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Abstract. Results saying how to transfer the entailment in certain minimal and maximal
ways and how to transfer strong dualisability between two different finite generators of a
quasi-variety of algebras are presented. A new proof for a well-known result in the theory
of natural dualities which says that strong dualisability of a quasi-variety is independent of
the generating algebra is derived.
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1. Introduction

For the basic facts about natural duality theory we recommend [1] and [9]. A very

brief introduction into the theory and the summary of the basic concepts can also

be found in our companion paper [7].

Throughout this paper we assume that D and M are finite algebras of the same

type such that D ∈ IS(M). Consequently, for the quasi-varieties D := ISP(D)

and M := ISP(M) we have D ⊆ M . We assume that there are homomorphisms

α : M → D
k, for some k, and β : D → M such that β and α ◦ β : D → D

k are

one-to-one.

In Section 3 we introduce minimal and maximal extensions of algebraic relations

and (partial) operations fromD toM. While in [7] we concentrated on the transferral

of the entailment and dualisability “up” from D to M via the ‘minimal extensions’,

here we equally focus on the transferral via the ‘maximal extensions’. Then in
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Section 4, where we assume that D = M and that α is one-to-one, we present a

natural way of transferring a strong duality “up” from D to M by generalizing the

Strong Duality Transfer Theorem of Davey and Haviar [3]. In Section 5 we give a new

proof for a well-known result due to Hyndman [8] saying that strong dualisability

of a quasi-variety is independent of the generating algebra. We use the additional

assumption that the strongly dualising structures are finite, which, however, is the

case in all known strong dualities to date. Finally, as an application of the results

of Sections 4 and 5, in Section 6 we show how to transfer a strong duality “down”

fromM to D.

2. Preliminaries

Let A := ISP(M) be a quasi-variety generated by a finite algebra M. Let M∼ =

〈M ; G, H, R, T 〉 be a discrete topological structure, in which the set M is endowed

with the discrete topology T and with families G, H and R of finitary operations,

partial operations and relations, respectively. The structureM∼ is said to be algebraic

over M if the relations in R and the graphs of operations and partial operations in

G∪H are subalgebras of appropriate powers ofM; we shall always be assuming that

M∼ = (M ; G, H, R, T ) is algebraic overM. The structureM∼ is called the alter ego of

M and finding M∼ with desirable properties to a givenM is one of the central tasks

in natural duality theory.

Given a closed substructure X of a non-zero power of M∼ , we define a morphism

from X into M∼ to be a map α : X → M∼ that preserves the relations in R and

the graphs of operations and partial operations in G ∪ H and is continuous. Note

that when X is finite, the morphisms are all the structure preserving maps from X

into M∼ .

Now we say that G ∪ H ∪ R, or simply M∼ , entails the relation s (the partial

operation h) on the structure X if each morphism α : X → M∼ preserves s (the

graph(h)). The dual category to A = ISP(M) is the class X := IScP
+(M∼ ) of all

isomorphic copies of closed substructures of non-zero powers ofM∼ . The morphisms

of the category X are the continuous structure preserving maps.

We use a pair of contravariant functors D: A → X and E: X → A defined

as follows. For every A ∈ A , D(A) is the homset A (A,M) regarded as a closed

substructure ofM∼
A; the structure D(A) ∈ X is called the dual of A. Similarly, for

every X ∈ X , its dual E(X) ∈ A is defined to be the homset X (X,M∼ ) regarded

as a subalgebra ofMX .

402



Let A ∈ A , X ∈ X and let eA : A → ED(A) and εX : X → DE(X) be maps

given by evaluation:

eA(a)(h) = h(a) for every a ∈ A and h ∈ D(A),

εX(y)(ϕ) = ϕ(y) for every y ∈ X and ϕ ∈ E(X).

It is said that the structure M∼ (or just G ∪ H ∪ R) yields a (natural) duality on

A based on M, or M∼ dualises M, if for every A ∈ A , the embedding eA is an

isomorphism.

Let Afin be the category of all finite algebras in A . If for every A in Afin, eA is

an isomorphism, then M∼ dualises M at the finite level.

The following Duality Compactness Theorem is due independently to Willard [12]

and Zádori [13].

Theorem 2.1 ([1], Theorem 2.2.11). If M∼ is of finite type and yields a duality

on Afin, then M∼ yields a duality on A .

If eA and εX are isomorphisms for all A ∈ A and X ∈ X , thenM∼ is said to yield

a full duality on A or one says thatM∼ fully dualises M. In this case, the categories

A and X are dually equivalent.

If M∼ fully dualises M and moreover, M∼ is injective in X , then we say that M∼

strongly dualises M. However, the usual definition of a strong duality is the following

one (see Chapter 3 of [1] for a proof that this is equivalent to the former definition

given above): M∼ strongly dualises M ifM∼ dualisesM and, for every non-empty set

S, every closed substructure M∼
S of M∼ is term-closed. We recall that given a non-

empty set S, a closed substructure X of M∼
S is term-closed if whenever y ∈ MS\X

there exist S-ary term functions t1 and t2 of the algebraM such that t1 ↾ X = t2 ↾ X

but t1(y) 6= t2(y).

