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K Y BE R NE T IK A — VO L UM E 4 7 ( 2 0 1 1 ) , NU MB E R 2 , P AGE S 2 4 1 – 2 5 0

SIMULTANEOUS SOLUTION OF LINEAR EQUATIONS

AND INEQUALITIES IN MAX-ALGEBRA

Abdulhadi Aminu

Let a⊕b = max(a, b) and a⊗b = a+b for a, b ∈ R. Max-algebra is an analogue of linear
algebra developed on the pair of operations (⊕,⊗) extended to matrices and vectors. The
system of equations A ⊗ x = b and inequalities C ⊗ x ≤ d have each been studied in the
literature. We consider a problem consisting of these two systems and present necessary
and sufficient conditions for its solvability. We also develop a polynomial algorithm for
solving max-linear program whose constraints are max-linear equations and inequalities.

Keywords: max-algebra, linear equations and inequalities, max-linear programming

Classification: 15A06, 15A39, 90C26, 90C27

1. INTRODUCTION

Consider the following ‘multi-machine interactive process’ (MMIPP).
Products P1, . . . , Pm are prepared using n machines, every machine contributing

to the completion of each product by producing a semi-product. It is assumed
that every machine can work on all products simultaneously and that all these
actions on a machine start as soon as the machine is ready to work. Let aij be the
duration of the work of the jth machine needed to complete the semi-product for Pi

(i = 1, . . . , m; j = 1, . . . , n). Let us denote by xj the starting time of the jth machine
(j = 1, . . . , n). Then, all semi-products for Pi (i = 1, . . . , m; j = 1, . . . , n) will be
ready at time max(ai1 + x1, . . . , ain + xn). If the completion times b1, . . . , bm are
given for each product then the starting times have to satisfy the following system
of equations:

max(ai1 + x1, . . . , ain + xn) = bi for all i ∈ M.

Using the notation a ⊕ b = max(a, b) and a ⊗ b = a + b for a, b ∈ R extended to
matrices and vectors in the same way as in linear algebra, then this system can be
written as

A ⊗ x = b. (1)

Any system of the form (1) is called ‘one-sided max-linear system’. Also, if the
requirement is that each product is to be produced on or before the completion times
b1, . . . , bm, then the starting times have to satisfy

max(ai1 + x1, . . . , ain + xn) ≤ bi for all i ∈ M,
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which can also be written as
A ⊗ x ≤ b. (2)

The system of inequalities (2) is called ‘one-sided max-linear system of inequalities’.
System of equation and inequalities were each discussed in the first papers that deal
with max-algebra [7, 10] and [12]. Also see [2, 4] and an excellent monograph [3].

Since one-sided systems of linear equations and systems of inequalities in max-
algebra have each received some attention in the past, we consider combination of
the two as one system and the aim is to discuss the existence and uniqueness of
solution to such system. We also present a method for solving max-linear programs
whose constraints are equations and inequalities.

We introduce the following notations

M = {1, 2, . . . , m},

N = {1, 2, . . . , n},

a−1 = −a, for all a ∈ R,

S(A, b) = {x ∈ R
n; A ⊗ x = b},

Mj =

{

k ∈ M ; bk ⊗ a−1

kj = min
i∈M

(

bi ⊗ a−1

ij

)

}

for all j ∈ N,

x̄j = min
i∈M

(bi ⊗ a−1

ij ) for all j ∈ N,

x̄ = (x̄1, . . . , x̄n)T ,

S(A, b,≤) = {x ∈ R
n; A ⊗ x ≤ b}.

The following theorems show how system of equation and inequalities can each be
solved.

Theorem 1.1. (Zimmermann [12]) Let A = (aij) ∈ R
m×n and b ∈ R

m. Then
x ∈ S(A, b) if and only if

(i) x ≤ x̄ and

(ii)
⋃

j∈Nx

Mj = M where Nx = {j ∈ N ; xj = x̄j}.

Theorem 1.2. (Zimmermann [12], Green [7]) x ∈ S(A, b,≤) if and only if x ≤ x̄.

