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Abstract. Motivated by applications to transition semigroups, we introduce the notion
of a norming dual pair and study a Pettis-type integral on such pairs. In particular, we
establish a sufficient condition for integrability. We also introduce and study a class of
semigroups on such dual pairs which are an abstract version of transition semigroups. Using
our results, we give conditions ensuring that a semigroup consisting of kernel operators has
a Laplace transform which also consists of kernel operators. We also provide conditions
under which a semigroup is uniquely determined by its Laplace transform.
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1. Introduction

In a certain way, the Bochner integral is the appropriate generalization of the

Lebesgue integral to the Banach space setting. The criterion for Bochner integrability

is fairly easy: a strongly measurable function is Bochner integrable if and only if its

norm is integrable.

However, not for all applications this notion of integrability is suitable. In this

case, one can sometimes resort to the Pettis integral, see [23] or Section II.3 of [8],

which still yields a rich theory. But even the notion of weak measurability, which

is a prerequisite for Pettis integrability, is often too strong. Indeed, already in the

simple example of the shift semigroup on the space of bounded Borel measures on

the real line, the orbits of the semigroup are not weakly measurable, cf. [10].

The author was supported partially by the Deutsche Forschungsgesellschaft in the frame-
work of the DFG research training group 1100 at the University of Ulm and partially
by VICI subsidy 639.033.604 in the ‘Vernieuwingsimpuls’ programme of the Netherlands
Organization for Scientific Research (NWO).
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It is thus natural to replace in the definition of the Pettis integral the dual X∗

of a Banach space X with some subset Y of X∗. This leads to the notion of Y -

integrability, see [22]. However, except for the special cases of the Pettis integral

and the weak∗-integral, this notion of integrability has not been the subject of broad

investigation.

In Section 4, we will study Y -integrability in the case where Y is a norm-closed

subspace of X∗ which is norming for X . In particular, we prove a sufficient condition

for Y -integrability (Theorem 4.4). Our main assumption in that theorem is the

existence of a quasi-complete, consistent topology τ on X .

It should be noted that the Y -integral actually coincides with the Pettis integral

on the locally convex space (X, τ), for any locally convex topology τ on X such that

(X, τ)′ = Y . However, in contrast to conditions for Pettis integrability on locally

convex spaces, see [13], our condition is more in the spirit of the characterization of

Bochner integrability and the proof makes extensive use of the norm topologies on

X and Y .

At first sight, the notion of Y -integrability seems quite technical and arbitrary

since there is no canonical choice for the space Y . This might be the reason why

this notion of integrability has not been studied in more detail so far. However,

in applications to transition semigroups, it is quite clear which space Y should be

chosen. This example serves both as a motivation and as an application of our

theory.

We recall that associated to a Markov process (Xt)t>0, taking values in a measur-

able space (E, Σ), there are, in fact, two semigroups which both have a stochastic

interpretation and which are connected to each other by duality. Namely, there is a

semigroup T on the space Bb(E) of all bounded measurable functions on E, used to

compute conditional expectations, and another semigroup T
′ acting on M (E), the

space of all bounded measures on E, which gives the distributions of the random

variables Xt. This duality relation actually characterizes the operators in T as ker-

nel operators, cf. [21] and Section 3. Furthermore, this duality relation suggests to

replace the space Bb(E)∗, which is usually quite large, withM (E) for the purpose of

integrating the orbits of T and, similarly, to replaceM (E)∗ with Bb(E) to integrate

the orbits of T′.

In applications, it is also important to replace Bb(E) by some closed subspace X

of Bb(E) which is invariant under the semigroup. For example, if E is a topological

space, one wants to replace Bb(E) with X = Cb(E). If E is additionally locally

compact, one wants to work on the space X = C0(E). This is the classical example

of a Feller semigroup. In order to treat also these situations, we shall work on a

general norming dual pair (X, Y ), see Definition 2.1, and introduce in Section 5 the

abstract notion of ‘semigroups on norming dual pairs’.
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We call such a semigroup ‘integrable’ if it is possible to compute the Laplace trans-

form in an appropriate way and obtain again operators which respect the duality.

Jefferies [15], [16] studied weakly integrable semigroups on locally convex spaces and

made similar assumptions on the semigroup. However, he does not assume that

the Laplace transform respects the duality. In Theorem 5.8, we will show that this

assumption—actually it suffices to consider the Laplace integral at a single point—

is equivalent to the requirement that all orbits of T are locally Y -integrable and

all orbits of T′ are locally X-integrable. Using the results of Section 4, we study

integrable transition semigroups on the space Cb(E) in Section 6.

In order to treat transition semigroups on Cb(E), several approaches have been

proposed in literature. We mention the theory of weakly continuous semigroups

of Cerrai [6], the theory of bi-continuous semigroups of Kühnemund [18], see also

[9], [19] for applications in the context of transition semigroups, and the theory

of π-semigroups by Priola [25]. It should be noted that in these approaches ad-

ditional assumptions, in particular continuity and equicontinuity assumptions, are

made which ensure that a Riemann integral can be used to compute the Laplace

transform. Even though integrability is not an issue in these approaches, the ques-

tion remains in which sense the Laplace transform determines the semigroup. More

precisely: is it possible that there exists another semigroup (not necessarily satisfy-

ing the continuity and equicontinuity assumptions) which yields the same Laplace

transform? This is not the case as our uniqueness theorem (Theorem 5.4) shows.

It is also possible to interpret the continuity and equicontinuity assumptions in

the articles mentioned above from our ‘dual point of view’. This yields interesting

new results for such semigroups which are presented elsewhere [20].

Notation. If (E, Σ) is a measurable space, then Bb(E) denotes the space of

all bounded, measurable functions f : E → C, endowed with the supremum norm.

ByM (E) we denote the space of all complex measures on (E, Σ). The total variation

of a measure µ is defined by

|µ|(A) = sup
Z

∑

B∈Z

|µ(B)|,

where the supremum is taken over all partitions Z of A into finitely many, dis-

joint, measurable sets. Endowed with the total variation norm ‖µ‖ := |µ|(E), the

space M (E) is a Banach space.

Now suppose that E is a topological space. Then Cb(E) denotes the Banach space

of all bounded, continuous functions f : E → C. The Borel σ-algebra of E is denoted

byB(E). If we speak about measures or measurable functions on a topological space,

this is always to be understood with respect to the Borel σ-algebra. A positive
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measure µ ∈ M (E) is a Radon measure if µ(A) = sup{µ(K) : K ⊂ A, K compact}

for all A ∈ B(E). An arbitrary µ ∈ M (E) is called a Radon measure if |µ| is a

Radon measure. We denote the space of all Radon measures on E by M0(E). This

is a closed subspace of M (E).

By bA we denote the characteristic function of a set A. For a complex number z,

sgn z denotes the signum of z, i.e. sgn z := |z|−1z if z 6= 0 and sgn 0 := 0. The Dirac

measure at a point x is denoted by δx. If E is a metric space, then B(x, r) denotes

the open ball of radius r centered at x and B(x, r) denotes the closure of that ball.

If X is a Banach space, then X∗ denotes the norm dual of X and 〈·, ·〉∗ denotes the

canonical duality between X and X∗.