As far as duality is concerned we are interested only in the entailment on the

structures X of the form D(A) for A ∈ A . Thus we say (cf. [1], p. 55) that M∼

entails s if it entails s on every structure of the form D(A), for A ∈ A . Let BM

be the class of all finitary algebraic relations on M and let Ω ⊆ BM . If a set R

of relations in Ω is such that R entails s for every s ∈ Ω, then we say that R is

entailment-dense in Ω.

Let s be the subalgebra of M
n corresponding to the n-ary algebraic relation s

onM, n > 1. For each i ∈ {1, . . . , n}, let ̺s
i := πi ↾ s : s → M , where πi : Mn → M

is the natural projection.

The following result is fundamental to the study of entailment (for its proof see [4],

2.3 or [1], 8.1.3, 9.1.2; cf. also [5], 1.4).
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Theorem 2.2 (The Test Algebra Theorem). Let M be a finite algebra and let

M∼ be its alter ego. Let s be an n-ary algebraic relation onM for some n ∈ N. Then

the following conditions are equivalent:

(1) M∼ entails s;

(2) M∼ entails s on D(s);

(3) every morphism α : D(s) → M∼ satisfies (α(̺s
1), . . . , α(̺s

n)) ∈ s;

(4) s = {(α(̺s
1), . . . , α(̺s

n)) : α ∈ ED(s)};

(5) s may be obtained from G ∪ H ∪ R via a primitive positive construct, that

is, for some primitive positive formula Φ(x1, . . . , xn) in the language of M∼ ,

s = {(c1, . . . , cn) ∈ Mn : M∼ |= Φ(c1, . . . , cn) } and D(s) satisfies Φ(̺s
1, . . . ̺

s
n).

As an immediate consequence we obtain that ifM∼ dualisesM, then G∪H ∪R is

entailment-dense in BM .

The Brute Force Duality Theorem (cf. [1], Theorem 2.3.1) says that the set BM

of all finitary algebraic relations on M (the brute force) yields a duality on Afin.

The following result is called a Density Lemma and it explains the central role of

entailment in duality theory. It also holds at the finite level.

Lemma 2.3 ([1], Lemma 8.2.2). LetM be a finite algebra. Assume that Ω ⊆ BM

yields a duality on A and let R ⊆ Ω. Then the following conditions are equivalent:

(1) R yields a duality on A ;

(2) R is entailment-dense in Ω;

(3) R entails s for each s ∈ Ω \ R;

(4) R entails s on D(s) for each s ∈ Ω \ R.

Hence if a finite set R ⊆ BM entails the brute force BM , then R yields a duality

on Afin, and by the Duality Compactness Theorem 2.1, R yields a duality on A .

Thus we conclude:

Lemma 2.4. LetM be a finite algebra. A finite set R ⊆ BM yields a duality on

A if and only if R entails BM .

It follows from this lemma that studying the dualisability of M via a finite set of

relations R ⊆ BM is equivalent to studying when R entails BM .

Let us recall that in our setting D and M are finite algebras of the same type

such that D ∈ IS(M) and we assume the existence of a homomorphism α : M →

D
k, for some k, and a one-to-one homomorphism β : D → M. Let now, for every

i ∈ {1, . . . , k}, ωi := β ◦ ̺
α(M)
i ◦α. We see that ωi is an endomorphism ofM. Let us

further denote Γβα := {ω1, . . . , ωk}.
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We define a homomorphism ω := ω1 ⊓ . . . ⊓ ωk : M → M
k by ω(a) := (ω1(a), . . . ,

ωk(a)) for all a ∈ M . When the maps ω1, . . . , ωk separate the points of M , ω is

an embedding. In such a case we define σ : ω(M) → M to be the inverse of ω

regarded as a k-ary algebraic partial operation onM. It follows that for all a ∈ M ,

σ(ω1(a), . . . , ωk(a)) = a. The partial operation σ on M was introduced in Davey

and Haviar [3] for the particular case when D is a subalgebra ofM and β : D → M

is the inclusion map. Our setting where D ∈ IS(M) is a more general one. Hence we

shall call the partial operation σ on M in this more general setting the generalized

schizophrenic operation corresponding to ω1, . . . , ωk.

3. Transferring entailment up via minimal and maximal extensions

Throughout this section we again assume that D andM are finite algebras of the

same type such that D ∈ IS(M), so for D := ISP(D) and M := ISP(M) we have

D ⊆ M . We also assume that there exist homomorphisms α : M → D
k, for some k,

and β : D → M such that β and α ◦ β : D → D
k are one-to-one. In our companion

paper [7] we concentrated on the transferral of the entailment and dualisability “up”

from D to M via certain ‘minimal extensions’. In this section we equally focus on

the transferral “up” via ‘maximal extensions’.