The existence of a unique solution to the max-linear system A ⊗ x = b is described
by the following result.

Theorem 1.3. (Butkovič [4]) Let A = (aij) ∈ R
m×n and b ∈ R

m. Then S(A, b) =
{x̄} if and only if

(i)
⋃

j∈N

Mj = M and

(ii)
⋃

j∈N
′

Mj 6= M for any N ′ ⊆ N, N ′ 6= N.
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2. A SYSTEM OF EQUATIONS AND INEQUALITIES

Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k and d =

(d1, . . . , dr)
T ∈ R

r. A one-sided max-linear system with both equations and in-
equalities is of the form:

A ⊗ x = b

C ⊗ x ≤ d.
(3)

We shall use the following notation throughout this paper

R = {1, 2, . . . , r},

S(A, C, b, d) = {x ∈ R
n; A ⊗ x = b and C ⊗ x ≤ d},

S(C, d,≤) = {x ∈ R
n; C ⊗ x ≤ d},

¯̄xj = min
i∈R

(di ⊗ c−1

ij ) for all j ∈ N,

¯̄x = (¯̄x1, . . . , ¯̄xn)T ,

K = {1, . . . , k},

Kj =

{

k ∈ K; bk ⊗ a−1

kj = min
i∈K

(

bi ⊗ a−1

ij

)

}

for all j ∈ N,

x̄j = min
i∈K

(bi ⊗ a−1

ij ) for all j ∈ N,

x̄ = (x̄1, . . . , x̄n)T ,

J = {j ∈ N ; ¯̄xj ≥ x̄j} and

L = N \ J.

We also define the vector x̂ = (x̂1, x̂2, . . . , x̂n)T , where

x̂j ≡

{

x̄j if j ∈ J

¯̄xj if j ∈ L,
(4)

and Nx̂ = {j ∈ N ; x̂j = x̄j}.

Theorem 2.1. Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k

and d = (d1, . . . , dr)
T ∈ R

r. Then the following three statements are equivalent:

(i) S(A, C, b, d) 6= ∅

(ii) x̂ ∈ S(A, C, b, d)

(iii)
⋃

j∈J

Kj = K.

P r o o f . (i) =⇒ (ii). Let x ∈ S(A, C, b, d), therefore x ∈ S(A, b) and x ∈ S(C, d,≤).
Since x ∈ S(C, d,≤), it follows from Theorem 1.2 that x ≤ ¯̄x. Now that x ∈ S(A, b)
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and also x ∈ S(C, d,≤), we need to show that ¯̄xj ≥ x̄j for all j ∈ Nx (that is
Nx ⊆ J). Let j ∈ Nx then xj = x̄j . Since x ∈ S(C, d,≤) we have x ≤ ¯̄x and
therefore x̄j ≤ ¯̄xj thus j ∈ J . Hence, Nx ⊆ J and by Theorem 1.1

⋃

j∈J Kj = K.
This also proves (i) =⇒ (iii).

(iii) =⇒ (i). Suppose
⋃

j∈J Kj = K. Since x̂ ≤ ¯̄x we have x̂ ∈ S(C, d,≤). Also x̂ ≤
x̄ and Nx̂ ⊇ J gives

⋃

j∈Nx̂

Kj ⊇
⋃

j∈J Kj = K. Hence
⋃

j∈Nx̂

Kj = K, therefore
x̂ ∈ S(A, b) and x̂ ∈ S(C, d,≤). Hence x̂ ∈ S(A, C, b, d) (that is S(A, C, b, d) 6= ∅)
and this also proves (iii) =⇒ (ii). �

Theorem 2.2. Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k

and d = (d1, . . . , dr)
T ∈ R

r. Then x ∈ S(A, C, b, d) if and only if

(i) x ≤ x̂ and

(ii)
⋃

j∈Nx

Kj = K where Nx = {j ∈ N ; xj = x̄j}.

P r o o f . (=⇒) Let x ∈ S(A, C, b, d), then x ≤ x̄ and x ≤ ¯̄x. Since x̂ = x̄ ⊕
′

¯̄x we
have x ≤ x̂. Also, x ∈ S(A, C, b, d) implies that x ∈ S(C, d,≤). It follows from
Theorem 1.1 that

⋃

j∈Nx

Kj = K.