2. Norming dual pairs

Definition 2.1. Let X and Y be nontrivial Banach spaces and let 〈·, ·〉 be a

duality pairing between X and Y . Then (X, Y, 〈·, ·〉) is called a norming dual pair, if

‖x‖X = sup{|〈x, y〉| : y ∈ Y, ‖y‖Y 6 1}

and

‖y‖Y = sup{|〈x, y〉| : x ∈ X, ‖x‖X 6 1}.

We will write (X, Y ) for a norming dual pair if the duality pairing is understood.

Note that if (X, Y ) is a norming dual pair, then so is (Y, X).

As we have done already in the introduction, we will frequently consider Y as

a closed subspace of X∗ via 〈x, y〉∗ = 〈x, y〉. With this interpretation, (X, Y ) is

a norming dual pair if and only if Y is a closed subspace of X∗ which is norming

for X in the sense of [3]. For Y ⊂ X∗ to be norming for X it is necessary that Y

is weak∗-dense in X∗. However, not every weak∗-dense, closed subspace of X∗ is

norming, see [7].

Example 2.2. If X is a Banach space, then (X, X∗), and thus by symmetry also

(X∗, X), is a norming dual pair with the canonical duality 〈·, ·〉∗. If X is reflexive,

then Y = X∗ is the only closed subspace of X∗ such that (X, Y ) is a norming dual

pair. Indeed, if Y ⊂ X∗ is norm-closed, it follows from the Hahn-Banach theorem

that Y is weakly closed and hence, by reflexivity, weak∗-closed. Since Y is weak∗-

dense, it follows that Y = X∗.

Example 2.3. Let (E, Σ) be a measurable space. Then (Bb(E), M (E)) is a

norming dual pair with respect to the duality 〈·, ·〉, given by

(2.1) 〈f, µ〉 :=

∫

E

f dµ.
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P r o o f. We clearly have |
∫

f dµ| 6 ‖f‖∞ · ‖µ‖. Considering Dirac measures,

we obtain ‖f‖∞ = sup{|〈f, µ〉| : µ ∈ M (E), ‖µ‖ 6 1}. Now let µ ∈ M (E). If

Z is a partition of E into finitely many, pairwise disjoint, measurable sets, then

fZ :=
∑

A∈Z

sgnµ(A) · bA is a measurable function of norm at most 1. Furthermore,

|〈fZ , µ〉| =
∑

A∈Z

|µ(A)|. Taking the supremum over all such partitions Z , it follows

that (Bb(E), M (E)) is a norming dual pair. �

Example 2.4. Let E be a completely regular Hausdorff space. Then, endowed

with the duality (2.1), (Cb(E), M0(E)) is a norming dual pair.

For a complete, separable metric space E, the proof of this statement is implicitly

contained in the proof of Theorem 2.2 of [25]. We give a proof in the general case.

P r o o f. It suffices to show that ‖µ‖ > sup{|〈f, µ〉| : f ∈ Cb(E), ‖f‖∞ 6 1}.

Let µ ∈ M0(E) be fixed and let Z = {A1, . . . , An} be a finite partition of E into

measurable sets. Since µ is a Radon measure, given ε > 0, we find compact sets

Ck ⊂ Ak for k = 1, . . . , n such that |µ(Ak) − µ(Ck)| 6 |µ|(Ak \ Ck) 6 ε/n. As E is

completely regular, there exists a continuous function f : E → C such that ‖f‖∞ 6 1

and f |Ck
≡ sgnµ(Ck). Now

∣

∣

∣

∣

∫

f dµ

∣

∣

∣

∣

>

n
∑

k=1

|µ(Ck)| −
n

∑

k=1

|µ|(Ak \ Ck) >

n
∑

k=1

|µ(Ak)| − 2ε

follows from the reverse triangle inequality. As ε is arbitrary,
n
∑

k=1

|µ(Ak)| 6

sup{|〈f, µ〉| : f ∈ Cb(E), ‖f‖∞ 6 1}. Taking the supremum over all such par-

titions Z of E, the claim follows. �

In what follows, we will be interested in locally convex topologies τ on X which

are consistent (with the duality). By this we mean that (X, τ)′ = Y , i.e. every τ -

continuous linear functional ϕ on X is of the form ϕ(x) = 〈x, y〉 for some y ∈ Y . By

the Mackey-Arens theorem, see [17, 21.4 (2)], a consistent topology is finer than the

weak topology σ(X, Y ) and coarser than the Mackey topology µ(X, Y ). To simplify

notation, we will write σ for σ(X, Y ) and σ′ for the σ(Y, X) topology on Y . We will

write ⇀ or ⇀′ to indicate convergence with respect to σ or σ′, respectively. We will

use the name of a topology as a label or prefix to topological notions to indicate that

it is to be understood with respect to that topology. Without label or prefix, such

notions are always understood with respect to the norm topology.

We now characterize bounded subsets in a norming dual pair.

Proposition 2.5. Let (X, Y ) be a norming dual pair and τ a consistent topology

on X . For a subset M ⊂ X , the following conditions are equivalent.
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(i) M is norm-bounded;

(ii) M is σ-bounded;

(iii) M is τ -bounded.

P r o o f. (i) ⇒ (ii). As M is σ-bounded iff sup
x∈M

|〈x, y〉| < ∞ for all y ∈ Y , this

implication is trivial.

(ii) ⇒ (i). If M is σ-bounded, the uniform boundedness principle in Y ∗ implies

that sup
x∈M

‖x‖ = sup
x∈M

‖x‖Y ∗ is bounded.

(ii) ⇔ (iii). See § 20.11 (7) in [17]. �

3. Operators on norming dual pairs

If τ is a locally convex topology on X , we denote the algebra of τ -continuous linear

operators on X by L(X, τ). For τ = τ‖·‖, where τ‖·‖ is the norm topology, we merely

write L(X) instead of L(X, τ‖·‖). For T ∈ L(X), we denote its norm-adjoint by T ∗.

If T ∈ L(X, σ), then we denote its σ-adjoint by T ′.

Proposition 3.1. Let (X, Y ) be a norming dual pair.

(i) T ∈ L(X, σ) if and only if T ∈ L(X) and T ∗Y ⊂ Y . In this case, T ′ = T ∗|Y .

Furthermore, ‖T ‖L(X) = ‖T ′‖L(Y ).

(ii) L(X, σ) is closed in L(X) with respect to the operator norm.

P r o o f. (i) If T is σ-continuous, then T maps σ-bounded sets into σ-bounded

sets. By Proposition 2.5, T is a bounded operator on X , hence T ∈ L(X). Fur-

thermore, as T is σ-continuous, it has a σ-adjoint S. But for x ∈ X and y ∈ Y

we have 〈Tx, y〉 = 〈x, Sy〉 = 〈x, T ∗y〉∗. It follows that T ∗y = Sy ∈ Y , and thus T ∗

leaves Y invariant. Conversely, assume that T ∈ L(X) and T ∗Y ⊂ Y . Then we

have 〈Tx, y〉 = 〈x, T ∗y〉 for all x ∈ X and y ∈ Y . Since T ∗y ∈ Y by assumption,

it follows that the map x 7→ 〈Tx, y〉 is σ-continuous and thus, since y is arbitrary,

T ∈ L(X, σ). Finally, we have

‖T ′‖L(Y ) = sup
y

sup
x
|〈x, T ′y〉| = sup

x
sup

y
|〈Tx, y〉| = ‖T ‖L(X),

where all suprema are taken over the elements of norm at most 1.