Let (α ◦ β)−1 be the inverse of the isomorphism D → (α ◦ β)(D) 6 D
k given by

α ◦ β and, for any X ⊆ Dmk, let us use α−1(X) to denote the subset of Mm of all

elements (c1, . . . , cm) of Mm that satisfy

((π1 ◦ α)(c1), . . . , (πk ◦ α)(c1), . . . , (π1 ◦ α)(cm), . . . , (πk ◦ α)(cm)) ∈ X.

For every n-ary algebraic relation r onD, we consider the minimal extension min r

of r to M to be the algebraic relation

min r := {(β(a1), . . . , β(an)) : (a1, . . . , an) ∈ r}

already defined in [10] or in [7], where it was denoted by rβ . We now introduce the

maximal extension max r of r to M to be the algebraic relation α−1((α ◦ β)(r)).

We note that taking α−1((α ◦ β)(r)) instead of α−1(r) guarantees, for example, that

min r ⊆ max r. Every n-ary algebraic relation rM on M satisfying min r 6 rM 6

max r will be called an extension of r to M.

For every n-ary (partial) homomorphism h : domh ⊆ D
n → D, we use min h

to denote its minimal extension to a partial homomorphism of M that assigns to

each (a1, . . . , an) ∈ min (domh) the element β(h(β−1(a1), . . . , β
−1(an))) of M ; we

note that this has already been considered in [10] and in [7] where it was denoted
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by hβ. We introduce the maximal extension max h to be the partial homomorphism

of M with the domain max (domh) that assigns to each element (a1, . . . , an) of

max (domh) the element β(h(((α ◦ β)−1(α(a1)), . . . , (α ◦ β)−1(α(an))))) of M .

For every set S of algebraic relations or (partial) operations on D, we define

min S := {min s : s ∈ S} and maxS := {max s : s ∈ S}.

Definition 3.1. Let r be an n-ary algebraic relation on D and rM one of its

extensions to M. For every map u : M (rM ,M) → M that preserves the unary

algebraic relation β(D) onM, we define the associated map uD : D(r,D) → D by

uD(x) = β−1(u(β ◦ x ◦ (α ◦ β)−1 ◦ α|rM
)).

Lemma 3.2. Let D and M be finite algebras for which there exist homomor-

phisms α : M → D
k, for some k, and β : D → M such that β and α ◦ β are

one-to-one. Let r and s be two finitary algebraic relations on D and let rM and sM

be their extensions to M.

If u : M (rM ,M) → M is a map that preserves sM and β(D), then the map

uD : D(r,D) → D preserves s.

P r o o f. Let s 6 D
n and let (x1, . . . , xn) ∈ s for xi ∈ D(r,D), with i ∈

{1, . . . , n}. Then (x1, . . . , xn) ∈ s yields the following sequence of assertions of which

each implies the subsequent one:

(β ◦ x1 ◦ (α ◦ β)−1 ◦ α|rM
, . . . , β ◦ xn ◦ (α ◦ β)−1 ◦ α|rM

) ∈ β(s) ⊆ sM ,

(u(β ◦ x1 ◦ (α ◦ β)−1 ◦ α|rM
), . . . , u(β ◦ xn ◦ (α ◦ β)−1 ◦ α|rM

)) ∈ sM ∩ β(D)n,

(β(uD(x1)), . . . , β(uD(xn))) ∈ sM ⊆ α−1((α ◦ β)(s)),

((α ◦ β)(uD(x1)), . . . , (α ◦ β)(uD(x1))) ∈ (α ◦ β)(s),

(uD(x1), . . . , uD(xn)) ∈ s,

the last step using the fact that α ◦ β is one-to-one. �

Proposition 3.3. Let D and M be finite algebras for which there exist homo-

morphisms α : M → D
k, for some k, and β : D → M such that β and α ◦ β are

one-to-one. Let S be a subset of BD and r an n-ary algebraic relation on D. For

each s ∈ S take sM to be an arbitrary (but fixed) extension of s to M and define

SM = {sM : s ∈ S}. If S entails r on D, then SM ∪ {β(D)} entails min r on M.

P r o o f. Let u : M (min r,M) → M be a map that preserves SM and β(D).

By the previous lemma, the map uD preserves every relation in S. We now take
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(x1, . . . , xn) ∈ min r where every xi is in M (min r,M). Since (α(x1), . . . , α(xn)) ∈

(α ◦ β)(r), we have

((α ◦ β)−1 ◦ α(x1), . . . , (α ◦ β)−1 ◦ α(xn)) ∈ r.

Hence

((α ◦ β)−1 ◦ α ◦ x1 ◦ β|r, . . . , (α ◦ β)−1 ◦ α ◦ xn ◦ β|r) ∈ r

with

(α ◦ β)−1 ◦ α ◦ xi ◦ β|r ∈ D(r,D).

By hypothesis S entails r and consequently uD preserves r. Hence

(uD((α ◦ β)−1 ◦ α ◦ x1 ◦ β|r), . . . , uD((α ◦ β)−1 ◦ α ◦ xn ◦ β|r)) ∈ r.