(⇐=) Suppose that x ≤ x̂ = x̄⊕
′

¯̄x and
⋃

j∈Nx
Kj = K. It follows from Theorem 1.1

that x ∈ S(A, b), also by Theorem 1.2 x ∈ S(C, d,≤). Thus x ∈ S(A, b) ∩ S(C, d,≤) =
S(A, C, b, d). �

We introduce the symbol |X | which stands for the number of elements of the
set X .

Lemma 2.3. Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k and

d = (d1, . . . , dr)
T ∈ R

r. If |S(A, C, b, d)| = 1 then |S(A, b)| = 1.

P r o o f . Suppose |S(A, C, b, d)| = 1, that is S(A, C, b, d) = {x} for an x ∈ R
n. Since

S(A, C, b, d) = {x} we have x ∈ S(A, b) and thus S(A, b) 6= ∅. For contradiction,
suppose |S(A, b)| > 1. We need to check the following two cases: (i) L 6= ∅ and (ii)
L = ∅ where L = N \ J , and show in each case that |S(A, C, b, d)| > 1.

Proof of Case (i), that is L 6= ∅: Suppose that L contains only one element
say n ∈ N i.e L = {n}. Since x ∈ S(A, C, b, d) it follows from Theorem 2.1that
x̂ ∈ S(A, C, b, d). That is x = x̂ = (x̄1, x̄2, . . . , x̄n−1, ¯̄xn) ∈ S(A, C, b, d). It can
also be seen that, ¯̄xn < x̄n and any vector of the form z = (x̄1, x̄2, . . . , x̄n−1, α) ∈
S(A, C, b, d), where α ≤ ¯̄xn. Hence |S(A, C, b, d)| > 1. If L contains more than one
element, then the proof is done in a similar way.

Proof of Case (ii), that is L = ∅ (J = N): Suppose that J = N . Then we have
x̂ = x̄ ≤ ¯̄x. Suppose without loss of generality that x, x

′

∈ S(A, b) such that x 6= x
′

.
Then x ≤ x̄ ≤ ¯̄x and also x

′

≤ x̄ ≤ ¯̄x. Thus, x, x
′

∈ S(C, d,≤). Consequently, x,
x

′

∈ S(A, C, b, d) and x 6= x
′

. Hence |S(A, C, b, d)| > 1. �
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Theorem 2.4. Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k

and d = (d1, . . . , dr)
T ∈ R

r. If |S(A, C, b, d)| = 1 then J = N .

P r o o f . Suppose |S(A, C, b, d)| = 1. It follows from Theorem 2.1 that
⋃

j∈J Kj =
K. Also, |S(A, C, b, d)| = 1 implies that |S(A, b)| = 1 (Lemma 2.3). Moreover,
|S(A, b)| = 1 implies that

⋃

j∈N Kj = K and
⋃

j∈N
′ Kj 6= K, N

′

⊆ N, N
′

6= N

(Theorem 1.3). Since J ⊆ N and
⋃

j∈J Kj = K, we have J = N . �

Corollary 2.5. Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k

and d = (d1, . . . , dr)
T ∈ R

r. If |S(A, C, b, d)| = 1 then S(A, C, b, d) = {x̄}.

P r o o f . The statement follows from Theorem 2.4 and Lemma 2.3. �

Corollary 2.6. Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k

and d = (d1, . . . , dr)
T ∈ R

k. Then, the following three statements are equivalent:

(i) |S(A, C, b, d)| = 1.

(ii) |S(A, b)| = 1 andJ = N.

(iii)
⋃

j∈J

Kj = Kand
⋃

j∈J
′

Kj 6= K, for every J
′

⊆ J, J
′

6= J, and J = N.

P r o o f . (i) =⇒ (ii) Follows from Lemma 2.3 and Theorem 2.4.