(ii) Let (Tn) ⊂ L(X, σ) be given with Tn → T ∈ L(X) in the operator norm.

By (i), it suffices to prove T ∗Y ⊂ Y . Let y ∈ Y be given. By assumption, T ′
ny ∈ Y .

Furthermore,

‖T ′
ny − T ′

my‖ = sup
‖x‖61

|〈Tnx − Tmx, y〉| 6 ‖Tn − Tm‖ · ‖y‖.
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Thus T ′
ny is a Cauchy sequence in Y and hence converges to some ỹ ∈ Y . Now for

arbitrary x ∈ X we have 〈Tx, y〉 = lim〈x, T ′
ny〉 = 〈x, ỹ〉, proving that T ∗y = ỹ ∈ X .

This completes the proof. �

In the study of transition semigroups, one is mainly interested in positive contrac-

tion operators which are kernel operators, as they give the transition probabilities

for a Markov process. Let us recall the following definition.

Definition 3.2. Let (E, Σ) be a measurable space. A bounded kernel on E is a

mapping k : E × Σ → C such that

(i) k(x, ·) is a complex measure on (E, Σ) for all x ∈ E;

(ii) k(·, A) is measurable for all A ∈ Σ;

(iii) sup
x∈E

|k|(x, E) < ∞. Here, |k|(x, ·) is the total variation of k(x, ·).

A linear operator T on a closed subspace X of Bb(E) is called a kernel operator

(on X) if there exists a bounded kernel k on E such that

(3.1) (Tf)(x) =

∫

E

f(y)k(x, dy), ∀ f ∈ X.

We now prove that for many spaces X ⊂ Bb(E) a kernel operator on X is the

same as a σ-continuous operator for the norming dual pair (X, M ). We need some

preparation.

If S is any set of functions, we denote by σ(S) the σ-algebra generated by S,

i.e. the smallest σ-algebra such that every f ∈ S is measurable with respect to this

σ-algebra. If S is a Stonean vector lattice, i.e. a vector lattice of functions such that

if f ∈ S is real then also inf{f, b} ∈ S, then the system

E (S) := {A : ∃un ∈ S such that 0 6 un ↑ bA pointwise}

generates σ(S) and is closed under finite intersections, see [4, Lemma 39.4].

Definition 3.3. Let (E, Σ) be a measurable space and X ⊂ Bb(E) a ‖ · ‖∞-

closed subspace of Bb(E) which is a Stonean vector lattice. Further, let M(0)(E)

denote either M (E) or M0(E). In the latter case we additionally assume that E is

a completely regular Hausdorff space. Then X is called anM(0)(E)-transition space

for E if

(i) (X, M(0)(E)) is a norming dual pair (with the duality (2.1));

(ii) σ(X) = Σ;

(iii) there exists a sequence (fn)n∈N ⊂ X such that 0 6 fn ↑ b pointwise.
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Example 3.4. For every measurable space (E, Σ), the space Bb(E) is anM (E)-

transition space for E. If E is a metric space, then Cb(E) is an M0(E)-transition

space for E. Indeed, E (Cb(E)) contains every open Fσ-set and hence, since E is a

metric space, every open set. Thus σ(Cb(E)) = B(E).

The following is a generalization of Theorem 4.8.1 in [12].

Proposition 3.5. Let (E, Σ) be a measurable space and let X be an M(0)(E)-

transition space for E. Denote by σ the σ(X, M(0)(E))-topology. Consider the

following statements:

(i) T ∈ L(X, σ);

(ii) T is a kernel operator on X .

Then (i)⇒ (ii). In this case, T has a unique extension to a kernel operator on Bb(E).

If M(0)(E) = M (E), then also (ii) ⇒ (i).

P r o o f. (i) ⇒ (ii). If T ∈ L(X, σ), then k(x, ·) := T ′δx ∈ M(0)(E). By

definition, we have (Tf)(x) = 〈Tf, δx〉 = 〈f, T ′δx〉 =
∫

f(y)k(x, dy). Furthermore,

sup
x

|k|(x, E) 6 ‖T ‖ < ∞. It remains to prove that k(·, A) is measurable for any

A ∈ Σ. Denote the collection of the sets A for which this is true by G . Then

E (X) ⊂ G . Indeed, if A ∈ E (X), then there exists a sequence (un)n∈N ⊂ X with

0 6 un ↑ bA. Now the dominated convergence theorem yields

k(x, A) = 〈bA, T ′δx〉 = lim
n→∞

〈un, T ′δx〉 = lim
n→∞

(Tun)(x)

for all x ∈ E. Hence k(·, A) is measurable as the pointwise limit of measurable

functions. Using the properties of a bounded kernel, it is easy to see that G is a

Dynkin system. Now G = Σ follows from the Dynkin π-λ theorem since E (X) is

closed under finite intersections.

(ii) ⇒ (i). By hypothesis, there exists a kernel k such that (3.1) holds for all

f ∈ X . However, the right hand side of (3.1) also defines a bounded linear operator

on Bb(E) (which we still denote by T ). We may also define an operator S onM (E)

by

(Sµ)(A) :=

∫

E

k(x, A) dµ(x).

It is easy to see that S ∈ L(M (E)). However, for f = bA we have

〈Tf, µ〉 =

∫

E

k(x, A) dµ = 〈f, Sµ〉 ∀µ ∈ M (E).

Using linearity and approximation, we see that the above equation holds for arbitrary

f ∈ Bb(E). This proves T ∗M ⊂ M and hence (i) by Proposition 3.1. �
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4. A variant of the Pettis integral

Throughout this section we fix a norming dual pair (X, Y ) and a σ-finite measure

space (Ω, F , m).

Definition 4.1. A function f : Ω → X is called scalarly Y -measurable (scalarly

Y -integrable), if the function ω 7→ 〈f(ω), y〉 is measurable (integrable) for every

y ∈ Y .

As in the proof of Lemma 1 in Section II.3 of [8], one sees that if f is scalarly

Y -integrable, then for any A ∈ F the linear functional ϕA :=
[

y 7→
∫

A〈f(ω), y〉dm
]

is norm continuous and hence an element of Y ∗.

Definition 4.2. If f is scalarly Y -integrable, then the element ϕA of Y
∗ is called

the Y -integral of f over A. We write
∫

A f dm := ϕA. If ϕA ∈ X ⊂ Y ∗ for every

A ∈ F , we say that f is Y -integrable.

If f is Y -integrable, then, by definition, we may interchange integration and appli-

cation of linear functionals in Y . The following lemma shows that the same is true

for linear operators in L(X, σ). We omit its easy proof.

Lemma 4.3. Let f : Ω → X be scalarly Y -integrable such that
∫

Ω
f dm ∈ X.

Then for T ∈ L(X, σ), the function Tf is scalarly Y -integrable and we have
∫

Ω
Tf dm = T

∫

Ω
f dm ∈ X .

Our main result about Y -integrability is the following.

Theorem 4.4. Assume that there exists a consistent topology τ on X such that

(X, τ) is quasi-complete, i.e., τ is complete on every bounded closed subset of (X, τ).

Then every almost τ -separably valued, scalarly Y -integrable function f : Ω → X such

that ‖f‖ is majorized by an integrable function, is Y -integrable. Here f is called

almost τ -separably valued if there exists a null set N and a τ -separable subspace X0

of X such that f(Ω \ N) ⊂ X0.