We note that

uD((α ◦ β)−1 ◦ α ◦ xi ◦ β|r)

= β−1(u(β ◦ (α ◦ β)−1 ◦ α ◦ xi ◦ β|r ◦ (α ◦ β)−1 ◦ α|min r)) = β−1(u(xi))

because

β|r ◦ (α ◦ β)−1 ◦ α|min r = id|min r

and

β ◦ (α ◦ β)−1 ◦ α ◦ xi = xi

once xi ∈ β(D) for every i ∈ {1, . . . , n}. But then we get

(β−1(u(x1)), . . . , β
−1(u(xn))) ∈ r,

which implies (u(x1), . . . , u(xn)) ∈ min r. �

Corollary 3.4. Let D and M be finite algebras for which there exist homo-

morphisms α : M → D
k, for some k, and β : D → M such that β and α ◦ β are

one-to-one. Let r be a finitary algebraic relation on D. Then {max r, β(D)} entails

min r onM.

As an immediate consequence we obtain the following result which is a restricted

version of Theorem 3.3 of our companion paper [7].
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Corollary 3.5. Let D and M be finite algebras such that D ∈ IS(M). Let

β : D → M be an embedding.

If G∪H ∪R entails an algebraic relation s ⊆ Dn (the graph of a partial algebraic

operation h) on D, then min G ∪ min H ∪ min R ∪ {β(D)} entails the relation min s

(the graph of the partial operation min h) onM.

One can feel that a result in the same spirit on the transferral of dualisability

up from D to M via the minimal extensions might be true as well. This is indeed

the case and Corollary 3.5 has served us the springboard for proving this in our

companion paper [7]. The proof required some essential work to be done (see [7], pp.

48–51) and here we just present the final result. We note that this was one of the

main results of [10]; comparing it with the present result, here we use the additional

assumption that the dualising structure G ∪ H ∪ R is finite which, however, is the

case in all known dualities to date.

Corollary 3.6 ([7], Corollary 3.9; see also [10], Proposition 2.1). Let M be a

finite algebra in D = ISP(D) and assume that D ∈ IS(M). If D is dualisable via a

finite set of relations, then M is dualisable.

More specifically, assume that D∼ = 〈D; G, H, R, T 〉 yields a duality on D such

that G ∪ H ∪ R is a finite set and α : M → D
k and β : D → M are one-to-one

homomorphisms. Then the structure

M∼ = 〈M ; Γβα, min G, min H, min R, T 〉

yields a duality on ISP(M) = D .

In the particular setting of Corollary 3.6, that is, when α is one-to one and soD and

M are finite generators of the same quasivariety, the maximal and minimal extensions

of any relation on D coincide. So it is formally correct to replace min G, min H and

min R in Corollary 3.6 by maxG, max H and max R, respectively and to say that

“dualisability can be transferred from D to M via the maximal extensions”.

In the more general setting of having D as a subquasivariety ofM with D being

a subalgebra of M, the maximal and minimal extensions do not coincide but are

somehow identifiable in the entailment sense. As we will see, in the presence of

a specific set of endomorphisms of M plus a unary relation on M, the minimal

extension of a relation entails and is entailed by the maximal one.
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Proposition 3.7. Let D and M be finite algebras for which there exist homo-

morphisms α : M → D
k, for some k, and β : D → M such that β and α ◦ β are

one-to-one. Let S be a subset of BD and r be an n-ary algebraic relation on D. For

each s ∈ S take sM to be an arbitrary (but fixed) extension of s to M and define

SM = {sM : s ∈ S}. If S entails r on D, then SM ∪ {β(D)} ∪ Γβα entails max r

onM.

P r o o f. Suppose that r is an n-ary relation. By Test Algebra Theo-

rem 2.2, we only need to prove that (u(̺max r
1 ), . . . , u(̺max r

n )) ∈ max r whenever u :

M (max r,M) → M is a map preserving SM∪{β(D)}∪Γβα. Let u : M (max r,M) →

M be a map that preserves SM and β(D) and {β ◦ πj ◦ α : j ∈ {1, . . . , k}}. By

Lemma 3.2, the map uD preserves every relation in S and so it preserves r. Since we

have that (we are shortening ̺max r
i to ̺i now) ((α◦β)−1◦α◦̺1, . . . , (α◦β)−1◦α◦̺n) ∈

r we also have that (uD((α ◦ β)−1 ◦α ◦ ̺1 ◦ β|r), . . . , uD((α ◦ β)−1 ◦α ◦ ̺n ◦ β|r)) ∈ r.

We note that for every i ∈ {1, . . . , n},

β ◦ (α ◦ β)−1 ◦ α ◦ ̺i ◦ β ◦ (α ◦ β)−1 ◦ α|max r = ̺i ◦ β ◦ (α ◦ β)−1 ◦ α|max r

once ̺i ◦ β ◦ (α ◦ β)−1 ◦ α|max r ∈ β(D). Then

(u(̺1 ◦ β ◦ (α ◦ β)−1 ◦ α|max r), . . . , u(̺n ◦ β ◦ (α ◦ β)−1 ◦ α|max r)) ∈ β(r),

which implies that

(α(u(̺1 ◦ β ◦ (α ◦ β)−1 ◦ α|max r)), . . . , α(u(̺n ◦ β ◦ (α ◦ β)−1 ◦ α|max r))) ∈ α ◦ β(r).