(ii) =⇒ (i) Let J = N , therefore x̄ ≤ ¯̄x and thus S(A, b) ⊆ S(C, d,≤). Therefore
we have S(A, C, b, d) = S(A, b) ∩ S(C, d,≤) = S(A, b). Hence |S(A, C, b, d)| = 1.

(ii) =⇒ (iii) Suppose that S(A, b) = {x} and J = N . It follows from Theorem
1.3 that

⋃

j∈N Kj = K and
⋃

j∈N
′ Kj 6= K, N

′

⊆ N, N
′

6= N . Since J = N the
statement now follows from Theorem 1.3.

(iii) =⇒ (ii) It is immediate that J = N and the statement now follows from
Theorem 1.3. �

Theorem 2.7. Let A = (aij) ∈ R
k×n, C = (cij) ∈ R

r×n, b = (b1, . . . , bk)T ∈ R
k

and d = (d1, . . . , dr)
T ∈ R

k. If |S(A, C, b, d)| > 1 then |S(A, C, b, d)| is infinite .

P r o o f . Suppose |S(A, C, b, d)| > 1. By Corollary 2.6 we have
⋃

j∈J Kj = K,
for some J ⊆ N , J 6= N(that is ∃j ∈ N such that x̄j > ¯̄xj). Now J ⊆ N and
⋃

j∈J Kj = K, Theorem 2.2 implies that any vector x = (x1, x2, . . . , xn)T of the
form

xj ≡

{

x̄j if j ∈ J

y ≤ ¯̄xj if j ∈ L

is in S(A, C, b, d), and the statement follows. �
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Remark 2.8. From Theorem 2.7 we can say that the number of solutions to the
one-sided system containing both equations and inequalities can only be 0, 1, or ∞.

The vector x̂ plays an important role in the solution of the one-sided system contain-
ing both equations and inequalities. This role is the same as that of the principal
solution x̄ to the one-sided max-linear system A ⊗ x = b, see [1] for more details.

3. MAX-LINEAR PROGRAM WITH EQUATION AND INEQUALITY CON-
STRAINTS

Suppose that the vector f = (f1, f2, . . . , fn)T ∈ R
n is given. The task of minimizing

[maximizing]the function f(x) = fT ⊗x = max(f1 +x1, f1 +x2 . . . , fn +xn) subject
to (3) is called max-linear program with one-sided equations and inequalities and
will be denoted by MLPmin

≤ and [MLPmax

≤ ]. We denote the sets of optimal solutions

by Smin(A, C, b, d) and Smax(A, C, b, d), respectively.

Lemma 3.1. (Butkovič and Aminu [5]) Suppose f ∈ R
n and let f(x) = fT ⊗ x be

defined on R
n. Then,

(i) f(x) is max-linear, i. e. f(λ ⊗ x ⊕ µ ⊗ y) = λ ⊗ f(x) ⊕ µ ⊗ f(x) for every
x, y ∈ R

n.

(ii) f(x) is isotone, i. e. f(x) ≤ f(y) for every x, y ∈ R
n, x ≤ y.

Note that it would be possible to convert equations to inequalities and conversely
but this would result in an increase of the number of constraints or variables and
thus increasing the computational complexity. The method we present here does
not require any new constraint or variable.

We denote by

(A ⊗ x)i = max
j∈N

(aij + xj).

A variable xj will be called active if xj = f(x), for some j ∈ N . Also, a vari-
able will be called active on the constraint equation if the value (A ⊗ x)i is at-
tained at the term xj respectively. It follows from Theorem 2.2 and Lemma 3.1
that x̂ ∈ Smax(A, C, b, d). We now present a polynomial algorithm which finds
x ∈ Smin(A, C, b, d) or recognizes that Smin(A, B, c, d) = ∅. Due to Theorem 2.1
either x̂ ∈ S(A, C, b, d) or S(A, C, b, d) = ∅. Therefore, we assume in the following
algorithm that S(A, C, b, d) 6= ∅ and also Smin(A, C, b, d) 6= ∅.

Theorem 3.2. The algorithm ONEMLP-EI is correct and its computational com-
plexity is O((k + r)n2).

