
k

N |α|−k+(n−1)/2

ηk+(n+1)/2
.

Hence

lim
N→+∞

S([kK
n
N ⋆ (ψ − χV ) ey]∨) = 0

uniformly (in y) on all R
n.

Step 6. We will now show that

lim
N→+∞

S([kK
n
N ⋆ ψ ey]∨) = S([ψ ey]∨)

uniformly (in y) on every compact set L in R
n. In view of (1) it will suffice to

prove that, for every multiindex α with |α| ≤ p,

lim
N→+∞

sup
x∈Rn

|[Dα(kK
n
N ⋆ ψ ey) −Dα(ψ ey)](x)| = 0,

uniformly in y ∈ L. But since Dα(kK
n
N ⋆ ψ ey) = kK

n
N ⋆ Dα(ψ ey), we only have

to show that, given any ϕ ∈ C∞(Rn) with compact support,

lim
N→+∞

sup
x∈Rn

|[(kK
n
N ⋆ ϕ ey) − ϕ ey](x)| = 0,
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uniformly in y ∈ L. Now

sup
x∈Rn

|[(kK
n
N ⋆ ϕ ey) − ϕ ey](x)|

= sup
x∈Rn

|F{(1 − ‖t‖2/N2)k
+ · F(ϕ ey) −F(ϕ ey)}(x)|

≤
∫

Rn

|(1 − ‖t‖2/N2)k
+ − 1| · |Fϕ(t+ y)| dt,

which tends to 0 uniformly in y ∈ L whenN → +∞ by the dominated convergence
theorem, since F(ϕ) vanishes at infinity.

Step 7. We deduce from the last two steps that

lim
N→+∞

[S ⋆ (kK
n
N ⋆ χV ey)](0) = S([ψ ey]∨)

uniformly (in y) on every compact set in R
n. Now

S([ψ ey]
∨) = S(x 7→ ψ(−x) e2πi(−x|y)) = S(x 7→ e−2πi(x|y)) = FS(y),

since ψ = 1 on V = −V ⊃ U ⊃ suppS. Finally we calculate:

lim
N→+∞

∑

m∈Zn

(1 − ‖m‖2/N2)k
+ FS(m)FχV (y −m)

= lim
N→+∞

∑

m∈Zn

F [S ⋆ (kK
n
N ⋆ χV ey)](m)

= lim
N→+∞

∑

m∈Zn

[S ⋆ (kK
n
N ⋆ χV ey)](m)

= lim
N→+∞

[S ⋆ (kK
n
N ⋆ χV ey)](0)

= FS(y),

uniformly on every compact set in R
n, and the proof is complete.

Remarks. 1. The theorem is also true if we use (1 − ‖m‖/N)k
+ instead of (1 −

‖m‖2/N2)k
+ ; however, the asymptotic estimate of DαF [(1 − ‖x‖/N)k

+] is more
difficult to obtain (see [1]).

2. The theorem is false if we only assume suppS ⊂ V . For example, when
n = 1 and V =]−1/2, 1/2[, S = δ−1/2 − δ1/2 (where δq is the Dirac measure at q)
gives FS(y) = 2i sinπy, which is null on every m ∈ Z.

3. The theorem is false if we only assume k = p + (n − 1)/2: consider the

counter-example on R of S = δ
(l)
0 (l ∈ Z≥0).
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