For every i ∈ {1, . . . , n}, let vi := ̺i ◦ β ◦ (α ◦ β)−1 ◦ α|max r. We have

α(u(vi)) = (β−1 ◦ β ◦ π1 ◦ α(u(vi)), . . . , β
−1 ◦ β ◦ πk ◦ α(u(vi)))

= (β−1(u(β ◦ π1 ◦ α ◦ vi)), . . . , β
−1(u(β ◦ πk ◦ α ◦ vi)))

= (β−1(u(β ◦ π1 ◦ α ◦ ̺i)), . . . , β
−1(u(β ◦ πk ◦ α ◦ ̺i)))

= (β−1 ◦ β ◦ π1 ◦ α(u(̺i)), . . . , β
−1 ◦ β ◦ πk ◦ α(u(̺i)))

= α(u(̺i))

and so (u(̺1), . . . , u(̺n)) ∈ max r as required. �

Corollary 3.8. Let D and M be finite algebras for which there exist homo-

morphisms α : M → D
k, for some k, and β : D → M such that β and α ◦ β are

one-to-one. Let r be an n-ary algebraic relation on D. Then min r ∪ {β(D)} ∪ Γβα

entails max r onM.

If we also apply Corollary 3.4 then we get the following result.
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Corollary 3.9. Let D and M be finite algebras for which there exist homomor-

phisms α : M → D
k, for some k, and β : D → M such that β and α◦β are one-to-one.

Let S be any set of n-ary algebraic relations onD. Then min S∪{β(D)}∪Γβα entails

and is entailed by maxS ∪ {β(D)} ∪ Γβα onM.

Remark 3.10. We note that from the last corollary one can conclude that every

globally minimal failset (for the concept see [11] or [1], Chapter 8) not containing

partial endomorphisms and β(D), contains min r if and only if it contains max r.

If (α ◦ β)(D) = α(M) then every globally minimal failset without partial endomor-

phisms contains min r if and only if it contains max r (see Lemma 3.4 of [7]).

4. Transferring strong dualities up

In this section we assume that D = M and that α is one-to-one. Recall that this

means that the maximal and the minimal extensions coincide. We will present what

seems to be the only natural way of transferring the strong duality “up” from D to

M where D ∈ IS(M).

We start with two lemmas considered as part of the folklore.

Lemma 4.1. Let X and Y be topological spaces. For every continuous map

ϕ : X → Y , the map ϕ : XS → Y S defined by

ϕ(〈xs〉s∈S) = 〈ϕ(xs)〉s∈S

is continuous for the product topologies.

Lemma 4.2 ([1], Lemma B.1, p. 337). If γ : X → Y is a continuous map from

a compact topological space X to a Hausdorff topological space Y and U ⊆ X is

closed, then γ(U) ⊆ Y is closed, too.

For any map γ : A → B we denote by γS the map from A to BS defined by

γS(a) = 〈bs〉s∈S where bs = γ(a) for every s ∈ S.

The first main result of this section shows how the strong dualisability can be

transferred via a one-to-one homomorphism.
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Theorem 4.3. Let D be a finite algebra andM = β(D), where β is a one-to-one

homomorphism. If D∼ yields a strong duality via a finite set G ∪ H ∪ R of (partial)

operations and relations on D, then M∼ yields a strong duality on M via the set

Γβα ∪ min G ∪ min H ∪ min R ∪ {β(D)}.

P r o o f. By Corollary 3.6, M∼ yields a duality on M. It remains to prove

that every closed substructure of M∼
S is term-closed. So let X be a closed sub-

structure of M∼
S . We take the corresponding subset β−1(X) = {〈β−1(xs)〉s∈S :

〈xs〉s∈S ∈ X} of DS . Since the topological space D∼
S is Hausdorff, by Lemma 4.1

and Lemma 4.2 we have that β−1(X) is a closed subset of D∼
S . For every h ∈ G∪H ,

let (x1, . . . , xn) ∈ domh with x1, . . . , xn ∈ β−1(X). Then there exist y1, . . . , yn ∈ X

such that for all s ∈ S we have xi(s) = β−1(yi(s)) for i ∈ {1, . . . , n}. But then

(y1, . . . , yn) ∈ min (domh).We are assuming that X is a substructure ofM∼
S whence

min h(y1, . . . , yn) ∈ X , and so β(h(x1, . . . , xn)) ∈ X and finally h(x1, . . . , xn) ∈

β−1(X). Thus β−1(X) is a closed substructure of D∼
S . Now we take an element z of

MS \X . Then β−1(z) ∈ DS \β−1(X). As D∼ is strongly dualisable, β
−1(X) is term-

closed, whence there exist term functions t1, t2 such that t1, t2 agree on β−1(X) but

t1(β
−1(z)) 6= t2(β

−1(z)). Since h is a one-to-one homomorphism, we get that t1, t2

agree on X but t1(z) 6= t2(z). Hence X is term-closed and the proof is complete. �

We continue with the Strong Duality Transfer Theorem of Davey and Haviar [3].