P r o o f . The correctness follows from Theorem 2.2 and the computational com-
plexity is computed as follows. In Step 1 x̄ is O(kn), while ¯̄x, x̂ and Kj can be
determined in O(rn), O(k + r)n and O(kn) respectively. The loop 3-7 can be re-
peated at most n − 1 times, since the number of elements in J is at most n and in
Step 4 at least one element will be removed at a time. Step 3 is O(n), Step 6 is
O(kn) and Step 7 is O(n). Hence loop 3-7 is O(kn2). �
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Algorithm 1 ONEMLP-EI
(Max-linear program with one-sided equations and inequalities)

Input: f = (f1, f2, . . . , fn)T ∈ R
n, b = (b1, b2, . . . bk)T ∈ R

k, d = (d1, d2, . . . dr)
T ∈

R
r, A = (aij) ∈ Rk×n and C = (cij) ∈ Rr×n.

Output: x ∈ Smin(A, C, b, d).

1. Find x̄, ¯̄x, x̂ and Kj , j ∈ J ;J = {j ∈ N ; ¯̄xj ≥ x̄j}

2. x := x̂

3. H(x) := {j ∈ N ; fj + xj = f(x)}

4. J := J \ H(x)

5. If
⋃

j∈J

Kj 6= K

then stop (x ∈ Smin(A, C, b, d))

6. Set xj small enough (so that it is not active on any equation or inequality)
for every j ∈ H(x)

7. Go to 3

3.1. AN EXAMPLE

Consider the following system max-linear program in which f = (5, 6, 1, 4,−1)T ,

A =





3 8 4 0 1
0 6 2 2 1
0 1 −2 4 8



 , b =





7
5
7



 ,

C =





−1 2 −3 0 6
3 4 −2 2 1
1 3 −2 3 4



 and d =





5
5
6



 .

We now make a record run of Algorithm ONEMLP-EI. x̄ = (5,−1, 3, 3,−1)T , ¯̄x =
(2, 1, 7, 3,−1)T , x̂ = (2,−1, 3, 3,−1)T , J = {2, 3, 4, 5} and K2 = {1, 2}, K3 = {1, 2},
K4 = {2, 3} and K5 = {3}. x := x̂ = (2,−1, 3, 3,−1)T and H(x) = {1, 4} and
J 6⊆ H(x). We also have J := J \ H(x) = {2, 3, 5} and K2 ∪ K3 ∪ K5 = K. Then
set x1 = x4 = 10−4 (say) and x = (10−4,−1, 3, 10−4,−1)T . Now H(x) = {2} and
J := J \ H(x) = {3, 5}. Since K3 ∪ K5 = K set x2 = 10−4(say) and we have
x = (10−4, 10−4, 3, 10−4,−1)T . Now H(x) = {3} and J := J \ H(x) = {5}. Since
K5 6= K then we stop and an optimal solution is x = (10−4, 10−4, 3, 10−4,−1)T and
fmin = 4.
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4. MAX-LINEAR PROGRAM WITH TWO-SIDED CONSTRAINTS:
A SPECIAL CASE

Suppose c = (c1, c2, . . . , cm)T , d = (d1, d2, . . . , dm)T ∈ R
m, A = (aij) and B =

(bij) ∈ R
m×n are given matrices and vectors. The system

A ⊗ x ⊕ c = B ⊗ x ⊕ d, (5)

is called non-homogeneous two-sided max-linear system and the set of solutions of
this system will be denoted by S. Two-sided max-linear systems have been studied
in [6, 8, 9] and [11].

Optimization problems whose objective function is max-linear and constraint (5)
are called max-linear programs (MLP). Max-linear programs are studied in [5] and
solution methods for both minimization and maximization problems were developed.
The methods are proved to be pseudopolynomial if all entries are integer.