Remark 4.5. As a consequence of [17, §18.4 (4)], there exists a quasi-complete

consistent topology τ on X if and only if µ(X, Y ) is quasi-complete.

We first prove some preliminary lemmas which will also be used independently of

the theorem.

Lemma 4.6. Assume that f : Ω → X is scalarly Y -measurable and that ‖f‖ is

majorized by an integrable function g. Then f is scalarly Y -integrable and the Y -

integral of f over any A ∈ F is sequentially σ′-continuous and satisfies the estimate

(4.1)

∥

∥

∥

∥

∫

A

f dm

∥

∥

∥

∥

Y ∗

6

∫

A

g(ω) dm(ω).
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P r o o f. As f is scalarly Y -measurable and satisfies the estimate |〈f(·), y〉| 6

g(·)‖y‖, it follows that f is scalarly Y -integrable. Integrating this inequality and

taking the supremum over y with ‖y‖ 6 1, the estimate (4.1) follows. Now, let

(yn)n∈N be a sequence in Y and assume yn ⇀′ y ∈ Y . Then 〈f, yn〉 → 〈f, y〉 pointwise

on Ω. By Proposition 2.5, ‖yn‖ is bounded, say byM . Hence |〈f, yn〉| 6 M ·g. Thus

ϕA is sequentially σ′-continuous by the dominated convergence theorem. �

Lemma 4.7. Let f : Ω → X be a scalarly Y -measurable function such that

‖f‖ 6 g a.e. for some integrable function g. Furthermore, let (αn)n∈N be a bounded

sequence in L∞(m) converging pointwise a.e. to α ∈ L∞(m). Then
∫

Ω
αnf dm con-

verges to
∫

Ω αf dm with respect to the norm in Y ∗. In particular, A 7→
∫

A f dm

defines a countably additive vector measure with values in Y ∗.

P r o o f. By (4.1) we have

∥

∥

∥

∥

∫

Ω

αnf dm −

∫

Ω

αf dm

∥

∥

∥

∥

Y ∗

6

∫

Ω

|αn − α|g dm → 0,

by the dominated convergence. The addendum follows by applying this to αn :=

b⋃n

1
Ak
and α := b⋃∞

1
Ak
for some sequence (Ak)k∈N ⊂ F of pairwise disjoint sets.

�

P r o o f of Theorem 4.4. We first make some simplifying assumptions.

We assume without loss of generality that the set N is empty, otherwise changing

f on a set of measure 0. We may furthermore assume that (X, τ) is separable. If

this is not the case, we replace X by X1 := X0
τ
and Y by Y/X⊥

1 . Since the norm

topology is finer than τ , the space X1 is norm closed in X and hence a Banach

space. Furthermore, (X1, τ |X1
) is a quasi-complete locally convex space and, as a

consequence of the Hahn-Banach theorem, we have (X1, τ |X1
)′ = Y/X⊥

1 .

Last, we may assume that ‖f‖ is bounded. Indeed, assuming that ‖f‖ 6 g ∈

L1(m), we may consider fn := bAn
f , where An := {g 6 n} ∈ F . If we know that

the Y -integral of fn over some set A belongs to X for every n ∈ N, then so does the

Y -integral of f over the set A by Lemma 4.7 and the closedness of X in Y ∗.

Denote the completion of (X, τ) by (X̃, τ̃ ). Then (X̃, τ̃ ) is locally convex and

separable. Furthermore, by [17, §21.4 (5)], (X̃, τ̃)′ = Y .

Now let A ∈ F with (strictly) positive finite measure be given. By Lemma 4.6,

the Y -integral ϕA ∈ Y ∗ of f over A is sequentially σ′-continuous and hence in

particular sequentially σ(Y, X̃)-continuous. Since (X̃, τ̃ ) is complete and separable,

ϕA is σ(Y, X̃)-continuous by [17, §21.9 (5)] and thus ϕA ∈ (Y, σ(Y, X̃))′ = X̃.

Now consider B0 = co{f(ω) : ω ∈ Ω}. Then B0 is convex and bounded and hence

so is its τ̃ -closure B. Since (X, τ) is quasi-complete, B ⊂ X .
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We claim that m(A)−1ϕA ∈ B. Indeed, if this was not the case, then, by the

Hahn-Banach theorem, there would exist ε > 0 and y ∈ Y = (X̃, τ̃ )′ such that

Re〈f(ω), y〉 + ε 6 m(A)−1 Re〈ϕA, y〉 for every ω ∈ Ω. Integrating this equation

yields Re〈ϕA, y〉 + εm(A) 6 Re〈ϕA, y〉 – a contradiction since m(A) > 0. It follows

that ϕA ∈ X .

For a general set A of positive measure, approximate A by a sequence (An)n∈N

with 0 < m(An) < ∞ and use Lemma 4.7. �

Let us briefly discuss the assumptions of Theorem 4.4.

The case Y = X∗. A function f : Ω → X is X∗-integrable iff it is Pettis integrable

in the classical sense. Note that the norm topology on X is a complete, consistent

topology. Furthermore, the assumption that f is scalarly X∗-measurable and almost

‖·‖-separably valued implies that f is strongly measurable by the Pettis measurability

theorem [8, II.1, Theorem 2]. Thus in this case, if f satisfies the hypothesis of

Theorem 4.4, then f is Bochner integrable.

In the Pettis measurability theorem the assumption of scalar X∗-measurability

can actually be weakened to scalar Y -measurability for any norming subset Y ⊂ X∗,

see Corollary 4 in II.1 of [8]. We note that since we only require the range of f to be

almost τ -separable in Theorem 4.4, in the case of an arbitrary Y we do not implicitly

require that f is strongly measurable.

The case X = Y ∗. In this case, the Y -integral coincides with the weak∗-integral.

Hence every scalarly Y -integrable function f : Ω → Y ∗ is Y -integrable. We note that

since closed, bounded balls in Y ∗ are weak∗-compact, the weak∗-topology is quasi-

complete. We also note that in this case the separability assumption in Theorem 4.4

is not needed.

The above examples have been extensively studied in literature. The following is

our basic example of a norming dual pair on which a complete, consistent topology

exists.

Example 4.8. Let E be a completely regular Hausdorff space and consider the

norming dual pair (Cb(E), M0(E)). Then, by Section 7.6 of [14], the strict topology

is a consistent topology on X . It is complete if and only if C(E), the space of all

continuous functions on E, is complete with respect to the compact-open topology,

see Section 3.6 of [14]. If E is metrizable or locally compact, this is certainly the

case.

The question arises whether on every norming dual pair there exists a quasi-

complete, consistent topology. This question was answered to the negative by Bonet

and Cascales [5]. In Section 6 we will give a concrete example that the assertion

of Theorem 4.4 may fail without the assumption that there exists a quasi-complete

consistent topology.
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The following result is useful in establishing Y -integrability.

Proposition 4.9. Let E be a generator of F which is closed under finite inter-

sections and let f : Ω → X be a scalarly Y -measurable function with the following

properties:

(i) there exists a measurable function g such that ‖f‖ 6 g;

(ii) there exists a sequence (Ωn)n∈N ⊂ F with m(Ωn) < ∞ for all n ∈ N and
⋃

n∈N

Ωn = Ω such that the function g from (i) satisfies gbΩn
∈ L1(m) for all

n ∈ N;

(iii) xA :=
∫

A
f dm ∈ X for every A ∈ E ∪ {Ωn : n ∈ N}.