We note that in the case D is a subalgebra ofM, the embedding β : D → M is just

the inclusion map, the set of the endomorphisms Γβα of M has the specific form

Ω := {̺
α(M)
i ◦α : 1 6 i 6 k} and the structure min G∪min H ∪min R is denoted by

GD ∪ HD ∪ RD.

Theorem 4.4 ([3], Strong Duality Transfer Theorem). Let D be a finite algebra,

let M be a finite algebra in D := ISP(D) which has D as a subalgebra. If the

structure D∼ = 〈D; G, H, R, T 〉 yields a strong duality on D based on D, then the

structure

M∼ := 〈M ; Ω, GD, HD ∪ {σ}, RD ∪ {D}, T 〉

yields a strong duality on D based on M.

Our aim here is to present this result in our more general setting where D ∈

IS(M). Let β : D → M be a one-to-one homomorphism and assume that D∼ =

〈D; G, H, R, T 〉 yields a strong duality on D via a finite set G ∪ H ∪ R. We derive

the transferral of the strong duality from D into M in two steps. In the first step

we apply Theorem 4.3 to transfer the strong duality from D to M
′ := β(D). We
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obtain thatM′ is strongly dualisable via Γβα ∪min G∪min H ∪min R∪ {β(D)}. In

the second step, having nowM
′ as a subalgebra ofM, we apply the Strong Duality

Transfer Theorem 4.4 above. We obtain a new result:

Theorem 4.5 (Generalized Strong Duality Transfer Theorem). Let M be a fi-

nite algebra in D := ISP(D) and assume that D ∈ IS(M). Let β : D → M and

α : M → D
k, for some k, be one-to-one homomorphisms. If D is strongly dualisable

then also M is strongly dualisable.

More specifically, if D∼ = 〈D; G, H, R, T 〉 yields a strong duality on D via a finite

set G ∪ H ∪ R, then the structure

M∼ = 〈M ; Γβα, min G, min H ∪ {σ}, minR ∪ {β(D)}, T 〉

yields a strong duality on M = ISP(M), where σ is the generalized schizophrenic

operation and Γβα := {β ◦ ̺
α(M)
i ◦ α : i ∈ {1, . . . , k}}.

Remark 4.6. When transferring the strong duality from D to M, where D is

(isomorphic to) a subalgebra of M, it turns out that we cannot avoid the presence

of the (generalized) schizophrenic operation σ in the structure M∼ . In [5], Theorem

4.3., using the concept of structural entailment introduced there, the authors proved

that provided D is actually a subalgebra ofM, if (i) D∼ = 〈D; G, H, R, T 〉 is an alter

ego that strongly dualises D, (ii) M∼ := 〈M ; G′, H ′, R′, T 〉 is an alter ego of M that

strongly dualisesM, and (iii) for every non-empty set T and every closed substructure

X of M∼
T , the set X ∩ DT is a substructure of D∼

T (this is shown in [3], p. 219),

then σ has an extension in the enriched partial clone of M∼ , which means that σ is

essentially present inM∼ .

5. Strong dualisability of a quasi-variety is independent of the

generating algebra

The result in the title of this section was proved by J. Hyndman in [8]. In her

‘categorical approach’ she uses Lemma 3.8 of [2] and the necessary and sufficient

conditions in it needed for a dualising set to yield a strong duality. After presenting

her proof, she mentions the construction used in [3] (which is Theorem 4.4 presented

in the previous section) and the use of “one further partial operation”, meaning the

schizophrenic operation. But the efficient use of the schizophrenic operation had

obviously not been employed in Hyndman’s approach. It will be employed in our

approach in this section.
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Here we present a new and, we hope, a little bit more transparent proof of Hyn-

dman’s result in three steps and under the assumption that the strongly dualising

structures are finite. Having a strongly dualisable finite generator (let us call it the

first generator) of a quasi-variety embedded in some finite power of another finite

generator (let us call it the second generator), in the first step one can apply our The-

orem 4.3 to transfer the strong dualisability of the first generator via this embedding

into a subalgebra of the power of the second generator. Then by the Strong Duality

Transfer Theorem 4.4 and the use of the schizophrenic operation, the strong dual-

isability can be transferred from this subalgebra to the actual power of the second

generator. Finally, in the third step, one needs to show how the strong dualisability

can be transferred from that power to the second generator itself. We only need to

present the third step of our method.

In the next two results the relations of Dk are regarded as relations on D and

each (partial) operation h : domh ⊆ D
kn → D

k of Dk in G ∪H is then replaced by

the homomorphisms πj ◦ h : domh → D, where πj : D
k → D is the j-th projection,

j ∈ {1, . . . , k}. We will call such structure the associated structure on D.

Proposition 5.1. If a set of finitary algebraic relations G ∪H ∪R on D
k entails

BDk , then the associated structure on D entails BD.