Consider max-linear programs with two-sided constraints (minimization), MLPmin

f(x) = fT ⊗ x −→ min

subject to

A ⊗ x ⊕ c = B ⊗ x ⊕ d,

(6)

where f = (f1, . . . , fn)T ∈ R
n, c = (c1, . . . , cm)T , d = (d1, . . . , dm)T ∈ R

m, A =
(aij) and B = (bij) ∈ R

m×n are given matrices and vectors. We introduce the
following:

y = (f1 ⊗ x1, f2 ⊗ x2, . . . , fn ⊗ xn)

= diag(f) ⊗ x,
(7)

diag(f) means a diagonal matrix whose diagonal elements are f1, f2, . . . , fn and off
diagonal elements are −∞. It therefore follows from (7) that

fT ⊗ x = 0T ⊗ y

⇐⇒ x = (f−1

1
⊗ y1, f

−1

2
⊗ y2, . . . , f

−1

n ⊗ yn)

= (diag(f))
−1 ⊗ y.

(8)

Hence, by substituting (7) and (8) into (6) we have

0T ⊗ y −→ min

subject to

A
′

⊗ y ⊕ c = B
′

⊗ y ⊕ d,

(9)

where 0T is transpose of the zero vector, A
′

= A ⊗ (diag(f))−1 and B
′

= B ⊗
(diag(f))−1.

Therefore we assume without loss of generality that f = 0 and hence (6) is
equivalent to

f(x) =
∑

j=1,...,n

⊕

xj −→ min

subject to

A ⊗ x ⊕ c = B ⊗ x ⊕ d.

(10)
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The set of feasible solutions for (10) will be denoted by S and the set of optimal
solutions by Smin. A vector is called constant if all its components are equal. That
is a vector x ∈ R

n is constant if x1 = x2 = · · · = xn. For any x ∈ S we define the
set Q(x) = {i ∈ M ; (A⊗x)i > ci}. We introduce the following notation of matrices.
Let A = (aij) ∈ Rm×n, 1 ≤ i1 < i2 < · · · < iq ≤ m and 1 ≤ j1 < j2 < · · · < jr ≤ n.
Then,

A

(

i1, i2, . . . , iq
j1, j2, . . . , jr

)

=









ai1j1ai1j2 . . . ai1jr

ai2j1ai2j2 . . . ai2jr

. . .

aiqj1aiqj2 . . . aiqjr









= A(Q, R),

where, Q = {i1, . . . , iq}, R = {j1, . . . , jr}. Similar notation is used for vectors
c(i1, . . . , ir) = (ci1 . . . cir

)T = c(R). Given MLPmin with c ≥ d, we define the
following sets

M= = {i ∈ M ; ci = di} and

M> = {i ∈ M ; ci > di}.

We also define the following matrices:

A= = A(M=, N), A> = A(M>, N)

B= = B(M=, N), B> = B(M>, N)

c= = c(M=), c> = c(M>).

(11)

An easily solvable case arises when there is a constant vector x ∈ S such that the
set Q(x) = ∅. This constant vector x satisfies the following equations and inequalities

A= ⊗ x ≤ c=

A> ⊗ x ≤ c>

B= ⊗ x ≤ c=

B> ⊗ x = c>,

(12)

where A=, A>, B=, B>, c= and c> are defined in (11). The one-sided system of
equation and inequalities (12) can be written as

G ⊗ x = p

H ⊗ x ≤ q,
(13)

where,

G = (B>), H =





A=

A>

B=



 ,

p = c> and q =





c=

c>

c=



 .

(14)

Recall that S(G, H, p, q) is the set of solutions for (13).
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Theorem 4.1. Let Q(x) = ∅ for some constant vector x = (α, . . . , α)T ∈ S. If
z ∈ Smin then z ∈ S(G, H, p, q).

P r o o f . Let x = (α, . . . , α)T ∈ S. Suppose Q(z) = ∅ and z ∈ Smin. This implies
that f(z) ≤ f(x) = α. Therefore we have, ∀j ∈ N , z ≤ α. Consequently, z ≤ x and
(A ⊗ z)i ≤ (A ⊗ x)i for all i ∈ M . Since, Q(z) = ∅ and z ∈ S(G, H, p, q). �

Corollary 4.2. If Q(x) = ∅ for some constant vector x ∈ S then Smin ⊆ Smin(G, H, p, q).

P r o o f . The statement follows from Theorem 4.1. �

(Received October 23, 2009)
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