Then for every measurable function α : Ω → C with |α|g ∈ L1(m), the function αf

is Y -integrable.

P r o o f. By Lemma 4.6, αf is scalarly Y -integrable on Ω. It suffices to prove

that its Y -integral over Ω belongs to X , as we can clearly replace α by α · bA for any

A ∈ F . We proceed in three steps.

Step 1. Let n ∈ N be arbitrary and let Dn denote the collection of all sets A ∈ F

such that
∫

A∩Ωn

f dm ∈ X . By assumption (iii), E ⊂ Dn. Using Lemma 4.7, it is

easy to see that Dn is a Dynkin system. Hence Dn = F by Dynkin’s π-λ theorem.

Step 2. Now we prove the assertion for a simple function α. By Step 1 and linearity,

the Y -integral of αf over Ωn is an element of X . By Lemma 4.7,
∫

Ωn

αf dm →
∫

Ω
αf dm in Y ∗, hence

∫

Ω
αf dm ∈ X .

Step 3. Now let α be arbitrary. Then there exists a sequence of step functions

(αk)k∈N such that |αk| 6 |α| and αk → α pointwise. By Step 2,
∫

Ω αkf dm ∈ X for

every k. Again by Lemma 4.7 it follows that
∫

Ω
αf dm ∈ X . �

5. Semigroups and their Laplace transforms

Definition 5.1. Let (X, Y ) be a norming dual pair. A semigroup on (X, Y ) is

a family of operators T = (T (t))t>0 ⊂ L(X, σ) such that T (t + s) = T (t)T (s) for

all t, s > 0 and T (0) = idX . A semigroup is called exponentially bounded if there

exist M > 1 and ω ∈ R such that ‖T (t)‖ 6 Meωt. In this case we say that T is of

type (M, ω). A semigroup of some type (M, ω) is called integrable if t 7→ 〈T (t)x, y〉

is measurable for all x ∈ X and y ∈ Y and there exist a complex number λ0 with

Re λ0 > ω and an operator R0 ∈ L(X, σ) such that

(5.1) 〈R0x, y〉 =

∫ ∞

0

e−λ0t〈T (t)x, y〉dt, ∀x ∈ X, y ∈ Y.
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Two remarks are in order. Let us first note that for a fixed λ0 there is at most one

operator R0 ∈ L(X, σ) such that (5.1) is satisfied. Secondly, note that the definition

of an ‘integrable semigroup’ is symmetric, i.e., if T is an integrable semigroup on

(X, Y ), then the σ-adjoint semigroup T
′ is an integrable semigroup on (Y, X). To

see this, note that if R0 ∈ L(X, σ), then R′
0 ∈ L(Y, σ′). Furthermore, we have

〈x, R′
0y〉 =

∫ ∞

0
e−λ0t〈x, T (t)′y〉dt for all x ∈ X and y ∈ Y .

We will see in a moment that if T is an integrable semigroup, then for every λ

with Re λ > ω there exists an operator R(λ) ∈ L(X, σ) such that

(5.2) 〈R(λ)x, y〉 =

∫ ∞

0

e−λt〈T (t)x, y〉dt, ∀x ∈ X, y ∈ Y.

Clearly, R(λ0) = R0. The family R := (R(λ))Re λ>ω is called the Laplace transform

of T.

It is well known that the Laplace transform of a strongly continuous semigroup is

the resolvent of its generator. Since we did not impose continuity assumptions, we

cannot expect the Laplace transform to be injective. In particular, it need not be the

resolvent of an operator. However, the following proposition shows that, similarly

to [1], the Laplace transform of an integrable semigroup is a pseudo-resolvent.

We will use freely some results about pseudo-resolvents and multivalued (m.v. for

short) operators. We refer the reader to [1] or Appendix A of [11] for more informa-

tion.

Proposition 5.2. Let T be an integrable semigroup of type (M, ω). Then there

exists a pseudo-resolvent (R(λ))Re λ>ω ⊂ L(X, σ) such that (5.2) holds for every

Re λ > ω. Furthermore, every R(λ) commutes with every T (t) and for Re λ > ω and

k ∈ N we have ‖(Reλ − ω)kR(λ)k‖ 6 M .

P r o o f. By the definition of an ‘integrable semigroup’ there exist λ0 ∈ {Reλ >

ω} and R0 ∈ L(X, σ) such that (5.1) holds. Define the m.v. operator A by A :=

λ0 − R−1
0 and put R(λ) := (λ − A )−1. Now define

Ω0 := {λ : Re λ > ω, R(λ) ∈ L(X, σ) and (5.2) holds}.

Then we have λ0 ∈ Ω0 ⊂ Ω := {λ : Re λ > ω, R(λ) ∈ L(X)}. By [11, Proposition

A.2.3], the L(X)-valued map R : Ω → L(X) defines a pseudo-resolvent; in particular,

Ω is open and R is holomorphic. More precisely, if λ ∈ Ω and |λ − µ| < ‖R(λ)‖−1,

then µ ∈ Ω and

(5.3) R(µ) =
∞
∑

k=0

(λ − µ)kR(λ)k+1.
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Now fix λ ∈ Ω0 and µ ∈ B(λ, ‖R(λ)‖−1). Equation (5.3) and Proposition 3.1 (ii)

imply that R(µ) ∈ L(X, σ). Now note that for any ν ∈ Ω0, x ∈ X and y ∈ Y we

have

〈R(ν)kx, y〉 =

∫

(0,∞)k

e−ν(t1+...+tk)〈T (t1 + . . . + tk)x, y〉dt1 . . . dtk(5.4)

=

∫ ∞

0

tk−1

(k − 1)!
e−νt〈T (t)x, y〉dt.

Here the first equality follows from the semigroup law and the second equality is

derived from the fact that the k-fold convolution of exponential distributions is a

gamma distribution. Thus since |λ − µ| < ‖R(λ)‖−1, we have

〈R(µ)x, y〉 =

∞
∑

k=0

〈(λ − µ)kR(λ)k+1x, y〉

=

∫ ∞

0

∞
∑

k=0

((λ − µ)t)k

k!
e−λt〈T (t)x, y〉dt

=

∫ ∞

0

e−µt〈T (t)x, y〉dt

for all x ∈ X , y ∈ Y . Hence µ ∈ Ω0. Since λ ∈ Ω0 is arbitrary, it follows that Ω0 is

an open subset of Ω.

Now assume that (λn)n∈N is a sequence in Ω0 converging to some λ ∈ Ω. Then

R(λn) → R(λ) in the operator norm and hence R(λ) ∈ L(X, σ) by Proposi-

tion 3.1 (ii). Fix γ > ω such that Re λn > γ for all n ∈ N. Using the estimate

|e−λnt〈T (t)x, y〉| 6 Me(ω−γ)t‖x‖ · ‖y‖ ∈ L1(0,∞) for all x ∈ X and y ∈ Y , we

may infer from dominated convergence that 〈R(λ)x, y〉 =
∫ ∞

0 e−λt〈T (t)x, y〉dt for

all x ∈ X , y ∈ Y . This proves that Ω0 is closed in Ω. It follows that Ω0 contains the

connected component of λ0 in Ω.