P r o o f. Let r ∈ BD be an n-ary relation and let u : D(r,D) → D be a map

that preserves the structure on D associated with G∪H ∪R. We want to prove that

(u(̺r
1), . . . , u(̺r

n)) ∈ r. We define v : D(idk(r),Dk) → Dk by

v(x) := (u(π1 ◦ x ◦ idk), . . . , u(πk ◦ x ◦ idk)).

We note that here idk denotes the homomorphism from r 6 D
n to (Dk)n given by

idk(a1, . . . , an) = ((a1, . . . , a1), . . . , (an, . . . , an)). We claim that v preserves G∪H ∪

R. We take a relation s in R (a graph of a partial operation h ∈ G ∪ H) of arity m

and we assume that (x1, . . . , xm) ∈ s with xi = (π1 ◦xi, . . . , πk ◦xi) ∈ D(idk(r),Dk).

Then ((π1 ◦ x1 ◦ idk, . . . , πk ◦ x1 ◦ idk), . . . , (π1 ◦ xm ◦ idk . . . , πk ◦ xm ◦ idk)) ∈ s with

πj ◦ xi ◦ idk ∈ D(r,D). Since u preserves s we have that

((u(π1 ◦ x1 ◦ idk), . . . , u(πk ◦ x1 ◦ idk)), . . . , (u(π1 ◦ xm ◦ idk) . . . , u(πk ◦ xm ◦ idk)))

belongs to s, that is, (v(x1), . . . , v(xm)) ∈ s, thus v preserves s. Since v preserves

G∪H ∪R, we conclude that v preserves idk(r). We denote by pi the i-th projection

from (Dk)n ontoD
k. For every i ∈ {1, . . . , n} and every j ∈ {1, . . . , k}, the composite

pi ◦ idk
↾r is a homomorphism from r into D

k that maps every element (a1, . . . , an)
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to (ai, . . . , ai). As (p1 ↾idk(r), . . . , pn ↾idk(r)) ∈ idk(r) with pi ↾idk(r)∈ D(idk(r),Dk),

we have (v(p1 ↾idk(r)), . . . , v(pn ↾idk(r))) ∈ idk(r), that is,

((u(π1 ◦ p1 ↾idk(r) ◦ idk), . . . , u(πk ◦ p1 ↾idk(r) ◦ idk)), . . .

. . . , (u(π1 ◦ pn ↾idk(r) ◦ idk), . . . , u(πk ◦ pn ↾idk(r) ◦ idk)))

belongs to idk(r). We note that

(u(π1 ◦ pi ↾idk(r) ◦ idk), . . . , u(πk ◦ pi ↾idk(r) ◦ idk)) = (u(̺r
i ), . . . , u(̺r

i )),

and so ((u(̺r
1), . . . , u(̺r

1)), . . . , (u(̺r
n), . . . , u(̺r

n))) ∈ idk(r). We finally obtain

(u(̺r
1), . . . , u(̺r

n)) ∈ r as required. �

Proposition 5.2. IfD∼
k strongly dualisesDk via a finite set of (partial) operations

and relationsG∪H∪R onD
k, then the associated structureD∼ onD strongly dualises

D.

P r o o f. By applying Proposition 5.1 we get that the structure D∼ on D

associated with G ∪ H ∪ R entails BD. By Lemma 2.4, D∼ dualises D. We

claim that this duality is strong. Let X be a closed substructure of D∼
S . Con-

sider the closed subset Xk of (D∼
k)S . We claim that Xk is a substructure of

(D∼
k)S . Let h ∈ G ∪ H and assume domh ⊆ (Dk)n and (x1, . . . , xn) ∈ domh

with xi ∈ Xk. Then for all j ∈ {1, . . . , k}, (πj(x1), . . . , πj(xn)) ∈ domh ⊆ Xn.

Since X is a closed substructure of D∼
S , we have that h(πj(x1), . . . , πj(xn)) ∈ X .

But then (h(π1(x1), . . . , π1(xn)), . . . , h(πk(x1), . . . , πk(xn))) ∈ Xk, or equivalently,

h(x1, . . . , xn) ∈ Xk. So Xk is a substructure of (D∼
k)S .

Now we take an element y of DS \ X . Then idk(y) ∈ (Dk)S \ Xk. As Xk is a

closed substructure of (D∼
k)S and, by assumption, D∼

k strongly dualises D
k, there

exist term functions t1, t2 such that t1, t2 agree on Xk but t1(id
k(y)) 6= t2(id

k(y)).

Since idk(X) ⊆ Xk we have that t1, t2 agree on idk(X). But idk is a one-to-one

homomorphism, which implies that t1, t2 agree on X but t1(y) 6= t2(y). Hence X is

term-closed. �

Under the additional assumption that the strongly dualising structures are finite,

which, as mentioned previously, is the case in all known strong dualities to date, we

now give a new proof for the result due to Hyndman [8], which is interpreted so that

strong dualisability of a quasi-variety is independent of the generating algebra.
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Theorem 5.3. Let D be a finite algebra and let D∼ strongly dualise D via a finite

dualising structure. Then every finite generatorM of ISP(D) is strongly dualisable

via a finite structure, too.