Let us prove now that Ω0 = {λ : Re λ > ω}. To that end, let (λn)n∈N be a sequence

in the connected component of λ0 in Ω converging to some λ in the boundary of that

component. By [1, Proposition 3.5], ‖R(λn)‖ must be unbounded. If this is the

case, we infer from the uniform boundedness principle that we can find some x ∈ X

and some y ∈ Y such that 〈R(λn)x, y〉 is unbounded. But this is impossible unless

Re λ = ω. Indeed, if Reλ > ω, then, similarly to the above, we find

lim sup
n→∞

|〈R(λn)x, y〉| 6 lim sup
n→∞

M‖x‖ · ‖y‖

∫ ∞

0

e(ω−Re λn)t dt < ∞.

Hence we must have Re λ = ω and, thus, Ω0 = {λ : Re λ > ω}.

The fact that every R(λ) commutes with every T (t) is an easy consequence of

Lemma 4.3 and the semigroup law. The estimate ‖(Re λ − ω)kR(λ)k‖ 6 M may be

deduced from (5.4) and the exponential boundedness of T. �
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The question arises whether an integrable semigroup is uniquely determined by

its Laplace transform. Without further assumptions, this is not the case, not even if

Y = X∗, see [24]. We need

Definition 5.3. Let X be a Banach space and M a subspace of X . A subset

W ⊂ X∗ is said to separate points in M if for every x ∈ M \ {0} there exists w ∈ W

with 〈x, w〉 6= 0. A norming dual pair (X, Y ) is said to be countably separated if there

exists a countable subset of X separating points in Y and there exists a countable

subset of Y separating points in X .

Theorem 5.4. Let T,S be integrable semigroups on (X, Y ) of type (MT , ωT )

and (MS , ωS) respectively. Suppose that for the corresponding Laplace transforms

we have RT(λ) = (λ−A )−1 = RS(λ) for some λ > max{ωT, ωS}. Then T (t) = S(t)

for all t > 0, provided one of the following conditions is satisfied:

(i) D(A ) is σ-dense in X ;

(ii) (X, Y ) is countably separated.

The proof uses the following lemma which is taken from [2, Lemma 3.16.5].

Lemma 5.5. Let M ⊂ (0,∞) be a set of Lebesgue measure 0 and assume that

t, s 6∈ M implies t + s 6∈ M . Then M = ∅.

P r o o f of Theorem 5.4. As a consequence of Proposition 5.2, we have (λ −

A )−1 = RT(λ) = RS(λ) ∈ L(X, σ) for all λ > max{ωT , ωS}. Hence, for such λ and

any x ∈ X and y ∈ Y we have

∫ ∞

0

e−λt〈T (t)x, y〉dt =

∫ ∞

0

e−λt〈S(t)x, y〉dt.

By the uniqueness theorem for Laplace transforms [2, Theorem 1.7.3], there exists

a set N(x, y) of Lebesgue measure zero such that 〈T (t)x, y〉 = 〈S(t)x, y〉 for all

t 6∈ N(x, y).

First assume (i). Note that for every Re λ > ω, u ∈ X and y ∈ Y we have

〈T (t)RT(λ)u, y〉 =

∫ ∞

0

e−λs〈T (t + s)u, y〉ds = eλt

∫ ∞

t

e−λr〈T (r)u, y〉dr

= eλt

(

〈RT(λ)u, y〉 −

∫ t

0

e−λr〈T (r)u, y〉dr

)

,

and thus

(5.5)

∫ t

0

e−λr〈T (r)u, y〉dr = 〈RT(λ)u, y〉 − e−λt〈T (t)RT(λ)u, y〉.
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Now let x ∈ D(A ) = rg RT(λ), say x = RT(λ)z. Then the above equation for u = z

and arbitrary y ∈ Y yields

〈T (t)x, y〉 = eλt

(

〈x, y〉 −

∫ t

0

e−λr〈T (r)z, y〉dr

)

,

implying that t 7→ 〈T (t)x, y〉 is continuous. The same applies to the corresponding

orbit of S and we find N(x, y) = ∅. Thus T (t)x = S(t)x for every t > 0 and

x ∈ D(A ). However, if the σ-continuous linear operators T (t) and S(t) coincide on

the σ-dense subspace D(A ), then they are equal.

Now assume that (ii) is satisfied. Let {xn}n∈N ⊂ X and {yn}n∈N ⊂ Y be countable

subsets separating points in Y and X , respectively. Fix x ∈ X and put N(x) =
⋃

n∈N

N(x, yn). Then N(x) is a null set and

〈T (t)x, yn〉 = 〈S(t)x, yn〉 ∀ t 6∈ N(x), n ∈ N.

Since {yn} separates points, T (t)x = S(t)x for all t 6∈ N(x). In particular,

〈T (t)x, y〉 = 〈S(t)x, y〉 for all t 6∈ N(x) and all y ∈ Y .

Now fix y ∈ Y and put N =
⋃

n∈N

N(xn). Then N has measure 0 and for t 6∈ N and

n ∈ N we have

〈xn, T (t)′y〉 = 〈T (t)xn, y〉 = 〈S(t)xn, y〉 = 〈xn, S(t)′y〉.

As {xn} separates points, it follows that T (t)′y = S(t)′y for all t 6∈ N . Since y is

arbitrary, T (t) = S(t) for all t 6∈ N . Now let M = {t : T (t) 6= S(t)}. Then M ⊂ N ,

showing that M has measure 0. However, if t, s 6∈ M then, by the semigroup law,

t + s 6∈ M . Thus Lemma 5.5 implies M = ∅. �

Remark 5.6. It is proved in [20, Theorem 2.10] that if T is σ-continuous at 0,

i.e. T (t)x ⇀ x as t ↓ 0 for every x ∈ X , then rg R(λ) = D(A ) is σ-dense in X .

Hence very mild continuity assumptions ensure that condition (i) in Theorem 5.4 is

satisfied.

We now generalize a result from the theory of strongly continuous semigroups,

cf. [2, Proposition 3.1.9]. Note that in our situation the operator A may be multi-

valued.

Proposition 5.7. Let T be an integrable semigroup on (X, Y ) with Laplace

transform R and let A be the unique m.v. operator such that R(λ) = (λ − A )−1.

(i) The following conditions are equivalent.

(a) x ∈ D(A ) and z ∈ A x;

(b) for every t > 0 we have
∫ t

0
T (s)z ds = T (t)x − x.

(ii) We have
∫ t

0 T (s)xds ∈ D(A ) and T (t)x − x ∈ A
∫ t

0 T (s)xds for every x ∈ X

and t > 0.
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P r o o f. We first note that (i) (a) is equivalent to x = R(λ)(λx − z).

(i) (a) ⇒ (b): Fix t > 0 and y ∈ Y and define analytic functions f, g : C → C by

f(λ) := λ

∫ t

0

e−λs〈T (s)x, y〉ds −

∫ t

0

e−λs〈T (s)z, y〉ds,

g(λ) := 〈x, y〉 − e−λt〈T (t)x, y〉.

Setting u = x = R(λ)(λx − z) in (5.5), it follows that f(λ) = g(λ) for all Re λ > ω.

The uniqueness theorem for analytic functions yields f(0) = g(0). As t and y are

arbitrary, (b) is proved.

(b) ⇒ (a): If
∫ t

0 T (s)z ds = T (t)x − x, then

λR(λ)x − x =

∫ ∞

0

λe−λt(T (t)x − x) dt =

∫ ∞

0

λe−λt

∫ t

0

T (s)z ds dt

=

∫ ∞

0

∫ ∞

s

λe−λtT (s)z dt ds =

∫ ∞

0

e−λsT (s)z ds = R(λ)z.

It follows that x = R(λ)(λx − z).

(ii) Considering integrals as elements of Y ∗ at first, we have

∫ t

0

T (s)xds =

∫ t

0

T (s)(λ − A )R(λ)xds

= λ

∫ t

0

T (s)R(λ)xds −

∫ t

0

T (s)A R(λ)xds

= λ

∫ t

0

T (s)R(λ)xds + R(λ)x − T (t)R(λ)x,

where we have used R(λ)x ∈ D(A ) and part (i) in the previous step. Furthermore,

in slight abuse of notation, we wrote A R(λ)x in place of an element in this set. Now

note that
∫ t

0
T (s)R(λ)xds ∈ X by part (i), hence also

∫ t

0
T (s)xds ∈ X by the above

equation. Now Lemma 4.3 yields

∫ t

0

T (s)xds = R(λ)

(

λ

∫ t

0

T (s)xds + x − T (t)x

)

,

which is equivalent to (ii). �

Theorem 5.8. Let T be a semigroup of type (M, ω) on the norming dual pair

(X, Y ). The following conditions are equivalent:

(i) T is an integrable semigroup;

(ii) for every x ∈ X the orbit T (·)x is locally Y -integrable and for every y ∈ Y

the orbit T (·)′y is locally X-integrable. Here ‘local X/Y -integrability’ means

X/Y -integrability on every bounded interval in R+.
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P r o o f. (i) ⇒ (ii). As a consequence of Proposition 5.7 (ii),
∫ b

a T (t)xdt ∈ X for

every x ∈ X and 0 6 a < b < ∞. As such intervals generate the Borel σ-algebra

on (0,∞) and are closed under finite intersections, it follows from Proposition 4.9

that T (·)x is locally Y -integrable. Applying the same argument to T (·)′y for every

y ∈ Y , (ii) follows.

(ii) ⇒ (i). Fix λ with Re λ > ω. It follows from (ii) and Proposition 4.9 that

there exists an element R(λ)x ∈ X such that R(λ)x =
∫ ∞

0
e−λtT (t)xdt. It remains

to prove that R(λ) ∈ L(X, σ). It is easy to see that R(λ) is linear. Furthermore,

using the exponential boundedness of T and the dominated convergence theorem, it

follows that R(λ) ∈ L(X). However, arguing similarly, it follows that there exists

V (λ) ∈ L(Y ) such that V (λ)y =
∫ ∞

0
e−λtT (t)′y dt. It is easily seen that 〈R(λ)x, y〉 =

〈x, V (λ)y〉, hence V (λ) = R(λ)∗|Y . Proposition 3.1 implies R(λ) ∈ L(X, σ). This

proves (i). �

We end this section with

Lemma 5.9. Let T be a semigroup on the norming dual pair (X, Y ) which is

σ-continuous at 0. Then T is exponentially bounded.

P r o o f. Let us first prove that σ-continuity at 0 implies sup
06t61

‖T (t)‖ < ∞. To

this end, observe that for any x ∈ X there exists εx such that Ax := {‖T (t)x‖ : 0 6

t 6 εx} is bounded. Indeed, if this were wrong, there would exist a sequence tn ↓ 0

such that ‖T (tn)x‖ is unbounded. However, as T (tn)x ⇀ x, the set {T (tn)x} has to

be σ-bounded and hence, by Proposition 2.5, norm-bounded – a contradiction. Now

the semigroup law implies that {T (t)x : 0 6 t 6 1} ⊂ Ax ∪T (εx)Ax ∪ . . .∪T (εx)kAx

for some k ∈ N. As all operators T (t) are bounded, it follows that {T (t)x : 0 6 t 6 1}

is bounded. By the uniform boundedness principle, sup
06t61

‖T (t)‖ =: M < ∞. Now

let ω = log M . For t > 0 split t = n + r for some n ∈ N0 and r ∈ [0, 1). Then

‖T (t)‖ = ‖T (r)T (1)n‖ 6 Meωn 6 Meωt. �

6. Integrable semigroups on (Cb(E), M0(E))

We now turn to the problem of integrability of transition semigroups. As we

will not use positivity or contractivity, we will consider general semigroups of kernel

operators. Taking Theorem 3.5 into account, this is exactly the same as a semigroup

on the norming dual pair (Bb(E), M (E)). Our first result states that measurability

and integrability extends from (X, M(0)(E)) to (Bb(E), M(0)(E)) ifX is anM(0)(E)-

transition space for E.
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Lemma 6.1. Let (Ω, F , m) be a σ-finite measure space, (E, Σ) a measurable

space and let M(0)(E) denote either M (E) or M0(E) (in the latter case, assume

additionally that E is a completely regular Hausdorff space). We write σ instead of

σ(Bb(E), M(0)(E)). Let T : Ω → L(Bb(E), σ) and let X be anM(0)-transition space

for E.

(i) T (·)f is scalarly M(0)(E)-measurable for every f ∈ Bb(E) if and only if T (·)f

is scalarlyM(0)(E)-measurable for every f ∈ X .

(ii) Assume additionally that ‖T ‖ is majorized by an integrable function. Then

T (·)f is M(0)-integrable for every f ∈ Bb(E) if and only if T (·)f is M(0)-

integrable for every f ∈ X .

P r o o f. (i) Assume that T (·)f is scalarlyM(0)-measurable for every f ∈ X and

define

G := {A ∈ Σ: T (·)bA is scalarlyM(0)-measurable}.

If bA = sup fn for a sequence (fn)n∈N ⊂ X , then T (ω)fn ⇀ T (ω)f for all ω ∈ Ω

by the σ-continuity of T (ω). Hence, for any µ ∈ M(0)(E) we have 〈T (·)bA, µ〉 =

lim〈T (·)fn, µ〉. This proves that 〈T (·)bA, µ〉 is measurable. It follows that E (X) ⊂ G .

It is easy to see that G is a Dynkin system and thus G = Σ. By linearity, T (·)f is

M(0)-measurable for every simple function f . Approximating an arbitrary function

by a sequence of simple functions and using the σ-continuity of the operators T (·)

again, the assertion follows.

(ii) ScalarM(0)-measurability of T (·)f for all f ∈ Bb(E) follows from (i). To prove

M(0)-integrability, we proceed as in (i). Define

G := {A ∈ Σ: T (·)bA is M(0)-integrable}.

If bA = sup fn for a sequence (fn)n∈N ⊂ X , then it follows from Lemma 4.7 that

A ∈ G . Hence E (X) ⊂ G . The rest of the proof is similar to that in (i). �

We now consider semigroups of kernel operators on Cb(E).

Theorem 6.2. Let E be a completely regular Hausdorff space and T a semigroup

on (Cb(E), M0(E)) which is σ-continuous at 0.

(i) If the strict topology on Cb(E) is complete (cf. Example 4.8) then, for every

f ∈ Cb(E), the orbit T (·)f is locally M0-integrable.

(ii) If E is a complete metric space, then T is integrable.

P r o o f. By Lemma 5.9, the semigroup T is exponentially bounded, say of type

(M, ω). Furthermore, since every operator T (t) is σ-continuous, the semigroup law
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and the σ-continuity at 0 imply that t 7→ 〈T (t)f, µ〉 is right continuous for every

µ ∈ M0 and f ∈ Cb(E). In particular, for every f ∈ Cb(E) the orbit T (·)f is

M0(E)-measurable and the range of this function is σ-separable and hence, as a

consequence of the Hahn-Banach theorem, separable with respect to any consistent

topology. Now (i) follows from Theorem 4.4.