P r o o f. Let M be a finite generator of ISP(D). Note that D is embedded in

some finite powerMk ofM via a one-to-one homomorphism β. IfD∼ strongly dualises

D via a finite structure, then by Theorem 4.3, the copy β(D) of D inM
k is strongly

dualisable via a finite structure, too. By the Strong Duality Transfer Theorem 4.4,

M
k is then also strongly dualisable via a finite structure. Finally, by Proposition 5.2,

M is strongly dualisable via a finite structure. �

6. Transferring strong dualities down

In Section 4 we have presented a natural way of transferring a strong duality “up”

from a finite algebra D to a finite algebra M, where D ∈ IS(M) and M ∈ ISP(D).

In this section we apply the results of Sections 4 and 5 to show how the transferral of

strong dualisability can also be made “down” from the algebraM to the algebra D.

We use a structure introduced in [10] (and also used in [7]). We start with recalling

the basic setting and the shape of the transferred structure.

Let the finite algebras D and M be such that D ∈ IS(M) and M ∈ ISP(D),

and therefore D and M generate the same quasi-variety. Let β : D → M and

α : M → D
k, where k > 1, be one-to-one homomorphisms.

For every n-ary partial operation h : domh ⊆ Mn → M , let domhα ⊆ Dnk be

the set of all elements (̺ ◦ α)((a1, . . . , an)) of the form

((̺1 ◦ α)(a1), . . . , (̺k ◦ α)(a1), . . . , (̺1 ◦ α)(an), . . . , (̺k ◦ α)(an)),

where (a1, . . . , an) ∈ domh. Let hα : domhα → Dk be the map defined so that for

all (a1, . . . , an) ∈ domh,

hα((̺ ◦ α)((a1, . . . , an))) = α(h(a1, . . . , an)).

We observe that hα is a homomorphism from the subalgebra domhα of D
nk into D

k

whenever h is algebraic overM (cf. [10], p. 201).

For every m-ary relation r on M , we define the mk-ary relation rα on D as

rα := {(̺ ◦ α)((a1, . . . , am)) : (a1, . . . , am) ∈ r}.

We again observe that rα is algebraic overD whenever r is algebraic overM (cf. [10],

p. 202). Let us denote a structure on D defined from a given structure G ∪ H ∪ R

onM as follows:

415



(a) Gα := {̺1 ◦ gα, . . . , ̺k ◦ gα : g ∈ G};

(b) Hα := {̺1 ◦ hα, . . . , ̺k ◦ hα : h ∈ H};

(c) Rα := {rα : r ∈ R}.

This structure was used in the following result from [7].

Lemma 6.1 ([7], Corollary 4.7). Let D and M be finite generators of the same

quasi-variety and let β : D → M and α : M → D
k, for some k > 1, be one-to-one

homomorphisms. If M is dualisable via a finite set {ω1, . . . , ωk} ∪ G ∪ H ∪ R, then

D is dualisable via the set End(D) ∪ Gα ∪ Hα ∪ Rα ∪ {α(M)}.

Now using the results of Sections 4 and 5, we can present the final result of this

paper.

Theorem 6.2. LetD be a finite algebra, letM be a finite algebra in D := ISP(D)

and assume that D ∈ IS(M), so that D andM generate the same quasi-variety. Let

β : D → M and α : M → D
k, for some k, be one-to-one homomorphisms. Let us

assume that

M∼ = 〈M ; G, H, R, T 〉

yields a strong duality on ISP(M) and the set G ∪ H ∪ R is finite.

Then the structure D∼α defined to be

〈D; End(D), Gα, Hα ∪ {(α ◦ β)−1 ◦ ̺
((α◦β)(D))k

j : 1 6 j 6 k}, Rα ∪ {α(M)}, T 〉

yields a strong duality on ISP(D).

P r o o f. First we introduce the following notation: given homomorphisms γi :

Ai → Bi with i ∈ {1, . . . , k}, we take γ1× . . .×γk to denote the homomorphism from

A1×. . .×Ak to B1×. . .×Bk that maps each (a1, . . . , ak) to (γ1(a1), . . . , γk(ak)). We

apply the Generalized Strong Duality Transfer Theorem 4.5 to transfer the strong

duality from M via the embedding β′ := α : M → D
k. We obtain that Γβ′α′ ∪

min G ∪ min H ∪ {σ′} ∪ min R ∪ {β′(M)} strongly dualises Dk, where

α′ = β × . . . × β : D
k → M

k,

Γβ′α′ = {β′ ◦ πj ◦ α′ : 1 6 j 6 k} = {α ◦ β ◦ πj : D
k → D

k : 1 6 j 6 k},

σ′ = (α ◦ β)−1 × . . . × (α ◦ β)−1 : ((α ◦ β)(D))k → D
k,

and min G = {gα : g ∈ G}, min H = {hα : h ∈ H}, min R = {rα : r ∈ R}.

Now the result follows from Proposition 5.2. �
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