To prove (ii), note that if E is a complete metric space, then the strict topology

on Cb(E) is complete, hence (i) may be used. In view of Theorem 5.8, to prove (ii)

it suffices to prove that T (·)′µ is locally Cb(E)-integrable for every µ ∈ M0(E). Fix

µ ∈ M0(E). Since E is a metric space, Cb(E) is an M0-transition space for E, and

hence every T (t) is a kernel operator by Proposition 3.5. In particular, it has a unique

extension to an operator T̃ (t) ∈ L(Bb(E), σ). We infer from Lemma 6.1 (i) that

t 7→ 〈f, T (t)′µ〉 = 〈T̃ (t)f, µ〉 is measurable for every f ∈ Bb(E). Now let S ⊂ [0,∞)

be a bounded, measurable set. By Lemma 4.6, the Bb-integral ϕ :=
∫

S
T (t)′µ dt is

sequentially σ(M , Bb)-continuous. If we put ̺(A) = ϕ(bA), then it follows from the

sequential continuity that ̺ is a measure. Clearly ϕ(f) =
∫

S
f d̺ for all f ∈ Bb(E).

It remains to prove that ̺ ∈ M0(E). Since E is a complete metric space, a measure

on E is a Radon measure if and only if it has separable support. By assumption,

the measure T (t)′µ is a Radon measure for every t ∈ S. Consequently, we find a

separable set Et such that T (t)′µ(A) = 0 for all A ⊂ E \ Et. Define

E0 :=
⋃

r∈S∩Q

Er.

Then E0 is a separable set. We claim that ̺ is supported in E0. Let A ⊂ E \ E0

be an open set. Then A is an Fσ-set, say A =
⋃

Fn for an increasing sequence

(Fn)n∈N of closed sets. By Tieze’s extension theorem, there exist functions fn such

that f |Fn
≡ 1 whereas f |Ac ≡ 0. By the right continuity of the paths we have

〈fn, T (t)′µ〉 = lim
r↓t, r∈Q

〈fn, T (r)′µ〉 = 0

for all n ∈ N and t > 0. Integrating over S yields
∫

S
〈fn, T (t)′µ〉dt = 0. Now

the dominated convergence theorem implies that ̺(A) = lim
n→∞

∫

S〈fn, T (t)′µ〉dt = 0.

This proves that ̺ is supported in E0 and is hence a Radon measure. �

Remark 6.3. The assumption that T is σ-continuous at 0 is equivalent to T

being ‘stochastically continuous’, cf. [21, Theorem 3.8].

Example 6.4. Let E denote the real line endowed with the Sorgenfrey topology

τS which is generated by the collection of all intervals [a, b) for a < b. Then the shift

semigroup T, given by T (t)f(x) = f(x + t), defines a semigroup on (Cb(E), M0(E))

which has the following properties: (i) it is σ-continuous at 0; (ii) for every f ∈ Cb(E)

the orbit T (·)f is locallyM0(E)-integrable; (iii) T is not integrable.
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P r o o f. We note that f ∈ Cb(E) if and only if f is bounded and right continuous

as a function on R with its usual topology. Furthermore, the Borel σ-algebra of E is

just the usual Borel σ-algebra of R when endowed with the usual topology. It is well

known that every compact subset of E is necessarily countable (though not every

countable subset of R is compact with respect to τS), and thus M0(E) = ℓ1(R), the

space of all discrete measures on R.

From these observations it is easy to see that T (t)′M0(E) ⊂ M0(E) – hence T

is a semigroup on (Cb(E), M0(E)) – and that T is σ-continuous at 0. Let us show

that C(E) is complete with respect to the compact-open topology. As noted in

Example 4.8 this implies that the strict topology on Cb(E) is complete and thus

assertion (ii) follows from Theorem 6.2.

So let (fα) ⊂ Cb(E) be a net converging to a function f with respect to the

compact-open topology. Fix t ∈ R. To prove that f ∈ Cb(E), it suffices to prove

that f(tn) → f(t) as n → ∞ for every sequence tn ↓ t. However, given such a

sequence, the set K = {t, tn : n ∈ N} is τS-compact and thus fα → f uniformly

on K. The convergence of f(tn) → f(t) as n → ∞ now follows from a standard
1
3ε-argument.

Concerning assertion (iii), we note that for every f ∈ Cb(E) we have

∫ 1

0

〈f, T (t)′δ0〉dt = 〈f, λ(0,1)〉,

where λ(0,1) denotes the restriction of the Lebesgue measure to (0, 1). Since this

measure does not belong toM0(E), the orbit of T (·)′δ0 is not locally Cb(E)-integrable

and (iii) follows from Theorem 5.8. �

We close this section by proving that if the topology of E is induced by a separable

metric, in particular if E is a Polish space (i.e. the topology of E is induced by a

complete, separable metric), then the norming dual pair (Cb(E), M0(E)) is countably

separated. As a consequence of this, Theorem 6.5 may be applied, yielding that

every integrable semigroup on (Cb(E), M0(E)) is uniquely determined by its Laplace

transform. Furthermore, if E is a Polish space, then, given exponential boundedness,

the σ-continuity assumption in Theorem 6.2 may be weakened to the requirement

that t 7→ 〈T (t)f, µ〉 be measurable for every f ∈ Cb(E) and µ ∈ M0(E). This is

evident from the proof of that theorem.

Theorem 6.5. Let (E, B(E)) be a separable metric space endowed with its Borel

σ-algebra. Then the norming dual pair (Cb(E), M0(E)) is countably separated.

P r o o f. Let D := {xm : m ∈ N} be a countable, dense subset of E. Then

{δxm
: m ∈ N} ⊂ M0(E) separates points in Cb(E) as continuous functions which
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coincide on a dense subset are equal. To find a sequence in Cb(E) which separates

points in M0(E), we proceed as follows. For n, m ∈ N, choose fn,m ∈ Cb(E) such

that

bB(xm,1/n+1) 6 fn,m 6 bB(xm,1/n)c .

If J ⊂ N is a finite subset, we put fn,J := max{fn,m : m ∈ J} and define

M := {fn,J : n ∈ N, J ⊂ N finite}.

Then M is a countable set. We claim that M separates points in M0(E). To this

end, let µ ∈ M0(E) satisfy
∫

f dµ = 0 for all f ∈ M . We have to prove that µ = 0.

Since µ is a Radon measure, it suffices to prove that µ(K) = 0 for all compact

sets K. So let a compact set K 6= ∅ be given. As D is dense in E, the set K is

covered by {B(xm, (n + 1)−1) : m ∈ N} for every n ∈ N. Since K is compact, there

exist m1, . . . , mkn
such that K is already covered by Bn := {B(xmi

, (n + 1)−1) :

i = 1, . . . , kn}. We may assume without loss of generality that every ball in Bn

intersects K. Define fn := fn,{m1,...,mkn
} ∈ M . Then (fn)n∈N is a bounded sequence

which converges pointwise to bK . As
∫

fn dµ ≡ 0 by assumption, the dominated

convergence theorem yields µ(K) = lim fn dµ = 0. As K is arbitrary, µ = 0. �
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